JPS6392835A - Manufacture of electromagnetic coupling device - Google Patents

Manufacture of electromagnetic coupling device

Info

Publication number
JPS6392835A
JPS6392835A JP23656486A JP23656486A JPS6392835A JP S6392835 A JPS6392835 A JP S6392835A JP 23656486 A JP23656486 A JP 23656486A JP 23656486 A JP23656486 A JP 23656486A JP S6392835 A JPS6392835 A JP S6392835A
Authority
JP
Japan
Prior art keywords
heat pipe
hole
tube material
connecting body
pipe tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23656486A
Other languages
Japanese (ja)
Inventor
Hitoshi Inoue
均 井上
Sadatoshi Takayanagi
高柳 貞敏
Kenji Kataoka
片岡 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23656486A priority Critical patent/JPS6392835A/en
Publication of JPS6392835A publication Critical patent/JPS6392835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)

Abstract

PURPOSE:To attain prompt and efficient cooling of friction heat at a coupling section, by making one end side of a heat pipe material expanded so as to bring it in solid contact with the first coupling main body, and the other end side expanded to allow cooling fins to come into a solid contact therewith. CONSTITUTION:A heat pipe is installed in order that friction heat generated in a coupling section may be cooled, in an electromagnetic coupling device which provides connection between a ring drive 1, i.e., the first coupling main body and a driven, through the intermediary of magnetic particles. Said installation is such that one end side of a small-diameter heat pipe material 16 is inserted into a through hole 1a which is one of plural through holes drilled through a ring drive 1, and plural pieces of cooling fins 17, each with a hole 17a of the same diameter as the through hole 1a are fitted around its other end side. Further, a pipe expander 18 is pressed in to have one end side of the heat pipe material 16 expanded so as to bring it in solid contact with the through hole 1a of the ring drive 1, and the other end side expanded to bring it in solid contact with the holes 17a of the cooling fins 17, thereby constituting a heat absorbing section 16a and a heat radiating section 16b, respectively. Thus, the friction heat can be cooled efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は第1の連結主体と82の連結主体との間に磁
性粒子を充填し、磁性粒子を磁化して両連結主体間に伝
達トルクを発生させる電磁連結装置に関し、特にその冷
却4造の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention involves filling the space between a first connecting body and 82 connecting bodies with magnetic particles, magnetizing the magnetic particles, and transmitting torque between the two connecting bodies. The present invention relates to an electromagnetic coupling device that generates , and particularly to a method of manufacturing a cooling four-piece thereof.

〔従来の技術〕[Conventional technology]

第5図は例えば「三菱電磁クラッチ・ブレーキく総合カ
タログ〉、昭和60年9月発行」の2−2頁〜2−5頁
に示された従来の電磁連結装置の概略崗成を示す断面側
面図であり、図において、(1)は図示しない原動機に
より駆動される回転軸(2)に取付けられ、回転軸(2
)と連動して回転する環状の第1の連結主体(以下、リ
ングドライブと弥す)、(3)はリングドライブ(1)
の内周側に同心軸上に環状の空隙を隔てて配設された第
2の連結主体(以下、ドリブンと称す)であり、固定側
の磁束回路となる。(4)はリングドライブ(1)とド
リブン(3)との間の環状の空隙に充填された磁性粒子
であり、磁化することにより固体状となり、リングドラ
イブ(1)とドリブン(3)との間のトルク伝達媒体と
なる。(5)はリングドライブ(1)の外周側に配設さ
れた励磁装置であり、励磁コイル(6)とステータ(7
)により構成され、励磁コイル(6)の附勢により磁束
を発生させ、磁性粒子(4)を磁化させてリングドライ
ブ(1)とドリブン(3)との間に伝達トルクを発生さ
せる。(8)は励磁装置(5)のステータ(7)の−刃
側に取付けられた固定用取付部材であり、図示しない固
定部に取付けられ、回転11i111(2)との間にベ
アリング(9)を介在させて回転軸(2)を支持する。
Figure 5 is a cross-sectional side view showing the general structure of a conventional electromagnetic coupling device shown on pages 2-2 to 2-5 of the Mitsubishi Electromagnetic Clutch and Brake General Catalog, published September 1985. In the figure, (1) is attached to a rotating shaft (2) driven by a prime mover (not shown);
) (hereinafter referred to as the ring drive), (3) is the ring drive (1)
A second connecting body (hereinafter referred to as a driven) is disposed on the inner circumferential side of the main body on a concentric axis with an annular gap in between, and serves as a magnetic flux circuit on the fixed side. (4) is a magnetic particle filled in the annular gap between the ring drive (1) and the driven (3), and when magnetized, it becomes solid, and the ring drive (1) and the driven (3) It becomes a torque transmission medium between (5) is an excitation device disposed on the outer circumferential side of the ring drive (1), which includes an excitation coil (6) and a stator (7).
), which generates magnetic flux by energizing the excitation coil (6), magnetizes the magnetic particles (4), and generates a transmission torque between the ring drive (1) and the driven (3). (8) is a fixed mounting member attached to the -blade side of the stator (7) of the excitation device (5), and is attached to a fixed part (not shown), and a bearing (9) supports the rotation shaft (2).

