JPS6392229A - Method of stabilizing power system - Google Patents

Method of stabilizing power system

Info

Publication number
JPS6392229A
JPS6392229A JP61234539A JP23453986A JPS6392229A JP S6392229 A JPS6392229 A JP S6392229A JP 61234539 A JP61234539 A JP 61234539A JP 23453986 A JP23453986 A JP 23453986A JP S6392229 A JPS6392229 A JP S6392229A
Authority
JP
Japan
Prior art keywords
pumping
power
breaker
line
accident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61234539A
Other languages
Japanese (ja)
Inventor
津久田 尚志
正則 中村
安雄 岡田
枝沢 律
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61234539A priority Critical patent/JPS6392229A/en
Publication of JPS6392229A publication Critical patent/JPS6392229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電力系統に事故が発生した時に発電機の税調
の有無を判別し不安定と判別した時には揚水機をしゃ断
する事により系統の安定度を維持する電力系統安定化方
法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention stabilizes the power system by determining whether or not the generator is under tax control when an accident occurs in the power system, and when it is determined that the power system is unstable, by shutting off the water pump. This article relates to a power system stabilization method that maintains energy efficiency.

〔従来の技術〕[Conventional technology]

第1図は例えば特願昭60−53610号に示された従
来の揚水しゃ断による電力系統安定化方法の系統図で、
本発明の実施例も後述のように同図の安定化制御に適用
されるものである。図において、1はしゃ断制御の対象
となる揚水(発電)機、2は系統に電力を供給する発電
機、6は揚水機1の揚水運転によって上位ダムに汲み上
げられる揚水負荷、4は前記発電機2を駆動するための
ボイラータービン、5は揚水機1側のしゃ断器、6は変
圧器、7は揚水側母線である。tfc、8a。
Figure 1 is a system diagram of a conventional power system stabilization method using pumped storage cutoff, as shown in, for example, Japanese Patent Application No. 60-53610.
The embodiment of the present invention is also applied to the stabilization control shown in the figure, as will be described later. In the figure, 1 is a pumped storage (generator) that is subject to cutoff control, 2 is a generator that supplies power to the grid, 6 is a pumped storage load that is pumped up to the upper dam by the pumping operation of pumped storage device 1, and 4 is the generator. 2 is a boiler turbine for driving the water pump 1, 5 is a breaker on the side of the water pump 1, 6 is a transformer, and 7 is a bus bar on the pumping side. tfc, 8a.

8bは揚水機1へ電力を送る揚水線IL、2L。8b are pumping lines IL and 2L that send power to the pumping machine 1.

9a、9bH揚水線8a 、sbのしゃ断器、10a。9a, 9bH water pumping line 8a, sb breaker, 10a.

10bは揚水線電流を計測する変流器、11は揚水側母
線7の電圧を計測する変成器、12a、12bは前記変
流器I Da 、 1 obと変成器11(前記、変流
器及び変成器を電力監視手段と呼ぶ)からの電流・電圧
より各揚水線8a、8bの電力値を出力する瞬時電力変
換器、16は発電機電力を揚水側へ伝送する伝送端末装
置、14F′i揚水側でデータを受信する伝送端末装置
、15はマイクロ波伝送ルート、16は揚水端で取込ん
だ揚水機受電電力と伝送されてくる発電機電力より脱調
判別演算を行う揚水端制御端末装置、17はしゃ断指令
ルー)、18は発電機2、揚水機1が繋がっている電力
系統を示す。
10b is a current transformer that measures the pumping line current; 11 is a transformer that measures the voltage of the pumping side bus 7; 12a and 12b are the current transformers I Da and 1 ob and the transformer 11 (the current transformer and An instantaneous power converter outputs the power value of each pumping line 8a, 8b from the current and voltage from the transformer (referred to as power monitoring means), 16 is a transmission terminal device that transmits the generator power to the pumping side, 14F'i A transmission terminal device that receives data on the pumping side, 15 a microwave transmission route, and 16 a pumping end control terminal device that performs a step-out determination calculation based on the pumping power received at the pumping end and the transmitted generator power. , 17 indicates a shutdown command), and 18 indicates an electric power system to which the generator 2 and the water pump 1 are connected.

次に動作について説明する。最初に、第3図の制御順序
を示すフローチャートに従って説明する。
Next, the operation will be explained. First, a description will be given according to a flowchart showing the control sequence shown in FIG.

