JPS6392255A - Manufacture of primary core of linear pulse motor - Google Patents

Manufacture of primary core of linear pulse motor

Info

Publication number
JPS6392255A
JPS6392255A JP23620386A JP23620386A JPS6392255A JP S6392255 A JPS6392255 A JP S6392255A JP 23620386 A JP23620386 A JP 23620386A JP 23620386 A JP23620386 A JP 23620386A JP S6392255 A JPS6392255 A JP S6392255A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic pole
magnetic member
pulse motor
primary core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23620386A
Other languages
Japanese (ja)
Inventor
Hiroki Murayama
裕樹 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23620386A priority Critical patent/JPS6392255A/en
Publication of JPS6392255A publication Critical patent/JPS6392255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Abstract

PURPOSE:To increase a winding space and reduce consumption power, by fitting a second magnetic member firmly to a permanent magnet with a non-magnetic member, and fitting them firmly to a magnetic unit wound up with an excitation coil, to be cut off every pole. CONSTITUTION:The primary core of a linear pulse motor is manufactured by using a magnetic member 10 having four magnetic pole units 11, and on the opposite surface of the member 10, magnetic pole teeth 12 are formed by means of plating or the like. Besides, a magnetic member 13, a permanent magnet 14, and a non-magnetic member 15 for short-circuiting the magnetic units 11 which are firmly fitted with bonding agent are used, and after the magnetic pole units 11 of the magnetic member 10 are wound up with excitation coils 16, the magnetic units 11 and the magnetic member 13 are jointed to each other to form the primary core. Finally, slits 17 are formed on the jointed magnetic member 10 by a cutter or the like, and the member 10 is cut off to be separated from the slits to form the respective magnetic poles independently. Then, the relative positional shift of the magnetic pole teeth 12 is avoided, and an assembling process can be facilitated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、入力パルスに応じて1次コアあるいは2次コ
アが所定の距離だけ移動するリニアパルスモータに係り
、特にリニアパルスモータの1次コアの製造方法に関す
る。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a linear pulse motor in which a primary core or a secondary core moves by a predetermined distance in response to an input pulse, and particularly relates to a linear pulse motor in which a primary core or a secondary core moves by a predetermined distance in response to an input pulse. This invention relates to a method for manufacturing a core.

〔従来の技術〕[Conventional technology]

第2図に従来からよく知られているリニアパルスモータ
の概略図を示す。可動子20は、コの字型をした磁性材
21と22との間に永久磁石23を装着し、磁性材21
.22に励磁コイル24.28を巻回して構成されてい
る。永久磁石23は、着磁方向を示す記号27のように
着磁されている。固定子25には、ステップピッチに対
応した凹凸26が形成されている。
FIG. 2 shows a schematic diagram of a conventionally well-known linear pulse motor. The mover 20 has a permanent magnet 23 installed between U-shaped magnetic members 21 and 22, and the magnetic member 21
.. It is constructed by winding excitation coils 24 and 28 around 22. The permanent magnet 23 is magnetized as shown by a symbol 27 indicating the direction of magnetization. The stator 25 is formed with unevenness 26 corresponding to the step pitch.

第3図(a)〜(d)は、第2図に示したリニアパルス
モータの動作原理を説明する図である。
FIGS. 3(a) to 3(d) are diagrams illustrating the operating principle of the linear pulse motor shown in FIG. 2.

磁性材21に巻回された励磁コイル24は、磁極■と磁
極■との極性が互いに反対になるように直列に接続され
ている。同様に磁性材22には、磁極■と磁極■との極
性が互いに反対になるように励磁コイル28が巻回しで
ある。励磁コイル24に矢印で示した方向に電流を流し
励磁すると、磁極■においては磁界が増強され、磁極■
においては永久磁石の磁界と電磁石の磁界が互いに打ち
消しあうため可動子20は、第3図(a)の位置に停止
しする。
The excitation coil 24 wound around the magnetic material 21 is connected in series so that the polarities of the magnetic poles (1) and (2) are opposite to each other. Similarly, an excitation coil 28 is wound around the magnetic material 22 so that the polarities of the magnetic poles (1) and (2) are opposite to each other. When a current is applied to the excitation coil 24 in the direction shown by the arrow to excite it, the magnetic field is strengthened at the magnetic pole ■, and the magnetic pole ■
In this case, the magnetic field of the permanent magnet and the magnetic field of the electromagnet cancel each other out, so the mover 20 stops at the position shown in FIG. 3(a).