Qlは励磁装置(5)のステータ(7)の他方側とドリ
ブン(3)とを結合固着するブラケットであり、貫通口
(10a) 、 (10b)が形成されている。0めは
リングドライブ(1)の開口部を閉鎖すると共にリング
ドライブ(1)と連動して回転するプレート、@はプレ
ートOI)に取付けられた放熱フィンである。
Ql is a bracket that connects and fixes the other side of the stator (7) of the excitation device (5) and the driven (3), and has through holes (10a) and (10b) formed therein. 0 is a plate that closes the opening of the ring drive (1) and rotates in conjunction with the ring drive (1); @ is a radiation fin attached to the plate OI).

次に動作tζついて説明する。今、回転軸(2)が回転
しているとき、リングドライブ(1)も回転している。
Next, the operation tζ will be explained. Now, when the rotating shaft (2) is rotating, the ring drive (1) is also rotating.

この状態で励磁装置(5)の励磁コイル(6)を附勢す
ると、ステータ(7ン、リングドライブ(])、ドリブ
ン(3)を回路とした強力な磁束Φが発生し、リングド
ライブ(1)とドリブン(3)との間の環状の空隙に充
填された磁性粒子(4)が磁化されて結速しで固化する
。このときの磁性粒子(4)間の直結力及び磁性粒子(
4)とリングドライブ(1)、あるいは磁性粒子(4)
とドリブン(3)の接触面との摩擦力により、リングド
ライブ(1)のトルクがドリブン(3)に伝達され、リ
ングドライブ(1)に制動力がかかる。このドリブン(
3)に発生する制動トルクはブラケットQ(1,ステー
タ(7)を介して取付部材(8)に伝達される。取付部
材(8)は外部の固定部に取付けられており、ドリブン
(3)から伝達された制動トルクは固定部fζ伝達され
る。
When the excitation coil (6) of the excitation device (5) is energized in this state, a strong magnetic flux Φ is generated with the stator (7), ring drive (]), and driven (3) as a circuit, and the ring drive (1) The magnetic particles (4) filled in the annular gap between the magnetic particles (4) and the driven (3) are magnetized, condensed, and solidified.At this time, the direct coupling force between the magnetic particles (4) and the magnetic particles (
4) and ring drive (1) or magnetic particles (4)
Due to the frictional force between the ring drive (1) and the contact surface of the driven (3), the torque of the ring drive (1) is transmitted to the driven (3), and a braking force is applied to the ring drive (1). This driven (
The braking torque generated in the driven (3) is transmitted to the mounting member (8) via the bracket Q (1, stator (7)).The mounting member (8) is attached to an external fixed part, and The braking torque transmitted from the fixed part fζ is transmitted to the fixed part fζ.

したがって、リングドライブ(1)とドリブン(3)と
は磁化した磁性粒子(4)により結合されてリングドラ
イブ(1)が制動されながら回転するか、あるいは回転
が止まる。即ち、ブレーキがかかる。制動を解除すると
きは、励磁コイル(6)を消勢することにより磁束Φが
なくなり磁化した磁性粒子が元の状態に戻り、リングド
ライブ(1)とドリブン(3)との制動状態が解除され
、リングドライブ(1)が再び元の状態で回転する。
Therefore, the ring drive (1) and the driven (3) are coupled by the magnetized magnetic particles (4), and the ring drive (1) rotates while being braked or stops rotating. In other words, the brakes are applied. To release the braking, the excitation coil (6) is deenergized, the magnetic flux Φ disappears, the magnetized magnetic particles return to their original state, and the braking state between the ring drive (1) and the driven (3) is released. , the ring drive (1) rotates again in its original state.

ところで、リングドライブ(1)、ドリブン(3)は磁
性粒子(4)との摩擦接触により多爪の摩擦熱が発生し
、リングドライブ〈1)、ドリブン(3)が非常に加熱
されて発熱し、磁性粒子(4)が酸化焼結して結合媒体
として作用しなくなる等の懸念がある。即ち、電磁連結
機能を損なう恐れがある。そこで、リングドライブ(1
)、ドリブン(3)の連結部に発生する摩擦熱をプレー
ト(6)に取付けた放熱フィン(至)により空気中に放
熱している。しかし、放熱フィン(2)による放熱だけ
ではリングドライブ(1)、ドリブン(3)の連結部に
発生する摩擦熱を有効に放熱することができず、磁性粒
子(4)の酸化焼結を防止することができない。
By the way, the ring drive (1) and the driven (3) generate multi-jaw frictional heat due to frictional contact with the magnetic particles (4), and the ring drive (1) and the driven (3) become extremely heated and generate heat. There is a concern that the magnetic particles (4) may be oxidized and sintered and no longer function as a binding medium. That is, there is a possibility that the electromagnetic coupling function may be impaired. Therefore, the ring drive (1
), the frictional heat generated at the connection part of the driven (3) is radiated into the air by heat radiating fins attached to the plate (6). However, heat dissipation by the heat dissipation fins (2) alone cannot effectively dissipate the frictional heat generated at the joint between the ring drive (1) and the driven (3), preventing oxidation and sintering of the magnetic particles (4). Can not do it.

