JPS639154A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS639154A
JPS639154A JP15293886A JP15293886A JPS639154A JP S639154 A JPS639154 A JP S639154A JP 15293886 A JP15293886 A JP 15293886A JP 15293886 A JP15293886 A JP 15293886A JP S639154 A JPS639154 A JP S639154A
Authority
JP
Japan
Prior art keywords
layer member
upper layer
electrode
source electrode
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15293886A
Other languages
Japanese (ja)
Inventor
Masahiko Azuma
雅彦 東
Yoshiharu Watanabe
喜治 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15293886A priority Critical patent/JPS639154A/en
Publication of JPS639154A publication Critical patent/JPS639154A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • H01L29/66598Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET forming drain [D] and lightly doped drain [LDD] simultaneously, e.g. using implantation through the wings a T-shaped layer, or through a specially shaped layer

Abstract

PURPOSE:To make a drain electrode and a source electrode LDD effected in less processes by a method wherein an upper layer member is made larger than a lower layer member to form a polyside gate electrode while ion is implanted using the upper layer member as a mask to form the drain electrode and the source electrode. CONSTITUTION:An upper layer member 4 and a lower layer member 3 are etched making the peripheral part of upper layer member 4 hang over the lower layer member 3 to form a polyside gate electrode 6' as well as to form a drain electrode 8' and a source electrode 9' by ion-implanting process using the upper layer member 4 as a mask. For example, a polySi 3 and a metallic silicide 4 are formed on the surface of a substrate 1 and an oxide film 2 further a resist pattern 5 is mounted on the surface to unisotropically etch the meatllic silicide 4 only. First, isotropical etching process is performed using an etching gas reacting to polySi only not to the metallic silicide 4 at all. Second, the resist pattern 5 is removed to form the polyside gate electrode 6'; ion is implanted using the metallic silicide as a mask; and the drain electrode 8' and the source electrode 9' LDD effected are formed.

Description

【発明の詳細な説明】 (概要〕 本発明は例えばMOS F E T等の半導体装置の製
造方法において、 ドレイン及びソースをしDD(ライトリ・ドープド・ド
レイン)化する際工程が増加する問題点を解決するため
、 上層部材を下履部材に比して大きくなるようにしてポリ
サイドゲート電極を形成し、上層部材を遮蔽としてイオ
ン注入を行なってドレイン電極及びソース電極を形成す
ることにより、 少ない工程で、短時間で製造し得るようにしたものであ
る。
[Detailed Description of the Invention] (Summary) The present invention solves the problem of increasing the number of steps when converting drains and sources into DD (Lightly Doped Drain) in the manufacturing method of semiconductor devices such as MOSFETs. In order to solve this problem, the polycide gate electrode is formed by making the upper layer member larger than the insole member, and the drain electrode and source electrode are formed by ion implantation using the upper layer member as a shield, thereby reducing the number of steps. This allows it to be manufactured in a short period of time.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置、特に、MOSFETのドレイン及
びソースをLDD化する製造方法に関する。MOSFE
Tではドレイン及びソースのゲートエツジに対向した部
分のイオン注入のドープ騎を他の部分に比して少ない構
成にする(LDD化。
The present invention relates to a semiconductor device, and particularly to a manufacturing method for converting the drain and source of a MOSFET into an LDD. MOSFE
In T, the portions of the drain and source facing the gate edge are doped with less ion implantation than other portions (LDD).

レトロ化)ことにより、特に、ドレインとゲートとの間
の部分の抵抗を高くしてこの部分に電界の集中するのを
和らげ、トレイン及びゲート間の絶縁破壊を防止し、ゲ
ート接合容量を減少させている。このような構造のMO
SFETを製造するに際し、少ない工程で短時間で’!
I Sすることが必要である。
In particular, by increasing the resistance of the region between the drain and gate, it alleviates the concentration of electric field in this region, prevents dielectric breakdown between the train and gate, and reduces gate junction capacitance. ing. MO of such structure
When manufacturing SFET, you can do it in a short time with fewer steps!
IS is necessary.

