JPS63911A - Insulation of conductor employing scale mica piece - Google Patents

Insulation of conductor employing scale mica piece

Info

Publication number
JPS63911A
JPS63911A JP14242486A JP14242486A JPS63911A JP S63911 A JPS63911 A JP S63911A JP 14242486 A JP14242486 A JP 14242486A JP 14242486 A JP14242486 A JP 14242486A JP S63911 A JPS63911 A JP S63911A
Authority
JP
Japan
Prior art keywords
mica
conductor
pieces
insulation
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14242486A
Other languages
Japanese (ja)
Inventor
健一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14242486A priority Critical patent/JPS63911A/en
Publication of JPS63911A publication Critical patent/JPS63911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の目的) (産業上の利用分野) 本発明は地下変電所,閉鎖配電盤等の狭い場所で用いら
れる導体の絶縁方法にかかり特に高電圧高温下でも使用
可能な導体の絶縁方法に関するものである。
[Detailed Description of the Invention] (Purpose of the Invention) (Field of Industrial Application) The present invention relates to a method for insulating conductors used in confined spaces such as underground substations and closed switchboards, and is particularly applicable to conductors that can be used under high voltage and high temperatures. This relates to a method of insulating conductors.

(従来の技術) 従来にあっては、地下変電所,閉鎖配電盤等の内部に用
いられる導体の筐体への絶縁は、導体を支える碍子等の
構造材のみに頼っている場合が多い。つまり碍子等の構
造材で筐体と導体との間に十分な絶縁スペースを確保す
れば、導体自体への絶縁は不要となるため、導体自体に
施す絶縁はワニスの塗布や粉体による形式的な絶縁が入
部分であった。
(Prior Art) Conventionally, insulating conductors used inside underground substations, closed switchboards, etc. into casings often relies only on structural materials such as insulators that support the conductors. In other words, if sufficient insulating space is secured between the casing and the conductor using structural materials such as insulators, there is no need to insulate the conductor itself, so the insulation applied to the conductor itself can be done only by applying varnish or using powder. The insulation was included.

しかし閉鎖配電盤等の容岱増大に伴い導体にかかる電圧
も増々高くなる傾向にある。ここ−C雷圧が高くなった
場合も硝子等の構造材でその電圧に耐えるスペースを確
保出来れば良いが、それだけのスペースをとると筐体が
大きくなり実用的でない。また電圧が高くなった場合導
体と支持材の支持構造にもよるが導体と支持材の接触部
分で均一な電位分布が得られず、1局部的に高゛心界と
なる導体近傍に於いてコロナが発生する。コロナが発生
するとコロナによるオゾンが筐体内部に使用ざれている
有鳴材料の酸化劣化を促進することになる。
However, as the volume of closed switchboards and the like increases, the voltage applied to the conductors also tends to increase. Even if -C lightning pressure becomes high, it would be good if enough space could be secured to withstand the voltage using a structural material such as glass, but if that much space were taken up, the casing would become large and would be impractical. Also, when the voltage becomes high, depending on the support structure of the conductor and the support material, a uniform potential distribution cannot be obtained at the contact area between the conductor and the support material, and a locally high central field occurs near the conductor. Corona will occur. When corona occurs, ozone from the corona accelerates oxidation and deterioration of the sounding material used inside the housing.