このとき磁性材22の側では、励磁コイル28に電流が
流されていないため磁力のバランスがとれている。次に
励磁コイル24を消磁して第3図(b)に示すように励
磁コイル28に矢印の向きに電流を流すと磁極■におい
て磁界が増強され、磁極■において相殺しあう結果、可
動子20が図の矢印で示す運動方向に移動し、第3図(
b)に示す位置で可動子は停止する。すなわち、可動子
20は矢印の運動方向に1/4ピフチ移動したことにな
る。以下同様な方法で第3図(C)、  (d)に示す
ように可動子がリニアに移動される。
At this time, on the side of the magnetic material 22, since no current is flowing through the excitation coil 28, the magnetic force is balanced. Next, when the excitation coil 24 is demagnetized and a current is passed through the excitation coil 28 in the direction of the arrow as shown in FIG. moves in the direction of motion shown by the arrow in the figure, and as shown in Figure 3 (
The mover stops at the position shown in b). In other words, the movable element 20 has moved by 1/4 pift in the movement direction of the arrow. Thereafter, the movable element is linearly moved in the same manner as shown in FIGS. 3(C) and 3(d).

ここで可動子のステップピッチを細かくするためには、
第4図に示したように可動子の各磁極41及び固定子の
磁極43のぞれぞれの対向面に磁極歯42及び44を形
成する必要がある。従って、ステップピッチをさらに細
かくするには、この磁極歯42゜44を更に細かくして
行けばよいわけであるが、実際には、磁気的飽和、可動
子と固定子との間の距離等によって限界が生じる。
In order to make the step pitch of the mover finer,
As shown in FIG. 4, it is necessary to form magnetic pole teeth 42 and 44 on the opposing surfaces of each magnetic pole 41 of the mover and the magnetic pole 43 of the stator. Therefore, in order to make the step pitch even finer, the magnetic pole teeth 42 and 44 can be made finer, but in reality, it depends on magnetic saturation, the distance between the mover and the stator, etc. Limits arise.

従来、この磁極歯を形成するには、磁極自ナトをエツチ
ングあるいは放電加工、プレス加工等を行うほかに、特
公昭59−8146号公報に詳細に述べられているよう
に、複数の磁極体上に歯を形成したスリット板を接着さ
せる方法が提案されている。
Conventionally, in order to form these magnetic pole teeth, in addition to etching the magnetic pole nut, electrical discharge machining, press working, etc., as described in detail in Japanese Patent Publication No. 59-8146, the method of forming the magnetic pole teeth was to form a plurality of magnetic pole bodies. A method has been proposed in which a slit plate with teeth formed thereon is bonded.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

エツチングにより磁極歯を形成した場合には、磁極が各
々独立しているため、素材の不均一性。
When magnetic pole teeth are formed by etching, each magnetic pole is independent, resulting in non-uniformity of the material.

表面の研磨状態の不均一性、レジスト材の不均一塗布、
あるいは各種での磁極歯の相対的な位置ずれ等の原因に
よって、各相のトルク曲線が変化し、従ってリニアパル
スモータの送り精度として良好な値が得られないという
欠点がある。
Uneven surface polishing, uneven application of resist material,
Alternatively, the torque curve of each phase changes due to various causes such as relative positional deviation of the magnetic pole teeth, and therefore, there is a drawback that a good value cannot be obtained for the feed accuracy of the linear pulse motor.