〔従来の技術〕[Conventional technology]

第3図は従来の製造方法を説明する断面図を示す。同図
(A)に示す如く、基板1.酸化膜2の表面にポリサイ
ドゲート電極となるポリSi3及び金属シリサイド4を
形成し、更にその表面にレジストパターン5を載置する
。次に、レジストパターン5に従ってエツチングし、そ
の後でレジストパターン5を除去すると、同図(B)に
示すようなポリSi3と金属シリサイド4とよりなるポ
リサイドのゲート電極6が形成される。
FIG. 3 shows a cross-sectional view illustrating a conventional manufacturing method. As shown in FIG. 1A, the substrate 1. PolySi 3 and metal silicide 4, which will become a polycide gate electrode, are formed on the surface of the oxide film 2, and a resist pattern 5 is further placed on the surface. Next, etching is performed according to the resist pattern 5, and then the resist pattern 5 is removed to form a polycide gate electrode 6 made of poly-Si 3 and metal silicide 4 as shown in FIG. 3B.

次に、同図(C)に示す如(、ゲート電極6の表面にP
SGI7を形成し、異方性エツチングを行なう。異方性
エツチングは一般に表面から等しい厚さ部分を除去し得
るので、PSGI!7は同図(D)に示す如く、ゲート
電極6のエツジ部分において上部はど多く除去され、従
って、上部から下部へかけて次第に膜厚が厚くなるよう
な残部7aが形成される。
Next, as shown in FIG.
SGI7 is formed and anisotropic etching is performed. Since anisotropic etching can generally remove equal thickness from a surface, PSGI! As shown in FIG. 7D, a large portion of the upper portion of the edge portion of the gate electrode 6 is removed, thereby forming a remaining portion 7a whose film thickness gradually increases from the upper portion to the lower portion.

次に、同図(E)に示す如く、残されたPSG膜残部7
aを遮蔽としてイオン注入を行なうと、残部7aに対向
した部分は他の部分に比してイオンのドープかが少なく
なり、これにより、LCD化されたドレイン電極8及び
ソース電極9が形成される。
Next, as shown in the same figure (E), the remaining PSG film remaining portion 7
When ion implantation is performed with a as a shield, the portion facing the remaining portion 7a is less doped with ions than the other portions, thereby forming a drain electrode 8 and a source electrode 9 that form an LCD. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の製造方法は、PSG膜7を用いて残部7aを
形成しなければならないので工程が多くなり、yJ造に
長時間を要する問題点があった。
The conventional manufacturing method described above has the problem that the remaining portion 7a must be formed using the PSG film 7, which increases the number of steps and requires a long time for YJ construction.

C問題点を解決するための手段〕 本発明になるTIIJ造方法は、第1図に示す如く、上
層部材(金属シリサイド)4の周辺が下履部材(ポリ5
i)3′に対して庇状に突出するように上層部材4を下
履部材3′に比して大ぎくなるようにエツチングしてポ
リサイドゲート電極6′を形成し、上記上層部材4を遮
蔽としてイオン注入を行なってドレイン電極8′及びソ
ース電極9′を形成する。
Means for Solving Problem C] In the TIIJ manufacturing method of the present invention, as shown in FIG.
i) Form a polycide gate electrode 6' by etching the upper layer member 4 so as to protrude like an eave from the upper layer member 3' than the lower layer member 3'. Ion implantation is performed as a shield to form a drain electrode 8' and a source electrode 9'.

〔作用〕[Effect]

上層部材(金属シリサイド)4を遮蔽としてイオン注入
を行なうようにしているので、少ない工程でドレイン電
極8′及びソース電極9′を形成し得る。
Since ion implantation is performed using the upper layer member (metal silicide) 4 as a shield, the drain electrode 8' and the source electrode 9' can be formed with fewer steps.

(実施例) 第1図は本発明の製造方法の一実施例を説明する断面図
を示す。先ず、同図(A)に示す如く、第3図(A)に
示すものと同様のものを用意し、金属シリサイドのみを
異方性エツチングする。次に、金属シリサイド4には反
応せず、ポリSi3にのみ反応するエツチングガスを用
いて等方性エツチングを行なう。これにより、同図(B
)に示す如く、金属シリサイド4はレジストパターン5
に従ってこれと同様の大きさにエツチングされるも、ポ
リSi3はレジストパターン5のエツジ部分よりも内側
までエツチングされて金属シリサイド4よりも小さいポ
リSi3’ とされ、金属シリサイド4の周辺には庇部
4aが形成される。
(Example) FIG. 1 shows a cross-sectional view illustrating an example of the manufacturing method of the present invention. First, as shown in FIG. 3(A), a material similar to that shown in FIG. 3(A) is prepared, and only the metal silicide is anisotropically etched. Next, isotropic etching is performed using an etching gas that does not react with the metal silicide 4 but reacts only with the poly-Si3. As a result, the same figure (B
), the metal silicide 4 forms a resist pattern 5.
Accordingly, the poly-Si3 is etched to the same size as this, but the poly-Si3 is etched to the inner side of the edge portion of the resist pattern 5 to form poly-Si3' which is smaller than the metal silicide 4, and an eaves portion is formed around the metal silicide 4. 4a is formed.