まず、発電機2の脱調判別演算方式としては多種あるが
、ここでは回転機の運動方程式 より位相角θを求めその位相角θが臨界値を越えるか否
かで発電機脱調の有無を判別する方式で説明する。以下
、Gは発電機側諸量、Lは揚水機側諸量を示す。
First, there are various calculation methods for determining step-out of the generator 2, but here we calculate the phase angle θ from the equation of motion of the rotating machine and determine whether or not the generator step-out occurs by determining whether or not the phase angle θ exceeds a critical value. This will be explained in terms of the method of discrimination. Hereinafter, G indicates various quantities on the generator side, and L indicates various quantities on the pumping machine side.

まず、演算周期毎に割込みをかけ、次の演算を実行する
。すなわち、(S−1)では必ず事故前の初期揚水機の
稼動している台数を取込む。続いて(S−2)では予め
決められている計測点Aの電力データの自端取込みを行
う。この時、揚水機1への電力を送る揚水線8a 、s
bの揚水機側諸量も取込まれる。また、計測点からの電
力データを受信しく5−3)、初めて初期位相角θの演
算に移行する(S−4)。
First, an interrupt is generated every calculation cycle to execute the next calculation. That is, in (S-1), the number of operating initial water pumps before the accident is always taken. Subsequently, in (S-2), power data at a predetermined measurement point A is taken in at its own end. At this time, the pumping lines 8a, s that send power to the pumping machine 1
The various amounts on the pump side of b are also taken in. Moreover, after receiving the power data from the measurement point 5-3), the process moves to the calculation of the initial phase angle θ for the first time (S-4).

(1)事故発生前i、PC入力)=P(出力)と均衡し
ており、揚水量(=PL(出力〕)=事故前合計受電電
力(= PL (入力))として求めておく。又、揚水
側の初期稼動台数も求めておく。
(1) It is balanced with i before the accident, PC input) = P (output), and it is calculated as the amount of pumped water (= PL (output)) = total received power before the accident (= PL (input)). , the initial number of units in operation on the pumping side is also determined.

(2)次に電力値が事故前値に対して設定値以上落込む
と、事故発生を検出する(S−5)。
(2) Next, when the power value drops by more than a set value from the pre-fault value, the occurrence of an fault is detected (S-5).

成立で事故発生検出確定とし、その時の事故前値po 
(t(00mB ) 、 Pl−(t−100m+3 
)をPaら+ 、 Pt、(0+とじて固定する(S−
6)。
If it is established, the detection of the accident is confirmed, and the pre-accident value po at that time
(t(00mB), Pl-(t-100m+3
) are Pa et +, Pt, (0+ and fixed (S-
6).

(3)事故発生検出が確定したら、 θ0:初期位相差) として事故発生後の刻々の位相差θ(1)を求める(S
−7)。
(3) Once the accident occurrence detection is confirmed, calculate the momentary phase difference θ(1) after the accident occurrence as θ0: initial phase difference (S
-7).

(4)演算打切時間まで安定臨界値θ。とθ(1)を比
較しく5−8)、θ。≦θ(11となれば不安定と判別
し揚水しゃ断食計算に入り制御量算出、系統安定化制御
を行う(S−9)又、θ。〉θ(1)ならば安定と判別
し、以降の演算周期毎に不安定にならないかチェックを
繰返す(S−10)。
(4) Stable critical value θ until calculation termination time. Compare θ(1) with 5-8), θ. If ≦θ(11), it is determined that it is unstable, and a pumping cut-off calculation is performed, the control amount is calculated, and system stabilization control is performed (S-9). Also, if θ.>θ(1), it is determined that it is stable, and the following The check for instability is repeated every calculation cycle (S-10).

次に第4図は揚水線8a 、sb以外の系統事故での電
力変化の例を示したもので、系統事故では発電機電力P
頃t)の変動に略、追従して揚水機電力Pdt)も変動
しているが、第5図及び第6図の例の様に揚水線事故の
場合には実際の揚水量とは異った揚水機電力PL(t)
が発生するので電力系統が不安定となる。すなわち、第
5図の例では揚水線事故で1L開放時に揚水解列が行わ
れない場合には実際の揚水量R,に対して斜線を施した
揚水量S1だけ制御装置が誤認識していることになって
揚水機電力り、(t)が不安定に評価される。
Next, Figure 4 shows an example of power change in a system fault other than the pumping lines 8a and sb.
Pumper power Pdt) also fluctuates roughly following the fluctuations in t), but in the case of a pumping line accident, as in the examples in Figures 5 and 6, the amount of water pumped differs from the actual pumped water. Pumping machine power PL (t)
occurs, making the power system unstable. In other words, in the example shown in Fig. 5, if the pumping line accident does not cause the pumping line to be released when 1L is opened, the control device misrecognizes the actual pumping amount R by the shaded pumping amount S1. As a result, the pump power (t) is evaluated unstable.