そのため絶縁そのものを構造支持材に頼るのではなく導
体自身に破壊電圧の高いポリイミドテーブまたはシート
、機械的強度のあるアラミツドテーブまたはシートを巻
回し後工程で合成樹脂を真空加圧下で含浸して導体に絶
縁層を形成し、この絶縁層を支持材で筐体に固定するこ
とが行われている。しかし絶縁層にポリイミドやアラミ
ッド等の有機材料を用いるとコロナが発生した場合コロ
ナによる損{セを受けることになる。すなわちポリイミ
ドやアラミッド等の右懇材料は耐コロナ性が劣り、コロ
ナの発生する箇所での使用は好ましくない。従って耐コ
ロナ性に強い材料例えばマイカテーブまたはシートを巻
回し、合成樹脂を含浸することが考えられる。
Therefore, instead of relying on structural support materials for insulation itself, the conductor itself is wrapped with polyimide tape or sheet that has a high breakdown voltage, or aramid tape or sheet that has mechanical strength, and in the post-process, it is impregnated with synthetic resin under vacuum pressure to become the conductor. An insulating layer is formed and this insulating layer is fixed to a housing using a support material. However, if an organic material such as polyimide or aramid is used for the insulating layer, if corona occurs, it will suffer damage due to corona. In other words, materials such as polyimide and aramid have poor corona resistance and are not preferred for use in areas where corona occurs. Therefore, it is conceivable to wind a material with strong corona resistance, such as mica tape or a sheet, and impregnate it with a synthetic resin.

(発明が解決しようとする問題点) 上述したマイカテーブ等による絶縁層の形成は、高圧回
転成の固定子線輪等に適用されているが、マイカテーブ
又はマイカシ一トとするには、ガラスクロス等の繊維材
又はフイルム等の骨材によってマイ力を補強しなければ
ならない。
(Problems to be Solved by the Invention) Formation of an insulating layer using mica tape or the like described above is applied to high-voltage rotary formation stator coils, etc., but in order to form mica tape or mica sheet, glass cloth, etc. The force must be reinforced with aggregate such as fiber or film.

すなわち、マイカテーブの場合、マイ力の形状によって
大別するとフレークマイカと集成マイ力とがあるがいず
れの場合もマイカ単体では導体を絶縁するのに必要な引
張強度を維持することは不可能である。そのため例えば
フレークマイカの揚合は適当な大きさのフレークマイカ
を接着剤を用いてガラスクロス等の補強材に貼りつけな
ければならず、また集成マイ力の場合は粉砕したマイカ
片を抄紙技術でマイカ箔としフレークマイカ同様接着剤
を用いてガラスクロス等の補強材に貼りつけなければな
らない。
In other words, in the case of mica tape, it can be broadly classified into flake mica and aggregated mica depending on the shape of the mica, but in both cases, it is impossible for mica alone to maintain the tensile strength necessary to insulate the conductor. . Therefore, for example, when producing flake mica, it is necessary to attach flake mica of an appropriate size to a reinforcing material such as glass cloth using adhesive, and in the case of composite mica, crushed mica pieces are processed using paper-making technology. As with mica foil, it must be attached to a reinforcing material such as glass cloth using adhesive.

従って導体の絶縁に従来の絶縁技術を応用する場合はマ
イ力の貼り合せを必要とする高価なマイ力を使用しなけ
ばならないこと。また、骨材を使用することで絶縁層の
厚さが一定の場合コロナに強いマイ力の厚さが薄くなる
こと。さらに接着剤を用いることによって後工程で施す
含浸樹脂が含浸され難くなること、またこの接着剤は多
くの場合溶剤タイプであるため含浸樹脂との間に適合性
で問題がある等多くの問題点がある。
Therefore, when applying conventional insulation technology to insulating conductors, it is necessary to use expensive mechanical insulation that requires bonding of mechanical insulation. In addition, by using aggregate, the thickness of the insulation layer, which is strong against corona, becomes thinner when the thickness of the insulation layer is constant. Furthermore, using an adhesive makes it difficult for the impregnating resin applied in the subsequent process to be impregnated, and since this adhesive is often a solvent type, there are many problems such as compatibility with the impregnating resin. There is.