これを改良したものとして例えば特公昭51−2780
8号公報に示されたものがあり、その概略を第6図に示
す。第6図において、03.α◆はドリブン(3)に形
成された冷却水の給水口および排水口である。(至)は
ドリブン(3)に給水口a3、排水口a→と連通して形
成された環状の水路である。給水口口より冷却水が入り
、水路側を流通して排水口a4より冷却後の水が排水さ
れて、連結部の発生熱を外部に放出するようにしている
For example, as an improved version of this,
There is one disclosed in Publication No. 8, and its outline is shown in FIG. In FIG. 6, 03. α◆ is a cooling water supply port and a water discharge port formed in the driven (3). (to) is an annular waterway formed in the driven (3) in communication with the water supply port a3 and the drain port a→. Cooling water enters from the water supply port, flows through the water channel, and is drained from the drain port a4, thereby discharging the heat generated by the connecting portion to the outside.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上述した従来装置では、ドリブン(3)に
設けた水路語が摩擦熱の発生する部分より離れているた
め、摩擦により発生する熱を外部Iζ放出する効率が悪
く、そのため水路μsを摩擦熱の発生するドリブン(3
)の外周に近づけると点線で示す磁路がせまくなり磁束
が通りに<<、伝達トルクが小さくなってしまう。又、
磁気回路特有の飽和現象があるので、励磁力を多少大き
くしても、トルクは増加せず、更に励磁電流対トルク特
性も直線性が得られず制御特性のよくないものになって
しまう。その結果、水路(至)はドリブン(3)の外周
側に近づけることができなくなり、リングドライブ(1
)、ドリブン(3)の連結部に発生する摩擦熱を有効に
放熱することができなくなる。従って、その摩擦熱によ
りステータ(7)や取付部材(8)を介して励磁コイル
(6)やベアリング(9]が過熱される問題点がある。
However, in the conventional device described above, since the waterway installed in the driven (3) is located away from the part where frictional heat is generated, the efficiency of discharging the heat generated by friction to the outside Iζ is poor, and therefore the waterway μs is Driven (3)
), the magnetic path shown by the dotted line becomes narrower, allowing the magnetic flux to pass through, and the transmitted torque becomes smaller. or,
Since there is a saturation phenomenon peculiar to magnetic circuits, even if the excitation force is increased somewhat, the torque does not increase, and furthermore, the excitation current vs. torque characteristic cannot be linearly obtained, resulting in poor control characteristics. As a result, the water channel (to) cannot be brought close to the outer circumference of the driven (3), and the ring drive (1)
), it becomes impossible to effectively dissipate the frictional heat generated at the connecting portion of the driven (3). Therefore, there is a problem in that the exciting coil (6) and the bearing (9) are overheated via the stator (7) and the mounting member (8) due to the frictional heat.

又、ドリブン(3)に冷却水を通流させるために、装置
外部に冷却水の給排水設備の設置や冷却水路の保修など
のメインテナンスが必要であるなどの問題点がある。
Further, in order to flow the cooling water through the drive (3), maintenance such as installation of cooling water supply and drainage equipment outside the device and maintenance of the cooling water channel is required.

この発明は上記のような問題点を解消するためになされ
たものであり、給排水設備を設けることなく、十分な冷
却効果があり、メインテナンスフリーの高信頼性の装置
を得ることができる製造方法を提供することを目的とす
る。
This invention was made to solve the above-mentioned problems, and provides a manufacturing method that can provide a maintenance-free, highly reliable device that has sufficient cooling effects without the need for water supply and drainage equipment. The purpose is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る連結装置の製造方法は、第1の連結主体
に複数の貫通穴を形成する工程、上記第1の連結主体の
貫通穴の径より小径のヒートパイプ管材の一方側を上記
貫通穴に挿入する工程、上記ヒートパイプ管材の他方側
に上記ヒートパイプ管材の径より大径の穴を有する冷却
フィンを挿入する工程、上記ヒートパイプ管材の一方側
を拡管して上記第1の連結主体と上記ヒートパイプ管材
の一方側とを一体密着する工程、上記ヒートパイプ管材
の他方側を拡管して上記冷却フィンと上記ヒートパイプ
管材の他方側とを一体密着する工程とを備だものである
The method for manufacturing a coupling device according to the present invention includes the steps of: forming a plurality of through holes in a first coupling body; inserting a cooling fin having a hole with a diameter larger than the diameter of the heat pipe into the other side of the heat pipe, expanding one side of the heat pipe into the first connecting body; and one side of the heat pipe tube material, and a step of expanding the other side of the heat pipe tube material and integrally bonding the cooling fin and the other side of the heat pipe tube material. .

