JPS639113A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS639113A
JPS639113A JP15310886A JP15310886A JPS639113A JP S639113 A JPS639113 A JP S639113A JP 15310886 A JP15310886 A JP 15310886A JP 15310886 A JP15310886 A JP 15310886A JP S639113 A JPS639113 A JP S639113A
Authority
JP
Japan
Prior art keywords
raw material
chamber
crucible
semiconductor device
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15310886A
Other languages
Japanese (ja)
Inventor
Kazuhiro Okawa
和宏 大川
Tsuneo Mitsuyu
常男 三露
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15310886A priority Critical patent/JPS639113A/en
Publication of JPS639113A publication Critical patent/JPS639113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To obtain a high purity semiconductor crystal by a method wherein a crucible for a raw material is heated in a chamber under a gaseous atmosphere in an ultra-high vacuum state, the raw material is purified, the chamber is evacuated and the semiconductor crystal is grown by a molecular beam epitaxy process. CONSTITUTION:When a semiconductor crystal consisting of zinc selenide is grown through a molecular beam epitaxy process, the inside of a chamber is evacuated to an ultra-high vacuum, and brought to the gas atmosphere of an inert gas, etc. The temperature of the inside of a crucible 3 is elevated so that the vapor pressure of a raw material 6 in the crucible 3 such as a Knudsen cell is brought to approximately 10<-9> Torr. Impurities 2 in the raw material are vaporized by repeating the liquefaction 5 and vaporization 6 of the raw material. The raw material 5 is purified sufficiently, and the inside of the chamber is evacuated up to an ultra-high vacuum of 10<-9> Torr or less again. Each molecular beam source is heated so that proper molecular-beam intensity can be obtained. A substrate is set at a crystal growth temperature and irradiated with the molecular beams of Zn and Se, thus growing a ZnSe semiconductor crystal having high purity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は分子線エピタキシ−法による半導体の製造方法
に関し、特に原料の精製に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing semiconductors by molecular beam epitaxy, and particularly to the purification of raw materials.

従来の技術 従来は原料を結晶成長に使用する前に超高真空中で加熱
し分子線を飛ばすことKよシ、原料中の不純物も分子線
ととも【飛ばして原料を精製していた。
Conventional technology In the past, raw materials were purified by heating them in an ultra-high vacuum and blowing off molecular beams before using them for crystal growth, and impurities in the raw materials were also removed along with the molecular beams.

発明が解決しようとする問題点 しかし、超高真空中で原料を加熱し分子線を飛ばすこと
により原料は減少してしまうためて原料が有効に使われ
ないという開運と同時に1その原料の減少があるために
原料を十分高温加熱して不純物を素早く取り除くことが
できないという問題があった。
Problems that the invention aims to solveHowever, by heating the raw material in an ultra-high vacuum and emitting molecular beams, the raw material is reduced, so the raw material cannot be used effectively. Therefore, there was a problem in that it was not possible to heat the raw material to a sufficiently high temperature to quickly remove impurities.

そこで本発明は原料を十分に高温加熱し不純物を素早く
取り除くとともて原料の分子線を押えて原料の減少を極
めて少なくできるようにしたものである。
Therefore, the present invention heats the raw material at a sufficiently high temperature to quickly remove impurities and suppresses the molecular beams of the raw material, thereby making it possible to extremely minimize the loss of the raw material.

問題点を解決するための手段 そして上記問題点を解決する本発明の技術的な手段は次
のようである。まずチャンバ内を超高真空にまで引いて
から不活性ガス等のガス雰囲気にする。次にワヌードセ
ンセル等のるつぼの中に入った原料を十分に高温加熱し
原料を精製する。その後に再び超高真空にして半導体結
晶を成長させる。
Means for solving the problems and technical means of the present invention for solving the above problems are as follows. First, the inside of the chamber is drawn to an ultra-high vacuum, and then a gas atmosphere such as an inert gas is created. Next, the raw material placed in a crucible such as a wanudsen cell is heated to a sufficiently high temperature to purify the raw material. After that, the semiconductor crystal is grown under ultra-high vacuum again.