エツチングにより磁極歯を形成する以外に放電加工、プ
レス加工、エレクトロホーミング等により形成する方法
があるが、同じように磁極が各々独立しているために形
成した磁極歯の相対的な位置ずれの回避はむずかしい。
In addition to forming magnetic pole teeth by etching, there are methods such as electrical discharge machining, press working, and electrohoming, but in the same way, since each magnetic pole is independent, the relative positional deviation of the formed magnetic pole teeth can be avoided. It's difficult.

この問題を解決する方法の1つとして、前述した特公昭
59−8146号公報に述べられている方法を第5図に
示す。図中、51はスリット板を、52a及び521)
はそれぞれ磁極体52a 、、52a !及び52bl
As one method for solving this problem, the method described in the aforementioned Japanese Patent Publication No. 59-8146 is shown in FIG. In the figure, 51 is a slit plate, 52a and 521)
are the magnetic pole bodies 52a, 52a!, respectively. and 52bl
.

52b2を有する磁性材を示しており、第5図(a)は
スリット板5工と磁性材52a、52bとの分解図を、
第5図(b)は磁極体にスリット板51(仮想線で示す
)を固着した状態を示す図である。なお、図中53a、
53bは磁性材52a、52bを固定支持するための当
板である。 。
52b2, and FIG. 5(a) is an exploded view of the slit plate 5 and the magnetic materials 52a and 52b.
FIG. 5(b) is a diagram showing a state in which a slit plate 51 (indicated by a phantom line) is fixed to the magnetic pole body. In addition, 53a in the figure,
53b is a contact plate for fixedly supporting the magnetic materials 52a and 52b. .

この方法によれば、磁極体52 a +、52 a z
、52 b +。
According to this method, the magnetic pole bodies 52 a +, 52 a z
, 52 b +.

52b2にスリット板51を接着剤により接合する。The slit plate 51 is bonded to 52b2 using an adhesive.

スリット板51の磁極歯51aが磁極体52a +、5
2a z。
The magnetic pole teeth 51a of the slit plate 51 are the magnetic pole bodies 52a +, 5
2a z.

52b1.52bzの配置に対応して、あらかじめ定め
られた相互間隔をおいて、一体的に形成されており、こ
れら磁極歯の方向と可動子の進行方向とが精度よく直角
になるように接着した後、カッター等によって切り込み
L+、Lzを入れ、不要部分を切り離す。この方法によ
り、磁極歯の相対的な位置ずれを回避することができる
Corresponding to the arrangement of 52b1. After that, make incisions L+ and Lz with a cutter or the like and cut off the unnecessary parts. With this method, relative displacement of the magnetic pole teeth can be avoided.

スリット板51の磁極歯51aは、打抜きあるいはフォ
トエツチングにより貫通させることによって形成される
。このような加工法によって形成されたスリット板51
は磁極歯51aと縁部51bとから成り、磁極歯51a
のピッチが大きい場合には容易に精度が保たれるが、磁
極歯のピッチが小さくなるにつれ、スリット板51自体
の厚さを薄くする必要がでてくるため形成された磁極歯
が歪み、精度が保てなくなるという問題が生じて来た。
The magnetic pole teeth 51a of the slit plate 51 are formed by punching or photoetching. Slit plate 51 formed by such a processing method
consists of a magnetic pole tooth 51a and an edge 51b, and the magnetic pole tooth 51a
When the pitch of the magnetic pole teeth is large, accuracy is easily maintained, but as the pitch of the magnetic pole teeth becomes smaller, it becomes necessary to reduce the thickness of the slit plate 51 itself, which distorts the formed magnetic pole teeth and reduces accuracy. The problem has arisen that it is no longer possible to maintain the

また、磁極体52a++52az、52b+、52bz
と個々の磁極歯51aとの接着されている面積が小さく
なるために、吸引力により接着がff1l離する可能性
があり、また、スリット板51を切断する際に磁極歯の
損傷を引き起こす可能性が高(信頼性の点で問題があっ
た。
In addition, magnetic pole bodies 52a++52az, 52b+, 52bz
Since the bonded area between the slit plate 51a and the individual magnetic pole teeth 51a becomes smaller, there is a possibility that the adhesion will be separated by the attraction force, and there is also a possibility that the magnetic pole teeth will be damaged when cutting the slit plate 51. is high (there was a problem with reliability).