また、第6図は揚水縁事故時1Lを開放し揚水解列な行
った場合には解列による安定化効果S2が評価でき、修
正後の揚水量R2U引下げられる。ここで、A領域は揚
水機の稼動台数が(nl+ n2 )台の場合、B領域
は揚水機1Lを開放して揚水解列が行われた場合、C領
域は稼動揚水機がn3台の場合である。また、tIは事
故発生時、tti事故除去時を示す。
In addition, FIG. 6 shows that when 1L is opened at the time of a pumping edge accident and pumped water is decoupled, the stabilizing effect S2 due to decoupling can be evaluated, and the corrected pumped water amount R2U is lowered. Here, area A is when the number of operating pumps is (nl+n2), area B is when 1L of pumps is opened and the pumping disassembly is performed, and area C is when the number of operating pumps is n3. It is. Further, tI indicates the time when an accident occurs, and tti indicates the time when the accident is removed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の電力系統安定化方式は以上のように構成されてい
るので、第4図の様な系統事故では問題にないが、第5
図(第6図)の様な揚水縁事故では送電線開放に伴う揚
水機解列を考慮していないので、解列に伴う受電電力の
減少はそのまま取込まれるのに対し、第1図の様に揚水
の使用◆停止を観測している揚水側のしゃ断器5が開放
されずに送電線側のしゃ断器9a又119aが解放され
るので、揚水稼動台数の変化が取込まれず第5図の内P
μt)のみは小さな値となり、θL(<0)が過大評価
される。すなわち、U(1)=θo(1)−〇、(tl
十〇。においてθ(tlが大きくなり、実際は揚水解列
のみでかなり安定化効果があるにもかかわらすθ。〈く
θと不安定側の判定をすることになって制御量もその分
過剰に計算されてしまう等の問題点があった。
Conventional power system stabilization systems are configured as described above, so there is no problem with system accidents like the one shown in Figure 4.
In the case of a pumping-edge accident like the one shown in the figure (Figure 6), the disconnection of the pumps due to the opening of the transmission line is not taken into account, so the decrease in received power due to the disconnection is taken in as is, whereas in Figure 1 ◆ Since the breaker 5 on the pumping side, which is monitoring the stoppage, is not opened and the breaker 9a or 119a on the power line side is released, changes in the number of pumping units in operation are not taken into account. Inside P
μt) becomes a small value, and θL (<0) is overestimated. That is, U(1)=θo(1)−〇, (tl
Ten. , θ (tl becomes large, and even though in reality only the pumped hydrolysis train has a considerable stabilizing effect, θ is determined to be on the unstable side. There were some problems, such as getting stuck.

この発明は上記の様な問題点を解消するためになされた
もので、揚水縁事故に伴う揚水解列を判定し、それによ
る電力系統の安定化効果を評価して過剰制御を防止する
電力系統安定化方法を得る事を目的とする。
This invention was made in order to solve the above-mentioned problems, and it is a power system that determines whether a pumped-storage line is disconnected due to a pumping edge accident, evaluates the resulting stabilizing effect on the power system, and prevents excessive control. The purpose is to obtain a stabilization method.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る電力系統安定化方法に揚水課電力を監視
し、事故除去検出後も電力回復がなければ、その揚水線
で事故が発生し、事故除去に伴って揚水機が解列された
と判断し、仮に揚水機側のしゃ断器が開放されていなく
ても揚水稼動台数を適正に修正し、解列揚水機による安
定化効果を評価しつつ、過剰制御を防止するようにした
ものである。
In the power system stabilization method according to the present invention, the pumping section power is monitored, and if the power is not restored even after the fault has been removed, it is determined that an fault has occurred in that pumping line and the pumping machine has been disconnected as the fault is removed. However, even if the breaker on the pump side is not opened, the number of pumping units in operation is adjusted appropriately to prevent excessive control while evaluating the stabilizing effect of the parallel pumps.