したがって本発明は、鱗片状マイカ片の貼合せ作業を必
要とけず、且つ骨剤も使用するとなく、電界の最も高い
導体近傍に鱗片状マイカ片からなる絶縁層を形成する方
法を提供することを目的とする。
Therefore, it is an object of the present invention to provide a method for forming an insulating layer made of scaly mica pieces in the vicinity of a conductor with the highest electric field without requiring the work of laminating scaly mica pieces or using an aggregate. purpose.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記問題点を解決すべく本発明は、鱗片状マイ力片をエ
タノール等の右機溶剤に分散し、この分散液中に導体と
クu極を挿入して直流電圧を印加し、電気泳動によりマ
イカ片を導体に付着させ、次いでマイカ片が何るした導
体を熱収縮チューブで包lυでマイカj1を軽く押えた
状態で合成樹脂を含浸せしめ、この後、合成拐脂を加熱
硬化するようにしたものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention disperses scaly pieces in a solvent such as ethanol, and inserts a conductor and a Cu electrode into this dispersion liquid. A DC voltage was applied to make the mica pieces adhere to the conductor by electrophoresis, and then the conductor with the mica pieces was wrapped in a heat shrink tube, and the mica j1 was impregnated with a synthetic resin while being lightly pressed with lυ. , which is made by heating and curing synthetic resin.

(作 用) 本発明は、前記手段によりマイカ片は接着剤を用いず層
状に何者し、且つ骨材も使用していないため電界の最も
集中しやすい導体近傍にマイカ吊が極めて多く、耐コロ
ナ性に優れた絶縁層を形成できる。
(Function) According to the present invention, the mica pieces are formed in layers without using an adhesive, and since no aggregate is used, there are extremely many mica suspensions near the conductor where the electric field is most likely to concentrate, and the present invention provides corona resistance. An insulating layer with excellent properties can be formed.

(実施例) 本発明の実施例を図面を用いて説明する。本発明で用い
る鱗片状のマイカ片は、生マイカまたは生マイ力を作る
過程で副生するスクラップマイカを化学的、物理的に1
0〜300メツシJに粉砕したものを用いる。すなわら
硬質または軟質マイ力を700〜800℃に加熱して結
晶水の一部を除去し、酸またはアルカリの水溶液に浸漬
して男間し易くした後畠圧のジェット水流延゛10〜3
00メッシュに叩解粉砕してマイカ懸濁液とし、この懸
濁液を面に受け十分に水を切り、゛ついで120℃程度
の加熱により鱗片状マイカ片にJ;るマイカブロツクを
作った。なおマイカブロックの大きさは脱水のし易さと
つぎの工程での使い易さから10〜1009程度にする
ことが好ましい。
(Example) An example of the present invention will be described using the drawings. The scale-like mica pieces used in the present invention are made by chemically and physically processing raw mica or scrap mica that is a by-product in the process of making raw mica.
Use a product that has been ground to a size of 0 to 300 mesh J. In other words, hard or soft material is heated to 700 to 800°C to remove some of the crystal water, immersed in an acid or alkali aqueous solution to make it easier to masturbate, and then cast with jet water at a high pressure. 3
A mica suspension was obtained by beating and pulverizing the mica to a size of 0.00 mesh, and the suspension was poured onto a surface to thoroughly drain water, and then heated to about 120° C. to form mica blocks in the form of scaly mica pieces. Note that the size of the mica block is preferably about 10 to 1,009 mm from the viewpoint of ease of dehydration and ease of use in the next step.