次に、レジストパターン5を除去してポリサイドのゲー
ト電極6′を形成し、更に、同図(C)に示す如く、金
属シリサイド4を遮蔽としてイオン注入を行なうと、金
属シリサイド4の庇部4aに対向した部分は他の部分に
比してイオンのドープ量が少なくなり、これにより、L
CD化されたドレイン電極8′及びソース電極9′が形
成される。
Next, the resist pattern 5 is removed to form a polycide gate electrode 6', and ions are implanted using the metal silicide 4 as a shield, as shown in FIG. The portion facing L is doped with less ions than other portions, and this causes L
A CD-shaped drain electrode 8' and source electrode 9' are formed.

このように、本発明では、金属シリサイド4を遮蔽とし
て利用しているので、従来のようにわざわざPSG膜7
(第3図(C))を形成しなくてもよく、少ない¥J造
工程でドレイン電極8′及びソース電極9′を形成し得
る。
In this way, in the present invention, since the metal silicide 4 is used as a shield, the PSG film 7 is not used as in the conventional method.
(FIG. 3(C)) is not necessary, and the drain electrode 8' and the source electrode 9' can be formed with a small number of manufacturing steps.

第2図は本発明の製造方法の他の実施例を説明する断面
図を示す。同図(A)に示す状態から先ず異方性エツチ
ングを行ない、同図(8)に示す如く、レジストパター
ン5に従ってこれと同様の大きさのポリSi3及び金属
シリサイド4の構造を形成する。
FIG. 2 shows a sectional view illustrating another embodiment of the manufacturing method of the present invention. First, anisotropic etching is performed from the state shown in FIG. 2A to form a structure of poly-Si 3 and metal silicide 4 having the same size as the resist pattern 5, as shown in FIG.

次に、第1図に示す方法と同様に、金属シリサイド4に
は反応せず、ポリSi3にのみ反応するエツチングガス
を用いて等方性エツチングを行ない、同図(C)に示す
構造(第1図(B)に示す構造と同じ)を形成する。次
に、同図(D)に示す如く、金属シリサイド4を遮蔽と
してイオン注入を行なうとドレイン電極8′及びソース
電極9′が形成される。
Next, in the same way as the method shown in FIG. 1, isotropic etching is performed using an etching gas that does not react with the metal silicide 4 but only reacts with the poly-Si3, resulting in the structure shown in FIG. 1) is formed. Next, as shown in FIG. 2D, ion implantation is performed using the metal silicide 4 as a shield, thereby forming a drain electrode 8' and a source electrode 9'.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、上層部材を遮蔽としてイオン注入を行
なっているため、従来のようにわざわざPSG膜のよう
な特別の膜を形成しないでもよく、少ない工程でドレイ
ン電極及びソース電極をLDD化し得る等の特長を有す
る。
According to the present invention, since ion implantation is performed using the upper layer member as a shield, there is no need to take the trouble to form a special film such as a PSG film as in the past, and the drain electrode and source electrode can be converted to LDD with fewer steps. It has the following features.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を示す断面図、第2図は
本発明方法の他の実施例を丞す断面図、第3図は従来方
法の一例を示す断面図である。 図中において、 1は基板、 2は酸化膜、 3.3′はポリSi(下履部材) 4は金属シリサイド(上層部材) 4aは庇部、 5はレジストパターン、 6′ はポリtイドゲート電極、 8′はドレイン電極、 9′はソース電極である。 −こ
FIG. 1 is a cross-sectional view showing one embodiment of the method of the present invention, FIG. 2 is a cross-sectional view of another embodiment of the method of the present invention, and FIG. 3 is a cross-sectional view showing an example of the conventional method. In the figure, 1 is the substrate, 2 is the oxide film, 3.3' is poly-Si (shoe member), 4 is metal silicide (upper layer member), 4a is the eave part, 5 is the resist pattern, and 6' is the poly-tide gate electrode. , 8' is a drain electrode, and 9' is a source electrode. -ko