〔作用〕[Effect]

この発明における揚水機の停止は第1図のしゃ断器の開
閉状態を取込んで認識しているが、揚水縁事故によって
送電線側のしゃ断器が開放された場合、揚水機は系統か
ら解列されているのにしゃ断器がシーケンス的に開放さ
れるのはずっと後になる。そこで、事故除去時に揚水線
の電力をチェックし、事故除去検出があったにもかかわ
らず電力回復のない揚水線は開放されたと判断し、その
揚水線に繋っていた稼動揚水台数分を初期稼動台数から
減算し揚水解列以後の揚水稼動台数を正しく認識する。
In this invention, the stoppage of the storage pump is recognized by incorporating the open/closed state of the circuit breaker shown in Figure 1, but if the circuit breaker on the transmission line side is opened due to a pumping edge accident, the storage pump will be disconnected from the system. However, the circuit breaker is not opened sequentially until much later. Therefore, we checked the power of the pumping line when the accident was removed, and determined that the pumping line where the power had not been restored despite the detection of the accident removal had been opened, and the number of operating pumping units connected to that pumping line was initialized. Subtract it from the number of operating units to correctly recognize the number of pumping units in operation after the pumping-storage line is disassembled.

〔実施例〕〔Example〕

以下この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

冒頭に触れたように装置の得成自体に第1図に示した従
来技術の場合と同一であるので要部の説明は従来の技術
の項を参照して動作説明を行う。第2図はこの発明によ
る系統安定化方法のフローチャートである。
As mentioned at the beginning, the construction of the device itself is the same as that of the prior art shown in FIG. 1, so the main parts will be explained with reference to the prior art section. FIG. 2 is a flowchart of the system stabilization method according to the present invention.

次に第2図のフローチャートを参照し第1図の動作につ
いて説明する。まず、事故前の揚水機1の初期稼動台数
を揚水線8a、8b、IL、2L毎に求めてお((S−
1)。これを各々ni*n2とする。(S−1)から(
S−5)までは従来技術の動作と同一である。
Next, the operation shown in FIG. 1 will be explained with reference to the flowchart shown in FIG. First, the initial number of operating pumps 1 before the accident is determined for each pumping line 8a, 8b, IL, and 2L ((S-
1). Let each of these be ni*n2. (S-1) to (
The operations up to S-5) are the same as those of the prior art.

事故除去検出から40rns後、揚水線8a、8bIL
、2Lの電力値をチェックし揚水課電力く揚水機単機容
量X20% の場合に揚水縁事故と判断しく5−8)、
その揚水線に繋がっている揚水機は系統から解列された
ものと見なす。
40rns after accident removal detection, pumping lines 8a, 8bIL
, check the power value of 2L, and if the pumping section power is 20% of the capacity of the single pump, it will be determined that it is a pumping-related accident.5-8)
The pumps connected to that pumping line are considered to have been disconnected from the system.

次に脱調の有無を判定する脱調判別演算を行うがこの時
例えば、位相角を使う場合には(nt+nt)ΔP=P
L(0)−PL(t)  M=(n++nz)”z  
としてめる(S−9,10)oここで、揚水機1L側が
事故で開放されたとすると (但し、pL“(t) l’j、nm台分の刻々の電力
、θ゛は事故除去時の位相角) と云う様に修正して、揚水稼動台数= nfiで計算を
続行する。具体的には、入力値Hn1台分の入力値が入
ってくるのでそのまま取込めばよく、慣性定数と機械的
出力(=揚水量=事故前電力)を(n++n、)台→n
t台に修正してやる必要がある。
Next, a step-out determination calculation is performed to determine the presence or absence of step-out. At this time, for example, when using the phase angle, (nt+nt)ΔP=P
L(0)-PL(t) M=(n++nz)”z
(S-9, 10) oHere, if the 1L side of the storage pump is opened due to an accident (however, pL"(t) l'j, the momentary power for nm units, θ゛ is the time of accident removal. (phase angle of Mechanical output (= pumped water = pre-accident power) to (n++n,) units → n
I need to fix it to t level.

積算した位相角計算値θと安定臨界値(180゜等)と
を比較して税調(系統不安定現象)の有無を判別する(
S−11)o不安定判別時は揚水しゃ断制御を行い(S
−12)、安定判別時は演算打切時間まで安定臨界値と
の比較を繰9返す。
The integrated phase angle calculation value θ is compared with a stability critical value (180°, etc.) to determine whether there is a tax adjustment (system instability phenomenon) (
S-11) When determining instability, perform pumping cutoff control (S-11)
-12), when determining stability, the comparison with the stability critical value is repeated 9 times until the calculation abort time.