つぎにエタノーノレ1リットノレに対しマイカブロツク
を50〜2009の割合で添加し鱗片状マイカ片のエタ
ノール溶液1を作った。(以下分散液と称す。)なおこ
の分散液1はマグネチックスターラ2によって鱗片状マ
イカ片が沈降しないよう静かに撹拌した。つぎに絶縁を
施すべき導体3とこれに対向する電極4を入れ導体と電
極門に直流電圧を印加した。電圧は導体の形状および対
向する電極との距離によっても影臂ざれたが30〜13
0■、また時間は20〜90秒程麿で0.05〜0.2
m程度の鱗片状マイカ片の絶縁層5を形成することがで
きた。また電圧印加時に撹拌を一時停止し上記と同一条
件で行った結果0.1〜0.4mとさらに厚い絶縁層を
得ることが出来た。さらに上記条件で絶縁層形成後、室
}品でエタノールを飛散せしめ生乾きの状態で再■鱗片
状マイカ片のエタノール溶液に0 jff[し再度同一
電圧を印加したところ0.3〜0.6mの絶縁層が得ら
れた。これを静かに6回繰返し行ったところ0.8〜1
.4M1程度の絶縁層が得られた。さらに繰返し行うこ
とで2#lII+以上の絶縁層が得られたがエタノール
溶液から導体を取出fときに一部鱗片状マイカ片の流出
がみられた。尚、導体を分散液から取出すとぎに静かに
回転さUながらエタノールを飛散させればマイカ片の流
出を押えることができる。
Next, mica blocks were added at a ratio of 50 to 2,009 mica blocks per liter of ethanol to prepare an ethanol solution 1 of scaly mica pieces. (Hereinafter referred to as a dispersion liquid.) This dispersion liquid 1 was gently stirred by a magnetic stirrer 2 so that the scaly mica pieces would not settle. Next, a conductor 3 to be insulated and an electrode 4 facing it were placed, and a DC voltage was applied to the conductor and the electrode gate. The voltage was also affected by the shape of the conductor and the distance between the opposing electrodes, but it was 30-13
0 ■, and the time is 0.05 to 0.2 for about 20 to 90 seconds.
It was possible to form an insulating layer 5 of scale-like mica pieces with a thickness of about m. Further, as a result of performing the same operation as above by temporarily stopping stirring when voltage was applied, an even thicker insulating layer of 0.1 to 0.4 m could be obtained. Further, after forming an insulating layer under the above conditions, ethanol was scattered in a chamber and the half-dried state was re-applied to the ethanol solution of the scale-like mica pieces at 0 jff [and the same voltage was applied again. An insulating layer was obtained. After repeating this quietly 6 times, the result was 0.8 to 1.
.. An insulating layer of about 4M1 was obtained. By further repeating the process, an insulating layer of 2#lII+ or more was obtained, but when the conductor was removed from the ethanol solution, some scaly mica pieces were observed to flow out. Incidentally, when the conductor is taken out from the dispersion liquid, it is possible to prevent the mica pieces from flowing out by scattering the ethanol while rotating the conductor gently.

次に、1.5m程度鱗片状マイカ片の絶縁層が形成され
た導体3を熱収縮チューブ6に入れ、加熱による収縮力
で鱗片状マイカ片を軽く押えることで、マイカ100%
の絶縁層を形成することができた。ここで、鱗片状マイ
カ片による絶縁層はマイカ特有の挟状効果によりマイカ
片同士が互いに貼りつきあっており、接着剤を用いなく
とも剥離することはない。ただし水流による叩解ぐなく
ミキナー等で機械的に粉砕したマイカ片は鱗片形状をし
ているものの挟状効果が少なく容易に剥離づるため、水
流による叩解の方が好ましい。
Next, the conductor 3 on which an insulating layer of scaly mica pieces of about 1.5 m has been formed is placed in a heat shrink tube 6, and the scaly mica pieces are lightly pressed with the shrinkage force caused by heating, making the mica 100%
was able to form an insulating layer. Here, in the insulating layer made of scaly mica pieces, the mica pieces stick to each other due to the pincer effect unique to mica, and will not peel off even without using an adhesive. However, mica pieces that are mechanically pulverized using a mixer or the like rather than being beaten with a stream of water have a scaly shape but have little pincer effect and easily peel off, so beating with a stream of water is preferable.

つぎに減圧下で熱収縮チューブと共に含浸樹脂を含浸し
た後、さらにこの熱収縮チューブの上から導体の絶縁層
を包む形で成形治具7を当て加熱によって含浸樹脂を硬
化させることで鱗片状マイカ片による絶縁層を完成する
ことができた。この結果電界の最も集中し易い導体近傍
(導体から0.5M以内)におけるマイカaは従来のマ
イカテーブ巻き絶縁の場合最高65%であったが、本発
明によれば実に85%まで増やすことが出来た。
Next, after impregnating the heat-shrinkable tube with the impregnating resin under reduced pressure, a molding jig 7 is applied over the heat-shrinkable tube to wrap the insulating layer of the conductor, and the impregnating resin is hardened by heating to form a scaly mica. I was able to complete the insulating layer with pieces. As a result, the mica a in the vicinity of the conductor (within 0.5M from the conductor), where the electric field is most likely to concentrate, was 65% at most in the case of conventional mica tape-wound insulation, but according to the present invention, it can be increased to 85%. Ta.