〔作用〕[Effect]

この発明における製造方法は、ヒートパイプ管材の一方
側を拡管することにより、ヒートパイプ管材の一方側と
第1の連結主体とが一体密着され、ヒートパイプ管材の
他方側を拡管することにより、ヒートパイプ管材の他方
側と冷却フィンとが一体密着される。
In the manufacturing method of the present invention, by expanding one side of the heat pipe material, one side of the heat pipe material and the first connecting body are brought into close contact with each other, and by expanding the other side of the heat pipe material, the heat pipe material is heated. The other side of the pipe material and the cooling fin are brought into close contact with each other.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図、第2図に基づいて
説明する。第1図はヒートパイプ管材Qlの拡管前の状
態、第2図はヒートパイプ管材αQの拡[Cの状態を示
す。先ず、リングドライブ(1)に円周方向に複数の貫
通穴(1a)を形成し、貫通穴(1a)の径より小径の
ヒートパイプ管材αQの一方側(16a)をその貫通穴
(1a)に挿入する。ヒートパイプ管材Q[9の他方側
(16b)にヒートパイプ管材αQの径より大径かつリ
ングドライブ(1)の貫通穴(1a)と同径又は小さい
径の穴(17a)を有する例えば環状からなる複数の冷
却フィンαηを挿入する。次いで、ヒートパイプ管材α
Qを拡管する。ヒートパイプ管材α→の他方側(16b
)端部内に拡管工具(ト)を押圧力によつてヒートパイ
プ管材Qlの一方側(16a)へ拡管させながら押し進
める。ところで、例えばリングドライブfl)は鉄製、
ヒートパイプ管材0・は銅製、冷却フィンa7)はアル
ミニウム製が使用される。従って、アルミニウムは銅よ
り軟らかいため、ヒートパイプ管材00の他方側(16
b)を拡管すると冷却フィンαηも併せて拡管されヒー
トパイプ管材a・の他方側(16b)と冷却フィンαη
との結合力が大きなものとなると共に両者間の密着性も
非常に良好なものとなり、両者間の熱抵抗が著しく低減
される。また、銅は鉄より軟らかいため、ヒートパイプ
管材(ト)の−刃側Qsa)を拡管するとヒートパイプ
管材αQの一方側(16a)の外表面が押しつぶされて
リングドライブ(1)の貫通穴(la) lこ強固1こ
密着して結合され、両者間の結合力が大きなものとなる
と共に密着性も非常に良好なものとなり、両者間の熱抵
抗を著しく低減することができる。なぜならば、貫通穴
(1a)にヒートパイプを挿着することが一般的に考え
られるが、ヒートパイプと貫通穴との固定及び密着性の
ために、両者間に接着剤を介在させているが、この場合
、固着力については必要条件を満たせるが、密着性につ
いては両者間を完全に一体構造物とすることができず、
接着剤中ζζ気泡部を有すると共に接着剤を両者間に隙
間なく完全に充填することは非常に困難なものとなり、
熱抵抗が大きなものとなり冷却能力に制限を受ける不具
合を生じる。しかし、この発明の製造方法によれば、両
者間を完全に密着させることができるので、熱抵抗を無
くすことができるといって過言ではない。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 shows the state of the heat pipe material Ql before expansion, and FIG. 2 shows the state of the heat pipe material αQ before expansion. First, a plurality of through holes (1a) are formed in the ring drive (1) in the circumferential direction, and one side (16a) of the heat pipe tube material αQ having a diameter smaller than that of the through holes (1a) is connected to the through holes (1a). Insert into. For example, the heat pipe material Q [9 has a hole (17a) on the other side (16b) with a diameter larger than the diameter of the heat pipe material αQ and the same diameter as or smaller than the through hole (1a) of the ring drive (1). A plurality of cooling fins αη are inserted. Next, the heat pipe tube material α
Expand Q. The other side of the heat pipe tube material α→ (16b
) Push the tube expansion tool (g) into the end portion while expanding it toward one side (16a) of the heat pipe tube material Ql using a pressing force. By the way, for example, the ring drive fl) is made of iron.
The heat pipe tube material 0 is made of copper, and the cooling fin a7) is made of aluminum. Therefore, since aluminum is softer than copper, the other side (16
When b) is expanded, the cooling fin αη is also expanded, and the other side (16b) of the heat pipe tube material a and the cooling fin αη are expanded.
The bonding force between the two becomes large, and the adhesion between the two becomes very good, and the thermal resistance between the two is significantly reduced. In addition, since copper is softer than iron, when the -blade side Qsa) of the heat pipe material (G) is expanded, the outer surface of one side (16a) of the heat pipe material αQ is crushed and the through hole of the ring drive (1) ( la) They are bonded tightly and in close contact, and the bonding force between them is large and the adhesion is also very good, making it possible to significantly reduce the thermal resistance between them. This is because, although it is generally considered that a heat pipe is inserted into the through hole (1a), an adhesive is interposed between the heat pipe and the through hole for fixation and adhesion between the two. In this case, the required conditions for adhesion can be met, but for adhesion, it is not possible to form a completely integrated structure between the two.
The adhesive has ζζ air bubbles, and it is extremely difficult to completely fill the adhesive without any gaps between the two.
Thermal resistance becomes large, causing a problem in which cooling capacity is limited. However, according to the manufacturing method of the present invention, it is possible to completely bring them into close contact, so it is no exaggeration to say that thermal resistance can be eliminated.