尚、上記実施例では脱調の有無を判別するのに位相角を
使った例について説明したが揚水側角同傾向にあれば脱
調布(不安定)、収束傾向におれれば系統は安定と云う
様な安定判別方法もあり、Δω1を揚水解列に伴って修
正計算してやることにより適正な税調判別を行うことも
可能である。
In the above example, an example was explained in which the phase angle is used to determine the presence or absence of out-of-step. However, if the pumping side angle has the same tendency, the system is out-of-step (unstable), and if it is in a convergence tendency, the system is stable. There is also a method of determining stability as described above, and it is also possible to perform appropriate tax adjustment determination by correcting and calculating Δω1 in accordance with the pumping and disassembly sequence.

〔発明の効果〕〔Effect of the invention〕

以上の様に、この発明によれば各揚水線型力値を監視す
る事で揚水線事故に伴う揚水解列を判別し、それに伴う
揚水解列のみの安定化効果を評価して過剰しゃ断を防止
するようにしたので、電力系統の安定化のために適正な
制御が得られる効果がある。又、入力値である揚水線電
力を利用しているので揚水線事故識別用に特別な装置や
入力を設ける必要もなく装置が安価に構成できる効果が
ある。
As described above, according to the present invention, by monitoring each pumping linear force value, it is possible to determine the pumping line failure caused by a pumping line accident, and to evaluate the stabilizing effect of only the resulting pumping line accident, thereby preventing excessive shutoff. This has the effect of providing appropriate control for stabilizing the power system. Furthermore, since the pumping line power as an input value is used, there is no need to provide any special equipment or input for identifying pumping line accidents, and the device can be constructed at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による系統安定化装置を電
力系統に適用した場合の説明図、第2図はこの発明の制
御順序を示すフローチャート、第3図は従来技術の制御
順序を示すフローチャート、第4図は揚水線以外の系統
事故での電力変化例を示す特性図、第5図及び第6図は
揚水線事故時の電力変化例を示す特性図である0 図において、1は揚水(発電)機、2は発?I機、5は
しゃ断器、6は変圧器、7は母線、8a、8bは揚水線
、9a、9bは(揚水線の)しゃ断器、10a、10b
Hi流器、11は変成器、16は揚水端制御端末装置、
17はしゃ断指令ルート、18は電力系統である。 特許出願人   三菱電機株式会社 槙 2 図 第3図
Fig. 1 is an explanatory diagram when a system stabilizing device according to an embodiment of the present invention is applied to an electric power system, Fig. 2 is a flowchart showing the control sequence of the present invention, and Fig. 3 shows the control sequence of the conventional technology. Flowchart, Figure 4 is a characteristic diagram showing an example of power change in a system accident other than a pumping line, and Figures 5 and 6 are characteristic diagrams showing an example of power change in a pumping line accident. Pumped storage (generator) generator, 2? I machine, 5 is a breaker, 6 is a transformer, 7 is a bus bar, 8a, 8b are pumping lines, 9a, 9b are breakers (of the pumping lines), 10a, 10b
11 is a transformer, 16 is a pumping end control terminal device,
17 is a cutoff command route, and 18 is a power system. Patent applicant Mitsubishi Electric Corporation Maki 2 Figure 3

Claims (1)