本発明の目的は、磁極歯の相対的位置ずれを回避し、組
み立て工程が容易で且つ信頼性の高いリニアパルスモー
タの1次コアの製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a primary core of a linear pulse motor that avoids relative displacement of magnetic pole teeth, has an easy assembly process, and is highly reliable.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のリニアパルスモータの1次コアの製造方法は、
少なくとも4つの磁極体を有する第Iの磁性材の前記磁
極体が設けられている面とは反対側の面に磁極歯を形成
し、前記磁極体を短絡させる第2の磁性材を永久磁石と
非磁性材によって固着し、前記磁極体に励磁コイルを巻
装し、前記磁棒体と前記第2の磁性材を固着し、前記第
1の磁性材を各極毎に切り離すことにより各々独立した
磁極を形成することを特徴とする。
The method for manufacturing the primary core of the linear pulse motor of the present invention includes:
Magnetic pole teeth are formed on the surface opposite to the surface on which the magnetic pole bodies are provided of the first magnetic material having at least four magnetic pole bodies, and the second magnetic material short-circuiting the magnetic pole bodies is made of a permanent magnet. The magnetic pole body is fixed with a non-magnetic material, an excitation coil is wound around the magnetic pole body, the magnetic bar body and the second magnetic material are fixed, and the first magnetic material is separated for each pole, thereby making each pole independent. It is characterized by forming a magnetic pole.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例について詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図(a)〜(d)は、本発明の一実施例のリニアパ
ルスモータの1次コアの製造方法の説明図である。
FIGS. 1(a) to 1(d) are explanatory diagrams of a method of manufacturing a primary core of a linear pulse motor according to an embodiment of the present invention.

まず、第1図(a)に示すように、4つの磁極体11を
有する磁性材10を用意する。この磁性材10は低抗磁
力で高飽和磁束密度を有する例えば純鉄のような材質を
用いる。次に、第1図(b)に示すように、磁性材10
の磁極体11が設けられている面とは反対の面にハーフ
エツチングまたはメッキにより磁極歯12を形成する。
First, as shown in FIG. 1(a), a magnetic material 10 having four magnetic pole bodies 11 is prepared. The magnetic material 10 is made of a material such as pure iron, which has low coercive force and high saturation magnetic flux density. Next, as shown in FIG. 1(b), the magnetic material 10
The magnetic pole teeth 12 are formed by half etching or plating on the surface opposite to the surface on which the magnetic pole body 11 is provided.

この場合、磁性材10の側面を基準として、この面に直
角になるように磁極歯12を形成する。このような方法
で形成された磁極歯12は磁性材10を貫通させないた
め、送りピッチが小さくなった場合においても安定して
おり、精度良く保つことができる。磁性材10の側面が
基準面であり、この面に基づいてマスク合わせをする。
In this case, the magnetic pole teeth 12 are formed to be perpendicular to the side surface of the magnetic material 10 as a reference. Since the magnetic pole teeth 12 formed by such a method do not penetrate the magnetic material 10, they are stable even when the feed pitch becomes small, and can maintain high precision. The side surface of the magnetic material 10 is a reference surface, and mask alignment is performed based on this surface.

一方、第1図(C)に示すように、磁極体11を短絡す
る磁性材13と永久磁石14と非磁性材15とを接着材
を用いて固着したものを用意する。永久磁石14として
は、フェライト系、サマリウムコバルト系、ネオジ鉄系
等種々の材質のものを要求トルクに合わせて使用する。
On the other hand, as shown in FIG. 1C, a magnetic material 13, a permanent magnet 14, and a non-magnetic material 15 that short-circuit the magnetic pole body 11 are fixed using an adhesive. The permanent magnet 14 may be made of various materials such as ferrite, samarium cobalt, and neodymium iron depending on the required torque.