以上のような拡管作業を終えると第2図のようになり、
この状態でヒートパイプ管材αQの両端を封止すると共
にその内部に蒸発性を有する例えばフロン、アンモニア
、水等の作動液体を所定量封入すると、ヒートパイプを
構成することができる。
After completing the pipe expansion work as described above, it will look like Figure 2.
In this state, a heat pipe can be constructed by sealing both ends of the heat pipe tube material αQ and filling a predetermined amount of an evaporative working liquid, such as fluorocarbon, ammonia, or water, inside it.

このヒートパイプはその結合部での熱抵抗が無いので、
熱効率が向上することになり、冷却特性の非常lζ優れ
たものとなる。その結果、リングドライブ(1)とドリ
ブン(3)の連結部の冷却を給排水設備を設けることな
く十分に冷却でき、その連結部の温度を著しく低減でき
、磁性粒子(4)の酸化焼結を防止できる。又、ヒート
パイプはメインテナンスフリーであり、水冷部における
冷却水路の保修等のメインテナンスが不必要となる。
This heat pipe has no thermal resistance at the joint, so
Thermal efficiency is improved, resulting in extremely excellent cooling characteristics. As a result, the connecting part between the ring drive (1) and the driven (3) can be sufficiently cooled without installing water supply and drainage equipment, the temperature of the connecting part can be significantly reduced, and the oxidation and sintering of the magnetic particles (4) can be prevented. It can be prevented. Further, the heat pipe is maintenance-free, and maintenance such as maintenance of the cooling water channel in the water-cooled part is unnecessary.

また、第8図、第4図に示す製造方法は、先ず、リング
ドライブ(1ンの貫通穴(la)の径より小径のヒート
パイプ管材Q[9の一方側(16a)をその貫通穴(1
a)に挿入する。ヒートパイプ管材αQの他方側(16
b)に貫通穴(la)の径より大径の穴(19a)を有
する例えば環状からなる複数の冷却フィンonを挿入す
る。次いで、ヒートパイプ管材α・を拡管する。ヒート
パイプ管材Qf9の他方側(16b)端部内にヒートパ
イプ管材Hの一方側(16a)とリングドライブ(1)
とを一体密着する第1の拡管工具(4)を押圧力によっ
てヒートパイプ管材Qliの一方側(16a)へ拡管さ
せながら押し進める。第1の拡管工具(1)がヒートパ
イプ管材Hの一方側(16a)を拡管してその一方側(
16a)とリングドライブ(1)とがある程度の長さま
で一体密着されたころ、ヒートパイプ管材tSの他方側
(16b)は第1の拡管工具勾と連結された@2の拡管
工具eυによりさらに拡管されると共に冷却フィンOQ
も拡管され、その他方側(16b)と冷却フィンanと
が一体密着される。以後、ヒートパイプ管材αQの一方
側α6a)は第1の拡管工具(1)により拡管され、ヒ
ートパイプ管材α・の他方側(16b)は第2の拡管工
具(2)により拡管され、ヒートパイプ管材αQの一方
側(16a)とリングドライブ(1)、ヒートパイプ管
材QGの他方側(16b)と冷却フィンalのそれぞれ
の両者間はそれぞれ強固に密着して結合され、それぞれ
の両者間の結合力が大きなものとなると共に密着性も非
常に良好なものとなり、それぞれの両者間の熱抵抗を著
しく低減することができる。尚、第8図の実施例ではヒ
ートパイプ管材αQの一方#!1(16a)と他方側(
16b)の拡管を同時に行って作業性向上を図った場合
について述べたが、それぞれの拡管を別工程、即ち、先
ずヒートパイプ管材OQの一方側(16a)を第1の拡
管工具(1)で拡管してヒートパイプ管材αQの一方側
(16a)とリングドライブ(1)とを一体固着した後
、ヒートパイプ管材α・の他方側(16b)を第2の拡
管工具3υでさらiζ拡管してヒートパイプ管材QQの
他方側(16b)と冷却フィンq鑓とを一体密着させる
ようにしてもよく所期の目的は達成できる。
In addition, the manufacturing method shown in FIGS. 8 and 4 is as follows: First, one side (16a) of a heat pipe tube material Q[9 with a diameter smaller than the diameter of the through hole (LA) of the ring drive (1) is connected to the through hole (1). 1
Insert into a). The other side of the heat pipe tube material αQ (16
In b), for example, a plurality of annular cooling fins having holes (19a) having a diameter larger than the diameter of the through hole (la) are inserted. Next, the heat pipe tube material α is expanded. One side (16a) of the heat pipe material H and the ring drive (1) are installed in the other end (16b) of the heat pipe material Qf9.
The first tube expansion tool (4), which is brought into close contact with the heat pipe material Qli, is pushed toward one side (16a) of the heat pipe tube material Qli while expanding it with a pressing force. The first tube expansion tool (1) expands one side (16a) of the heat pipe tube material H and expands the other side (16a) of the heat pipe tube material H.
16a) and the ring drive (1) are brought into close contact to a certain length, the other side (16b) of the heat pipe tube material tS is further expanded by the tube expansion tool eυ @2 connected to the first tube expansion tool tS. Cooling fin OQ
Also, the other side (16b) and the cooling fin an are brought into close contact with each other. Thereafter, one side α6a) of the heat pipe material αQ is expanded by the first tube expansion tool (1), and the other side (16b) of the heat pipe material α is expanded by the second tube expansion tool (2), and the heat pipe One side (16a) of the tube material αQ and the ring drive (1), and the other side (16b) of the heat pipe tube material QG and the cooling fin al are tightly connected and connected, and the connection between them is The force becomes large and the adhesion is also very good, making it possible to significantly reduce the thermal resistance between the two. In the embodiment shown in FIG. 8, one side of the heat pipe tube material αQ is #! 1 (16a) and the other side (
16b) was described in order to improve workability by simultaneously expanding the tubes. However, each tube expansion is performed in separate steps. In other words, first, one side (16a) of the heat pipe material OQ is expanded using the first tube expansion tool (1). After expanding and fixing one side (16a) of the heat pipe material αQ and the ring drive (1) together, the other side (16b) of the heat pipe material α is further expanded iζ using a second pipe expansion tool 3υ. The desired purpose may also be achieved by integrally bringing the other side (16b) of the heat pipe tube material QQ into close contact with the cooling fins q.