【特許請求の範囲】 電力系統の安定化のために送電線しゃ断器又は揚水機し
ゃ断器等の系統安定化装置を設け、系統事故時に該しゃ
断器を適宜解放して系統の安定化を図るようにした電力
系統安定化方法において、前記電力系統に接続された揚
水線の電力を取り込み電力監視手段によって揚水機電力
を監視し、前記揚水線の事故時に送電線側のしゃ断器を
解放し、該送電線側のしゃ断器解放後に直ちに前記揚水
線の電力を前記電力監視手段によってチェックし、事故
除去検出が実行されたにも拘らず電力回復がない場合に
は該揚水線が解放されたと揚水端制御端末装置で判断し
、前記揚水線に繋っている稼動揚水機台数を適正に修正
し、揚水解列以後の揚水稼動台数を正当に認識して過剰
制御を防止するようにしたことを特徴とする電力系統安
定化方法。 (2)前記揚水端制御端末装置での脱調判別演算方式と
して揚水機側角周波数及び発電機側角周波数を求め両者
の差が発散傾向にあれば不安定、収束傾向にあれば系統
安定と判別するようにしたことを特徴とする特許請求の
範囲第1項記載の電力系統安定化方法。
[Claims] In order to stabilize the power system, a system stabilizing device such as a transmission line breaker or a water pump breaker is provided, and in the event of a system accident, the breaker is released as appropriate to stabilize the system. In the power system stabilization method described above, the power of the pumping line connected to the power system is taken in, the power of the pumping machine is monitored by a power monitoring means, and in the event of an accident in the pumping line, a breaker on the power transmission line side is released, and the Immediately after the breaker on the power transmission line side is released, the power of the pumping line is checked by the power monitoring means, and if the power is not restored even though fault removal detection has been performed, the pumping end determines that the pumping line has been released. The control terminal device determines the number of operating pumping machines connected to the pumping line, and properly recognizes the number of operating pumping machines after the pumping line is disassembled to prevent excessive control. Power system stabilization method. (2) As a step-out determination calculation method in the pumping end control terminal device, the pump side angular frequency and the generator side angular frequency are determined, and if the difference between the two tends to diverge, the system is unstable, and if the difference tends to converge, the system is stable. The power system stabilization method according to claim 1, characterized in that the power system is determined.
JP61234539A 1986-10-03 1986-10-03 Method of stabilizing power system Pending JPS6392229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61234539A JPS6392229A (en) 1986-10-03 1986-10-03 Method of stabilizing power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61234539A JPS6392229A (en) 1986-10-03 1986-10-03 Method of stabilizing power system

Publications (1)

Publication Number Publication Date
JPS6392229A true JPS6392229A (en) 1988-04-22

Family

ID=16972610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61234539A Pending JPS6392229A (en) 1986-10-03 1986-10-03 Method of stabilizing power system

Country Status (1)

Country Link
JP (1) JPS6392229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065401U (en) * 1992-06-29 1994-01-25 小橋工業株式会社 Folding tiller
JP2008164421A (en) * 2006-12-28 2008-07-17 Kyowa Electron Instr Co Ltd Steering operating force measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065401U (en) * 1992-06-29 1994-01-25 小橋工業株式会社 Folding tiller
JP2008164421A (en) * 2006-12-28 2008-07-17 Kyowa Electron Instr Co Ltd Steering operating force measuring device

Similar Documents

Publication Publication Date Title
JP5441786B2 (en) Control device for power system stabilizer
US9270120B2 (en) Methods, systems, and computer readable media for adaptive out of step protection for power generators with load resynchronization capability
US9768786B2 (en) Power system stabilizing device
US9093839B2 (en) Pole-slip protection system and method for synchronous machines
CN101651328B (en) Method and device for shunt reactor turn-to-turn protection
US20120081817A1 (en) Arrangement For Protecting Equipment Of A Power System
CN103869202A (en) Transformer high-tension side phase-failure detection method and system
Glavic et al. E-SIME-A method for transient stability closed-loop emergency control: achievements and prospects
Zhao et al. Asymmetrical fault current calculation method and influencing factors analysis of droop-controlled inverter
JPS6392229A (en) Method of stabilizing power system
EP3471259A1 (en) Power conversion device and method for determining operational state of cutoff unit
EP3872980B1 (en) Power balance function against inadvertent load shedding
JP4108578B2 (en) Power system stabilization control system and power system stabilization control method
Beckwith et al. Motor bus transfer: considerations & methods
CN102939711A (en) Method of predicting transient stability of a synchronous generator and associated device
Pala et al. Power Swing and out of step Protection using Equal area Criteria
CN207301792U (en) A kind of interface test system between DC control system and stabilized control system
JP5378087B2 (en) System stabilization system with load compensation control function
JP3629324B2 (en) Synchronous generator isolated operation detection method
JPS6046735A (en) Method of disassembling parallel power system
JPS6117222B2 (en)
CN113009280B (en) Micro-grid fault positioning method based on fault characteristic active construction
US20230155371A1 (en) Controlling an inverter to emulate synchronous generator under fault conditions
CN116404607A (en) Distribution network self-adaptive reclosing method based on distributed power characteristic signal injection
JP4341028B2 (en) Grid connection protection device for regular power generator