非磁性材15は例えばアルミニウムを用いる。図には示
していないが、2次コアとの間隙を保つ軸受機構が非磁
性材15に装着される。
For example, aluminum is used as the non-magnetic material 15. Although not shown in the figure, a bearing mechanism that maintains a gap with the secondary core is attached to the nonmagnetic material 15.

次に、第1図(d)に示すように、磁性材10の磁極体
11に励磁コイル16を巻装した後に、磁極体11と磁
性材13とを接合して1次コアを形成する。
Next, as shown in FIG. 1(d), after winding the excitation coil 16 around the magnetic pole body 11 of the magnetic material 10, the magnetic pole body 11 and the magnetic material 13 are joined to form a primary core.

接合する際には、磁性材13の側面の基準面と非磁性材
15の基準面とを基にしてリニアパルスモータの進行方
向に対して磁性材10の磁極歯12が直角となるように
行う。
When joining, the magnetic pole teeth 12 of the magnetic material 10 are perpendicular to the traveling direction of the linear pulse motor based on the reference plane of the side surface of the magnetic material 13 and the reference surface of the non-magnetic material 15. .

最後に、接合した磁性材10にカッター等によって切り
込み17を入れ切り離し、各磁極を独立させて形成する
Finally, a cut 17 is made in the bonded magnetic material 10 using a cutter or the like to separate it, thereby forming each magnetic pole independently.

〔発明の効果〕〔Effect of the invention〕

スリット板を磁極体に接合していた従来の方法の場合に
は、磁極面積が、磁極体の面積で制約され、さらに!掻
体に接合されたスリット板の磁極歯の面積となっていた
。これに対し、本発明では、磁性材に形成された磁極歯
は貫通させていないため、接合面は平面と平面であり、
且つ、磁極体の面積を切り込みを入れて形成された各磁
極歯の面積よりも小さくすることができる。これにより
巻線スペースを大きくとれるため、消費電力を小さく抑
えることができる。
In the case of the conventional method of joining the slit plate to the magnetic pole body, the magnetic pole area is limited by the area of the magnetic pole body, and even more! This was the area of the magnetic pole teeth of the slit plate bonded to the scraper. In contrast, in the present invention, the magnetic pole teeth formed in the magnetic material do not penetrate, so the joining surfaces are flat and flat.
Moreover, the area of the magnetic pole body can be made smaller than the area of each magnetic pole tooth formed by cutting. This allows for a larger winding space, thereby reducing power consumption.

また、従来のスリット板を接着した場合の切断は、磁極
歯の損傷を引き起こす可能性が高く、信頼性の点で問題
があったが、本発明によれば切断に際しても安定で磁極
歯の損傷を防ぐことができ、信頼性の高い1次コアが製
造できる。
In addition, cutting when conventional slit plates are bonded has a high possibility of causing damage to the magnetic pole teeth, which poses problems in terms of reliability.However, according to the present invention, cutting is stable even when cutting, and there is no damage to the magnetic pole teeth. can be prevented, and a highly reliable primary core can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のリニアパルスモータの1次
コアの製造方法の説明図、 第2図は従来からよく知られているリニアパルスモータ
の概略図、 第3図はリニアパルスモータの動作原理を説明する図、 第4図は従来のリニアパルスモータの一部を示す断面図
、 第5図は従来の1次コアの製造方法の一例の説明図であ
る。 10.13.21,22.52a、52b −・−・・
磁性材11.52a+、52az、 52b、、 52
bz ” ’磁極体14.23 ・・・・・永久磁石 15・・・・・・・非磁性材 12.51a、42.44 ・・Ta極歯16.24.
28・・・・コイル 17、L、、 L、・・・・切り込み 20・・・・・・・可動子 25・・・・・・・固定子 41.43  ・・・・・磁極 51・・・・スリット板 (a) (b) (C) (d) 第1図 第2図 第4図 &手刀方向       (a) (b) (C) 第3図 3a (a) 3a 第5図
Fig. 1 is an explanatory diagram of a method for manufacturing the primary core of a linear pulse motor according to an embodiment of the present invention, Fig. 2 is a schematic diagram of a conventionally well-known linear pulse motor, and Fig. 3 is a linear pulse motor. 4 is a sectional view showing a part of a conventional linear pulse motor. FIG. 5 is an explanatory diagram of an example of a conventional method for manufacturing a primary core. 10.13.21, 22.52a, 52b ---
Magnetic material 11.52a+, 52az, 52b, 52
bz ” 'Magnetic pole body 14.23...Permanent magnet 15...Non-magnetic material 12.51a, 42.44...Ta pole tooth 16.24.
28... Coil 17, L, L,... Notch 20... Mover 25... Stator 41.43... Magnetic pole 51... ...Slit plate (a) (b) (C) (d) Fig. 1 Fig. 2 Fig. 4 & Hand direction (a) (b) (C) Fig. 3 3a (a) 3a Fig. 5