尚、上記実施例はヒートパイプ管材01の他方側(xs
b)から一方側(16a)に拡管を押し進める場合につ
いて述べたが、ヒートパイプ管材υQの一方(Ell(
16a)はその一方側(16a)端部から拡管するよう
にしてもよく、上記実施例と同様の効果を奏する。
In addition, in the above embodiment, the other side (xs
Although we have described the case where the tube expansion is pushed from b) to one side (16a), one side (Ell (
16a) may be expanded from its one end (16a), and the same effect as in the above embodiment can be achieved.

又、上記実施例では冷却フィンαη、 aQが環状冷却
フィンの場合1とついて述べたが、各ヒートパイプ管材
Hの他方側(16b)fζ個々fζ冷却フィン07) 
、 (IQを設けるようにしてもよい。
Further, in the above embodiment, the case 1 was described where the cooling fins αη, aQ are annular cooling fins, but the other side (16b) fζ individual fζ cooling fins 07)
, (IQ may also be provided.

又、上記実施例ではヒートパイプ管材の拡管は押出拡管
の場合について述べたが、引抜拡管でヒートパイプ管材
を拡管するようにしてもよい。又、拡管工具を使用しな
いでヒートパイプ管材内に油圧、水圧等の圧力をかけて
拡管させるようにしてもよく、上記実施例と同様の効果
を奏する。
Further, in the above embodiments, the expansion of the heat pipe material is performed by extrusion, but the heat pipe material may be expanded by drawing. Alternatively, pressure such as hydraulic pressure or water pressure may be applied to the inside of the heat pipe tube material to expand the tube without using a tube expansion tool, and the same effect as in the above embodiment can be obtained.

ところで、上記説明では電磁連結装置として第1の連結
主体が回転し、第2の連結主体が固定の場合、即ち、ブ
レーキ装置に適用した場合について述べたが、第1、第
2の連結主体が回転する場合、即ち、クラッチ装置にも
この発明を適用し得ることができる。
By the way, in the above description, the first connecting body rotates and the second connecting body is fixed as an electromagnetic coupling device, that is, the case is applied to a brake device. The present invention can also be applied to rotating devices, that is, clutch devices.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、第1の連結主体に複数の
貫通穴を形成する工程、第1の連結主体の貫通穴の径よ
り小径のヒートパイプ管材の一方側をその貫通穴に挿入
する工程、ヒートパイプ管材の他方側にヒートパイプ管
材の径より大径の穴を有する冷却フィンを挿入する工程
、ヒートパイプ管材の一方側を拡管して第1の連結主体
とヒートパイプ管材の一方側とを一体密着する工程、ヒ
ートパイプ管材の他方側を拡管して冷却フィンとヒート
パイプ管材の他方側とを一体密着する工程を備えたこと
により、ヒートパイプ管材の一方側と第1の連結主体と
の密着性、ヒートパイプ管材の他方側と冷却フィンとの
密着性が非常に良好なものとなり、それぞれの両者間の
熱抵抗を著しく低減でき、冷却特性の非常に優れたもの
となり、給排水設備を設けることなく第1の連結主体の
熱を速やかに奪い効率よく冷却でき、メインテナンスフ
リーの窩信頼性の電磁連結装置の製造方法を得ることが
できる。
As explained above, the present invention includes a step of forming a plurality of through holes in a first connecting body, and a step of inserting one side of a heat pipe pipe material having a diameter smaller than the diameter of the through hole of the first connecting body into the through hole. , a step of inserting a cooling fin having a hole with a diameter larger than the diameter of the heat pipe tube material into the other side of the heat pipe tube material, and expanding one side of the heat pipe tube material to connect the first connecting body to one side of the heat pipe tube material. By expanding the other side of the heat pipe material and bringing the cooling fins and the other side of the heat pipe material into close contact with each other, one side of the heat pipe material and the first connecting body can be connected. The adhesion between the other side of the heat pipe tube material and the cooling fins is very good, and the thermal resistance between them can be significantly reduced, resulting in extremely excellent cooling properties, making it possible to improve water supply and drainage equipment. It is possible to obtain a method for manufacturing a maintenance-free, reliable electromagnetic coupling device, which can rapidly remove heat from the first coupling body and cool it efficiently without the need for providing a main coupling body.