Claims (1)

【特許請求の範囲】[Claims] 上層部材(4)の周辺が下層部材(3′)に対して庇状
に突出するように該上層部材(4)を該下履部材(3′
)に比して大きくなるようにエッチングしてポリサイド
ゲート電極(6′)を形成し、上記上層部材(4)を遮
蔽としてイオン注入を行なつてドレイン電極(8′)及
びソース電極(9′)を形成することを特徴とする半導
体装置の製造方法。
The upper layer member (4) is attached to the lower layer member (3') so that the periphery of the upper layer member (4) projects like an eave relative to the lower layer member (3').
) is etched to form a polycide gate electrode (6'), and ions are implanted using the upper layer member (4) as a shield to form a drain electrode (8') and a source electrode (9'). ') A method for manufacturing a semiconductor device.
JP15293886A 1986-06-30 1986-06-30 Manufacture of semiconductor device Pending JPS639154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15293886A JPS639154A (en) 1986-06-30 1986-06-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15293886A JPS639154A (en) 1986-06-30 1986-06-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS639154A true JPS639154A (en) 1988-01-14

Family

ID=15551430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15293886A Pending JPS639154A (en) 1986-06-30 1986-06-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS639154A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413295A (en) * 1991-08-09 1995-05-09 Heiwa Seiki Kagya Co., Ltd. Weight balancer for tripod head
US6624473B1 (en) * 1999-03-10 2003-09-23 Matsushita Electric Industrial Co., Ltd. Thin-film transistor, panel, and methods for producing them

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413295A (en) * 1991-08-09 1995-05-09 Heiwa Seiki Kagya Co., Ltd. Weight balancer for tripod head
US5415254A (en) * 1991-08-09 1995-05-16 Heiwa Seiki Kagya Co., Ltd. Panning braking device for tripod head
US5419520A (en) * 1991-08-09 1995-05-30 Heiwa Seiki Kogyo Co., Ltd. Tripod head
US6624473B1 (en) * 1999-03-10 2003-09-23 Matsushita Electric Industrial Co., Ltd. Thin-film transistor, panel, and methods for producing them
US6812490B2 (en) 1999-03-10 2004-11-02 Matsushita Electric Industrial Co., Ltd. Thin-film transistor, panel, and methods for producing them

Similar Documents

Publication Publication Date Title
KR100215845B1 (en) Fabrication process of semiconductor
JPS639154A (en) Manufacture of semiconductor device
KR950021786A (en) MOSFET and manufacturing method
JPS59211282A (en) Method of producing integrated circuit
JPS60145664A (en) Manufacture of semiconductor device
JP2925910B2 (en) Manufacturing method of insulated gate semiconductor device
JPH0682758B2 (en) Method for forming semiconductor integrated circuit
US20020137322A1 (en) Reduced mask count process for manufacture of mosgated device
JPS6149473A (en) Manufacture of polycide gate mos ic
JPH02226727A (en) Manufacture of ldd type mos semiconductor device
JPS63291471A (en) Semiconductor device and manufacture thereof
KR100244789B1 (en) Method for manufacturing semiconductor device
JPS6072274A (en) Manufacture of semiconductor device
JPS60160168A (en) Manufacture of mos semiconductor device
JPH02201932A (en) Mos field-effect transistor with high withstand voltage
JP3316518B2 (en) Thin film transistor and method of manufacturing the same
JPH0369168A (en) Thin film field effect transistor
JPH0457095B2 (en)
KR960002568A (en) Contact hole formation method of semiconductor device
JPS62147777A (en) Manufacture of mos field effect transistor
KR950021201A (en) Spacer Formation Method of Semiconductor Device
KR960026788A (en) MOS transistor manufacturing method
JPS63207179A (en) Manufacture of semiconductor device
JPH0818057A (en) Manufacture of field effect transistor
KR19990000375A (en) Semiconductor device manufacturing method