尚、図示例にあっては導体を角棒状としたが、導体の形
状は任意であり、複雑に加工したものであってもよい。
In the illustrated example, the conductor has a rectangular bar shape, but the shape of the conductor may be arbitrary and may be intricately processed.

次に具体的な実施例の結果を〔表〕に示す。Next, the results of specific examples are shown in [Table].

〔表〕にお(ノる各実施例の内容は以下に承り通りであ
る。
The contents of each example shown in [Table] are as follows.

実施例 1 平均粒径60メッシュに分布する鱗片状マイカ片をエタ
ノール10リットルに対し1 K9添加した分散液に導
体と電極を入れ直流電圧i oovで5 5 sec印
加した。
Example 1 A conductor and an electrode were placed in a dispersion in which 1 K9 of scaly mica particles having an average particle size of 60 mesh were added to 10 liters of ethanol, and a DC voltage i oov was applied for 55 seconds.

実施例 2 実施例1をおこなったのち、エタノールを室淘で飛散せ
しめ再度同一条件で電圧を印加した。この作業を5回繰
返し行った。
Example 2 After carrying out Example 1, ethanol was dispersed in a chamber and voltage was applied again under the same conditions. This operation was repeated five times.

実施例 3 実施例2の導体にテトロンガラス混紡による熱収縮スリ
ーブをかぶL含浸樹脂を真空で含浸、成形治具を用いて
加熱硬化した。
Example 3 The conductor of Example 2 was covered with a heat-shrinkable sleeve made of Tetron glass blend, impregnated with L-impregnated resin in a vacuum, and heated and cured using a molding jig.

実施例 4 実施例2の導体にテトロンガラス混紡による熱収縮フリ
ーブを4層かぶせ含浸樹脂をIA2下で含浸、成形治具
を用いて加熱硬化した。
Example 4 The conductor of Example 2 was covered with four layers of heat-shrinkable fleece made of Tetron glass blend, impregnated with an impregnating resin under IA2, and heated and cured using a molding jig.

〔発明の効果〕〔Effect of the invention〕

以上に説明した如く本発明によれば、接着剤及び補強材
を用いることなく、導体外側にマイカ吊の多い耐コロナ
性に優れた絶縁層を形成することができる。また特にマ
イカ片の分散液としてエタノール等を用いれば低温度で
の乾燥が可能となり、更に(一)方向にマイカ片が移動
するカチオン方式のため導体の材質が銅であっても、緑
青等が発生するおそれもない等多くの効果を発揮する。
As explained above, according to the present invention, it is possible to form an insulating layer having excellent corona resistance with a large amount of mica hanging on the outside of a conductor without using an adhesive or a reinforcing material. Furthermore, if ethanol or the like is used as a dispersion liquid for mica pieces, drying at low temperatures becomes possible.Furthermore, since the mica pieces move in one direction using the cation method, even if the material of the conductor is copper, there will be no patina, etc. It has many effects such as there is no risk of it occurring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は分散液中でマイカ片を電気泳勅により導体表面
に付着せしめている状態を示す図、第2図は成形治具を
用いて含浸樹脂を加熱硬化往しめている状態を示す図で
ある。 1・・・分散液、3・・・導体、4・・・電極、5・・
一絶縁層6・・・熱収縮チューブ、7・・・成形治具。 出願人代理人  佐  藤  一  雄隼1目 第2菌
Figure 1 shows the state in which mica pieces are attached to the conductor surface by electrophoresis in a dispersion liquid, and Figure 2 shows the state in which the impregnated resin is heated and hardened using a molding jig. be. 1... Dispersion liquid, 3... Conductor, 4... Electrode, 5...
- Insulating layer 6... Heat shrink tube, 7... Molding jig. Applicant's agent Hajime Sato