【図面の簡単な説明】 第1図、第2図はこの発明の一実施例による電磁連結装
置の製造方法を示す要部断面側面図、第3図、第4図は
別の発明の実施例による電磁連結装置の製造方法を示す
要部断面側面図、第5図、第6図はそれぞれ従来の電磁
連結装置を示す断面側面図である。 図において、(1)は第1の連結主体、(1a)は貫通
穴、(3)は第2の連結主体、aeはヒートパイプ管材
、(i6a)は一方側、(16b)は他方側、aη、σ
9は冷却フィンである。 尚、図中同一符号は同−又は相当部分を示す。
[Brief Description of the Drawings] Figures 1 and 2 are cross-sectional side views of essential parts showing a method of manufacturing an electromagnetic coupling device according to one embodiment of the present invention, and Figures 3 and 4 are embodiments of another embodiment of the invention. FIGS. 5 and 6 are cross-sectional side views showing a conventional electromagnetic coupling device, respectively. In the figure, (1) is the first connecting body, (1a) is the through hole, (3) is the second connecting body, ae is the heat pipe pipe material, (i6a) is one side, (16b) is the other side, aη,σ
9 is a cooling fin. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 (1)回転軸に取付けられ、内周側に同心軸上に第2の
連結主体が配設される環状の第1の連結主体に複数の貫
通穴を形成する工程、上記第1の連結主体の貫通穴の径
より小径のヒートパイプ管材の一方側を上記貫通穴に挿
入する工程、上記ヒートパイプ管材の他方側に上記ヒー
トパイプ管材の径より大径の穴を有する冷却フィンを挿
入する工程、上記ヒートパイプ管材の一方側を拡管して
上記第1の連結主体と上記ヒートパイプ管材の一方側と
を一体密着する工程、上記ヒートパイプ管材の他方側を
拡管して上記冷却フィンと上記ヒートパイプ管材の他方
側とを一体密着する工程とを備えたことを特徴とする電
磁連結装置の製造方法。 (2)回転軸に取付けられ、内周側に同心軸上に第2の
連結主体が配設される環状の第1の連結主体に複数の貫
通穴を形成する工程、上記第1の連結主体の貫通穴の径
より小径のヒートパイプ管材の一方側を上記貫通穴に挿
入する工程、上記ヒートパイプ管材の他方側に上記ヒー
トパイプ管材の径より大径かつ上記第1の連結主体の貫
通穴の径と同径又は小さい径の穴を有する冷却フィンを
挿入する工程、上記ヒートパイプ管材の一方側を拡管し
て上記第1の連結主体と上記ヒートパイプ管材の一方側
とを一体密着する工程、上記ヒートパイプ管材の他方側
を拡管して上記冷却フィンと上記ヒートパイプ管材の他
方側とを一体密着する工程とを備えたことを特徴とする
電磁連結装置の製造方法。 (3)ヒートパイプの一方側と第1の連結主体との一体
密着工程及びヒートパイプの他方側と冷却フィンとの一
体密着工程を同時工程で行うことを特徴とする特許請求
の範囲第2項記載の電磁連結装置の製造方法。 (4)回転軸に取付けられ、内周側に同心軸上に第2の
連結主体が配設される環状の第1の連結主体に複数の貫
通穴を形成する工程、上記第1の連結主体の貫通穴の径
より小径のヒートパイプ管材の一方側を上記貫通穴に挿
入する工程、上記ヒートパイプ管対の他方側に上記第1
の連結主体の貫通孔の径より大径の穴を有する冷却フィ
ンを挿入する工程、上記ヒートパイプ管材の一方側を拡
管して上記第1の連結主体と上記ヒートパイプ管材の一
方側とを一体密着する工程、上記ヒートパイプ管材の他
方側を拡管して上記冷却フィンと上記ヒートパイプ管材
の他方側とを一体密着する工程とを備えたことを特徴と
する電磁連結装置の製造方法。 (6)ヒートパイプの一方側と第1の連結主体との一体
密着工程及びヒートパイプの他方側と冷却フィンとの一
体密着工程を同時工程で行うことを特徴とする特許請求
の範囲第4項記載の電磁連結装置の製造方法。
[Scope of Claims] (1) A step of forming a plurality of through holes in an annular first connecting body that is attached to a rotating shaft and has a second connecting body arranged on a concentric axis on the inner circumferential side; inserting one side of a heat pipe tube material having a diameter smaller than the diameter of the through hole of the first connecting body into the through hole, and having a hole larger in diameter than the heat pipe tube material on the other side of the heat pipe tube material; inserting cooling fins; expanding one side of the heat pipe material to bring the first connecting body and one side of the heat pipe material into close contact; and expanding the other side of the heat pipe material. A method of manufacturing an electromagnetic coupling device, comprising the step of integrally bringing the cooling fin and the other side of the heat pipe tube material into close contact with each other. (2) forming a plurality of through holes in an annular first connecting body that is attached to the rotating shaft and has a second connecting body disposed on the inner circumferential side on a concentric axis, the first connecting body; inserting one side of a heat pipe tube material having a diameter smaller than the diameter of the through hole into the through hole, a through hole having a diameter larger than the diameter of the heat pipe tube material and having the first connection main body on the other side of the heat pipe tube material; a step of inserting a cooling fin having a hole with a diameter equal to or smaller than the diameter of the first connecting body and one side of the heat pipe tube material by expanding one side of the heat pipe tube material and bringing the first connecting body and one side of the heat pipe tube material into close contact with each other. A method for manufacturing an electromagnetic coupling device, comprising the steps of expanding the other side of the heat pipe tube material and bringing the cooling fin and the other side of the heat pipe tube material into close contact with each other. (3) The process of integrally adhering one side of the heat pipe to the first connecting body and the process of integrally adhering the other side of the heat pipe to the cooling fins are carried out simultaneously. A method of manufacturing the electromagnetic coupling device described above. (4) forming a plurality of through holes in an annular first connecting body that is attached to the rotating shaft and has a second connecting body disposed on the inner circumferential side on a concentric axis, the first connecting body; inserting one side of a heat pipe tube material having a diameter smaller than the diameter of the through hole into the through hole;
inserting a cooling fin having a hole with a diameter larger than the diameter of the through hole of the connecting body, expanding one side of the heat pipe tube material to integrate the first connecting body and one side of the heat pipe tube material; A method for producing an electromagnetic coupling device, comprising the steps of bringing the cooling fins and the other side of the heat pipe tube into close contact with each other by expanding the other side of the heat pipe tube material. (6) The process of integrally adhering one side of the heat pipe to the first connecting body and the process of integrally adhering the other side of the heat pipe to the cooling fins are carried out simultaneously. A method of manufacturing the electromagnetic coupling device described above.
JP23656486A 1986-10-03 1986-10-03 Manufacture of electromagnetic coupling device Pending JPS6392835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23656486A JPS6392835A (en) 1986-10-03 1986-10-03 Manufacture of electromagnetic coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23656486A JPS6392835A (en) 1986-10-03 1986-10-03 Manufacture of electromagnetic coupling device