作用 この技術的手段による作用は次のようになる。action The effect of this technical means is as follows.

原料を加熱するととKより原料はるつぼ内で蒸気圧が高
くなり気化と液化を繰シ返すが、原料中の不純物も蒸気
圧が高くなる。ここでチャンバ内をガス雰囲気にしであ
るために、るつぼ口からの原料の拡散は押えられる。そ
のために原料の減少も押えられる。原料の拡散が少ない
ので原料を十分に高温加熱できるためて1より高い蒸気
圧となった不純物はるつぼ内で気化した状態で濃縮され
原料は精製される。原料を加熱することを停止すると同
時にチャンバを真空引きすることによシるつぼ内に気化
しである不純物は排気される。なおガス雰囲気にする前
にチャンバ内を超高真空にしてチャンバ壁の汚染を除い
であるのでガス雰囲気にした場合るつぼの周囲のチャン
バ壁から原料への汚染を防止することができる。
When raw materials are heated, the vapor pressure of the raw materials becomes higher in the crucible than K, and the raw materials repeatedly vaporize and liquefy, but impurities in the raw materials also have higher vapor pressures. Since the inside of the chamber is made into a gas atmosphere, the diffusion of the raw material from the crucible mouth is suppressed. As a result, the reduction in raw materials can also be suppressed. Since the diffusion of the raw material is small, the raw material can be heated to a sufficiently high temperature, so that impurities that have a vapor pressure higher than 1 are concentrated in a vaporized state in the crucible, and the raw material is purified. By stopping the heating of the raw material and simultaneously evacuating the chamber, impurities vaporized in the crucible are evacuated. Note that before creating a gas atmosphere, the inside of the chamber is brought to an ultra-high vacuum to remove contamination of the chamber walls, so that when a gas atmosphere is created, contamination of the raw material from the chamber walls around the crucible can be prevented.

実施例 以下、本発明の一実施例を添付図面に基づいて説明する
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings.

セレン化亜鉛(Zn5e )の半導体結晶を分子線エピ
タキシ−法により成長させる場合の原料となる亜鉛(Z
n )及びセレン(Sa)の精製てついて説明する。
Zinc (Zn5e) is the raw material for growing zinc selenide (Zn5e) semiconductor crystals by molecular beam epitaxy.
n) and selenium (Sa) purification methods will be explained.

製造に用いる分子線エピタキシ−装置は超高真空排気装
置を備えた真空容器(チャンバ)内に複数の分子線源(
ワヌードセンセル)と基板支持機構などを設けた一種の
真空蒸着装置である。
The molecular beam epitaxy equipment used for manufacturing uses multiple molecular beam sources (
This is a type of vacuum evaporation equipment equipped with a vacuum evaporation device (vanudo sensor cell) and a substrate support mechanism.

実際の原料(Zn又はse )  の精製は次のような
手順で行なう。まず高純度の原料を化学エツチング等例
よりその表面を浄化し、Zn及びSe  をそれぞれ個
別のワヌードセンセル3に装填する。
The actual purification of the raw material (Zn or se) is carried out in the following manner. First, the surface of a high-purity raw material is purified by chemical etching or the like, and Zn and Se are loaded into separate Wanodsen cells 3, respectively.