Claims (1)

【特許請求の範囲】[Claims] 鱗片状マイカ片をOH基を有する有機溶剤中に分散し、
この分散液中に導体及び電極を挿入して直流電圧を印加
し、電気泳動によつて導体表面に鱗片状マイカ片を付着
させ、次いで鱗片状マイカ片が付着した導体を熱収縮チ
ューブ内に入れ、このチューブを熱収縮させて鱗片状マ
イカ片を保持した後、合成樹脂を含浸せしめ、更にこの
合成樹脂を加熱硬化せしめるようにしたことを特徴とす
る鱗片状マイカ片による導体の絶縁方法。
Dispersing scaly mica pieces in an organic solvent having an OH group,
A conductor and an electrode are inserted into this dispersion liquid, a DC voltage is applied, and scale-like mica pieces are attached to the conductor surface by electrophoresis.Then, the conductor with the scale-like mica pieces attached is placed in a heat shrink tube. A method for insulating a conductor using flaky mica pieces, characterized in that the tube is heat-shrinked to hold the flaky mica pieces, then impregnated with a synthetic resin, and further the synthetic resin is hardened by heating.
JP14242486A 1986-06-18 1986-06-18 Insulation of conductor employing scale mica piece Pending JPS63911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14242486A JPS63911A (en) 1986-06-18 1986-06-18 Insulation of conductor employing scale mica piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14242486A JPS63911A (en) 1986-06-18 1986-06-18 Insulation of conductor employing scale mica piece

Publications (1)

Publication Number Publication Date
JPS63911A true JPS63911A (en) 1988-01-05

Family

ID=15315003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14242486A Pending JPS63911A (en) 1986-06-18 1986-06-18 Insulation of conductor employing scale mica piece

Country Status (1)

Country Link
JP (1) JPS63911A (en)

Similar Documents

Publication Publication Date Title
Shen et al. Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell‐structured particles
JP3843967B2 (en) Insulating coil manufacturing method
CA1330609C (en) Composites of in-situ exfoliated graphites
JP3458693B2 (en) Insulation and electric winding
US20060258791A1 (en) Tape member or sheet member, and method of producing tape member or sheet member
US2459653A (en) Insulated conductor
Peng et al. Dielectric properties of carbon nanotubes/epoxy composites
Yang et al. Effect of particle size and dispersion on dielectric properties in ZnO/epoxy resin composites
Liu et al. Skin–core structured fluorinated MWCNTs: a nanofiller towards a broadband dielectric material with a high dielectric constant and low dielectric loss
KR100909106B1 (en) Epoxy-organically modified layered silicate nanocomposite for insulation and product thereby
CA2314932A1 (en) Method for producing mica-containing insulation tapes and applications thereof
JPS63911A (en) Insulation of conductor employing scale mica piece
CN105331046A (en) Direct-current extra-high-voltage insulator, manufacturing method and application thereof
JPH02106813A (en) Linear organic polymer electric insulating material
JP3220319B2 (en) Sheet material for electrical insulation, prepreg, and electrically insulated wire loop using the same
JPS6319709A (en) High voltage insulating conductor
Sun et al. Multifunctional epoxy resin/polyacrylonitrile‐lithium trifluoromethanesulfonate composites films with very high transparency, high dielectric permittivity, breakdown strength and mechanical properties
Kurimoto Topology optimization and 3D printing: toward a functionally graded solid insulator
JPS6136329B2 (en)
JP2003022710A (en) Low dielectric type insulating material and its manufacturing method
JPS6245687B2 (en)
JPS63107441A (en) Core insulation for rotary electric machine
Mitsui et al. Improvement of rotating machinery insulation characteristics by using mica paper containing aramid fibrid
US2906649A (en) Heat-resistant electric insulation and method of manufacture
Peng12 et al. Dielectric properties of carbon nanotubes/epoxy composites