Publications (1)

Publication Number Publication Date
JPS6392835A true JPS6392835A (en) 1988-04-23

Family

ID=17002504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23656486A Pending JPS6392835A (en) 1986-10-03 1986-10-03 Manufacture of electromagnetic coupling device

Country Status (1)

Country Link
JP (1) JPS6392835A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109732543A (en) * 2018-12-28 2019-05-10 黄淮学院 A kind of construction project concrete wall surface positioning drilling equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239849A (en) * 1975-09-25 1977-03-28 Meidensha Electric Mfg Co Ltd Cooling apparatus
JPS55137490A (en) * 1979-04-13 1980-10-27 Furukawa Electric Co Ltd:The Method of fixing finned heat pipe to tube plate
JPS5756122A (en) * 1980-09-22 1982-04-03 Toshiba Corp Pipe expanding method for heat exchanger
JPS60146925A (en) * 1984-01-07 1985-08-02 Shinko Electric Co Ltd Magnetic coupling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239849A (en) * 1975-09-25 1977-03-28 Meidensha Electric Mfg Co Ltd Cooling apparatus
JPS55137490A (en) * 1979-04-13 1980-10-27 Furukawa Electric Co Ltd:The Method of fixing finned heat pipe to tube plate
JPS5756122A (en) * 1980-09-22 1982-04-03 Toshiba Corp Pipe expanding method for heat exchanger
JPS60146925A (en) * 1984-01-07 1985-08-02 Shinko Electric Co Ltd Magnetic coupling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109732543A (en) * 2018-12-28 2019-05-10 黄淮学院 A kind of construction project concrete wall surface positioning drilling equipment

Similar Documents

Publication Publication Date Title
AU2004231064A1 (en) Ventilated disc brake pads
WO2001079776A1 (en) Notched finned heat sink structure
JP2005514570A (en) Cooling structure for brake device
JPS6392835A (en) Manufacture of electromagnetic coupling device
JP4421278B2 (en) Eddy current reducer
JPH08298752A (en) Motor for electric vehicle
JP5008508B2 (en) Bonded body of copper tube and aluminum tube, bonding method, bonding device, and fluid circuit device
JP2001077571A (en) Cooling apparatus
JPS6152328B2 (en)
TWM604846U (en) Heat dissipation disc
JPS6388330A (en) Magnetic particle type electromagnetic connector
JPH0338453B2 (en)
JPS63149426A (en) Magnetic particle type electromagnetic connection device
JPH0310813B2 (en)
JPH0338452B2 (en)
JPS6388331A (en) Magnetic particle type electromagnetic connector
JPS6388332A (en) Magnetic particle type electromagnetic connector
JPS63149430A (en) Magnetic particle type electromagnetic connection device
JPS63149425A (en) Magnetic particle type electromagnetic connection device
JPS6392833A (en) Magnetic particle type electromagnetic coupling device
WO2014038266A1 (en) Pipe connection structure, and electronic equipent and optical equipment each having pipe connection structure
JPH0331863Y2 (en)
JPS63149431A (en) Magnetic particle type electromagnetic connection device
JPS63149428A (en) Magnetic particle type electromagnetic connection device
JP2005160156A (en) Stator structure of motor and its manufacturing method