原料の装填時に汚染されたチャンバ壁を清浄化するため
にチャンバ全体をベーキングする。チャンバ内が適当な
真空度に達した時にベーキングをやめる。チャンバの真
空度が10−’ Torr以下の超高真空になった後て
高純度アルゴンガス1を約10Torr封入する。次に
クヌードセンセル3中の原料6の蒸気圧が約10Tor
r程度になるようにワヌードセンセル3の温度を上げる
。原料6がオリフィス7から出ないためには原料6の蒸
気圧がアルゴンガス圧以下でアルゴンガス1によって原
料6の拡散が止められることが必要である。またアルゴ
ンガス圧が低過ぎる場合知は原料の原子6とアルゴンガ
ス1の原子の拡散領域が長くなり原料6がオリフィス7
から出てしまうのでアルゴンガス圧はI TOrr以上
であることが望ましい。上記のようにアルゴンガス圧と
原料6の蒸気圧がともK 10 Torr程度になると
拡散領域は十分て薄くなシワヌードセンセル3に原料6
を閉じ込めることができる。そして原料が液化5と気化
6を繰り返すことにより原料中の不純物2は気化するが
不純物2の蒸気圧は飽和蒸気圧に達しないので不純物2
が原料5に戻ることはない。十分に原料5が精製された
後にワヌードセンセル3の温度ヲ下ケると同時にチャン
バを真空に引く。
Bake the entire chamber to clean chamber walls that were contaminated during loading of raw materials. Stop baking when the chamber reaches a suitable degree of vacuum. After the degree of vacuum in the chamber reaches an ultra-high vacuum of 10-' Torr or less, high-purity argon gas 1 is filled in at about 10 Torr. Next, the vapor pressure of the raw material 6 in the Knudsen cell 3 is approximately 10 Torr.
The temperature of the Wanoud Sensel 3 is raised to about r. In order for the raw material 6 to not come out from the orifice 7, it is necessary that the vapor pressure of the raw material 6 be lower than the argon gas pressure and the diffusion of the raw material 6 to be stopped by the argon gas 1. Also, if the argon gas pressure is too low, the diffusion region of the atoms 6 of the raw material and the atoms of the argon gas 1 will become longer, and the raw material 6 will reach the orifice 7.
Therefore, it is desirable that the argon gas pressure be at least I Torr. As mentioned above, when the argon gas pressure and the vapor pressure of the raw material 6 are both about K 10 Torr, the diffusion region is sufficient to spread the raw material 6 into the thin wrinkle nude sensor cell 3.
can be confined. Then, as the raw material repeats liquefaction 5 and vaporization 6, impurity 2 in the raw material is vaporized, but the vapor pressure of impurity 2 does not reach the saturated vapor pressure, so impurity 2
will not return to raw material 5. After the raw material 5 is sufficiently purified, the temperature of the Wanoudsen cell 3 is lowered and at the same time the chamber is evacuated.

再びチャンバを10−9Torr以下の超高真空にまで
排気する。その後に、各分子線源を加熱し適切な分子線
強度が得られるようにする。そして基板を結晶成長温度
に設定した後にZn及びSsの分子線を基板に照射する
ことによって高純度のZn5e半導体結晶を成長させる
The chamber is again evacuated to an ultra-high vacuum of 10-9 Torr or less. Thereafter, each molecular beam source is heated to obtain an appropriate molecular beam intensity. After setting the substrate to a crystal growth temperature, the substrate is irradiated with Zn and Ss molecular beams to grow a high purity Zn5e semiconductor crystal.

なお、アルゴンガスの他の不活性ガスでも同様の効果が
あることは明らかである。そして不活性ガスはるつぼの
口に垂直に当たるように流した場合にも適用できる。
Note that it is clear that the same effect can be obtained using inert gases other than argon gas. It can also be applied when the inert gas is flowed perpendicularly to the mouth of the crucible.

発明の効果 以上述べてきたように、本発明によれば原料をチャンバ
内で精製することにより高純度の半導体結晶を得ること
ができた。その結果、原料中の不純物に問題のある化合
物半導体で分子線エピタキシ−法を用いる場合には高純
度の半導体結晶が実現でき、実用的にきわめて有用であ
る。
Effects of the Invention As described above, according to the present invention, a highly pure semiconductor crystal could be obtained by refining the raw material in a chamber. As a result, when the molecular beam epitaxy method is used for compound semiconductors that have problems with impurities in their raw materials, highly pure semiconductor crystals can be obtained, which is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例における原料精製時のクヌードセ
ンセルの断面図である。 1・・・・・・アルゴンガス、2・・・・・・不純物、
3・・・・・・クヌードセンセル、4・・・・・・ヒー
ター線、5・・・・・・液化した原料、6・・・・・・
気化した原料、7・・・・・・オリフィス。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名グー
−−アルゴ゛ンカ゛ス 2−  不苑物 3−・ クヌードセンセル 4−゛ ヒーター線 5−−一 液化した原料 6−−− 便ゴヒした股斗 7− オリフィス
The figure is a cross-sectional view of a Knudsen cell during raw material refining in one embodiment of the present invention. 1... Argon gas, 2... Impurities,
3... Knudsen cell, 4... Heater wire, 5... Liquefied raw material, 6...
Vaporized raw material, 7... Orifice. Name of agent: Patent attorney Toshio Nakao and one other person - Algorithm 2 - Fuenmono 3 - Knud Sensel 4 - Heater wire 5 - Liquefied raw material 6 - Fecal material 7- Orifice