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも4つの磁極体を有する第1の磁性材の
前記磁極体が設けられている面とは反対側の面に磁極歯
を形成し、前記磁極体を短絡させる第2の磁性材を永久
磁石と非磁性材によって固着し、前記磁極体に励磁コイ
ルを巻装し、前記磁極体と前記第2の磁性材を固着し、
前記第1の磁性材を各極毎に切り離すことにより各々独
立した磁極を形成することを特徴とするリニアパルスモ
ータの1次コアの製造方法。
(1) A second magnetic material that short-circuits the magnetic pole bodies by forming magnetic pole teeth on the surface opposite to the surface on which the magnetic pole bodies are provided of the first magnetic material having at least four magnetic pole bodies. fixed by a permanent magnet and a non-magnetic material, winding an excitation coil around the magnetic pole body, fixing the magnetic pole body and the second magnetic material,
A method of manufacturing a primary core of a linear pulse motor, comprising: forming independent magnetic poles by separating the first magnetic material into each pole.
JP23620386A 1986-10-06 1986-10-06 Manufacture of primary core of linear pulse motor Pending JPS6392255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23620386A JPS6392255A (en) 1986-10-06 1986-10-06 Manufacture of primary core of linear pulse motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23620386A JPS6392255A (en) 1986-10-06 1986-10-06 Manufacture of primary core of linear pulse motor

Publications (1)

Publication Number Publication Date
JPS6392255A true JPS6392255A (en) 1988-04-22

Family

ID=16997308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23620386A Pending JPS6392255A (en) 1986-10-06 1986-10-06 Manufacture of primary core of linear pulse motor

Country Status (1)

Country Link
JP (1) JPS6392255A (en)

Similar Documents

Publication Publication Date Title
JPH0687651B2 (en) Linear pulse motor
JP2004364374A (en) Linear motor
US7358629B2 (en) Electromagnetic actuator
US4755703A (en) Electric motor
JPH0556624A (en) Stator for linear motor
JP2001112228A (en) Movable magnet type linear actuator
JPH1042496A (en) Linear motor
US4772841A (en) Stepping motor and driving method thereof
JPH1155907A (en) Electromagnetic driver having moving permanent magnet
JPS6392255A (en) Manufacture of primary core of linear pulse motor
JPS6392256A (en) Manufacture of primary core of linear pulse motor
JP2001197717A (en) Field component of linear motor and method of magnetizing permanent magnet for field
JP2006197773A (en) Linear motor
JPH02246762A (en) Linear motor
JPH099606A (en) Core for linear pulse motor
JPS6055852A (en) Polarized linear pulse motor
JPH01298945A (en) Permanent magnet type linear pulse motor
JPH0833304A (en) Voice coil type linear motor
JP2531408B2 (en) Stepping motor
JP2005295708A (en) Claw-pole type three-phase linear motor
JPS6253165A (en) Sheet coil motor
JPH04210768A (en) Core structure for linear pulse motor
JP2005019793A (en) Method for assembling current limiter
JP3458922B2 (en) Voice coil type linear motor
JPS6395849A (en) Linear pulse motor