Claims (7)

【特許請求の範囲】[Claims] (1)分子線エピタキシ−法において、10^−^9T
orr以下の超高真空にした後にガス雰囲気のチャンバ
内で原料のるつぼを加熱し前記原料を精製した後に真空
にし半導体結晶を成長させることを特徴とする半導体装
置の製造方法。
(1) In molecular beam epitaxy method, 10^-^9T
1. A method for manufacturing a semiconductor device, which comprises creating an ultra-high vacuum of less than orr, heating a crucible of raw materials in a chamber with a gas atmosphere, purifying the raw materials, and then vacuuming to grow a semiconductor crystal.
(2)ガスとしてアルゴン等の不活性ガスを使用する特
許請求の範囲第1項記載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein an inert gas such as argon is used as the gas.
(3)ガスの圧力を1Torr以上に設定する特許請求
の範囲第1項記載の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 1, wherein the gas pressure is set to 1 Torr or more.
(4)ガスをチャンバ内に封入した特許請求の範囲第1
項乃至第3項のいずれかに記載の半導体装置の製造方法
(4) Claim 1 in which gas is sealed in the chamber
A method for manufacturing a semiconductor device according to any one of items 1 to 3.
(5)ガスをるつぼ口に垂直に当たるように流す特許請
求の範囲第1項乃至第3項のいずれかに記載の半導体装
置の製造方法。
(5) The method for manufacturing a semiconductor device according to any one of claims 1 to 3, wherein the gas is caused to flow perpendicularly to the crucible mouth.
(6)るつぼとしてワヌードセンセルを用いた特許請求
の範囲第1項乃至第5項のいずれかに記載の半導体装置
の製造方法。
(6) A method for manufacturing a semiconductor device according to any one of claims 1 to 5, using a Wanoudsen cell as a crucible.
(7)原料の温度を原料の蒸気圧がガス圧以下になるよ
うに設定する特許請求の範囲第1項乃至第6項のいずれ
かに記載の半導体装置の製造方法。
(7) The method for manufacturing a semiconductor device according to any one of claims 1 to 6, wherein the temperature of the raw material is set so that the vapor pressure of the raw material is equal to or lower than the gas pressure.
JP15310886A 1986-06-30 1986-06-30 Manufacture of semiconductor device Pending JPS639113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15310886A JPS639113A (en) 1986-06-30 1986-06-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15310886A JPS639113A (en) 1986-06-30 1986-06-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS639113A true JPS639113A (en) 1988-01-14

Family

ID=15555145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15310886A Pending JPS639113A (en) 1986-06-30 1986-06-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS639113A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960721A (en) * 1987-11-10 1990-10-02 Kabushiki Kaisha Toshiba Method for purifying group II-IV compound semiconductors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960721A (en) * 1987-11-10 1990-10-02 Kabushiki Kaisha Toshiba Method for purifying group II-IV compound semiconductors

Similar Documents

Publication Publication Date Title
US5250148A (en) Process for growing GaAs monocrystal film
EP2284122A1 (en) Low nitrogen concentration carbonaceous material and manufacturing method thereof
JP3312553B2 (en) Method for producing silicon single crystal and silicon single crystal thin film
EP0746011B1 (en) Method of producing single crystal thin film
JPS639113A (en) Manufacture of semiconductor device
JPS59124124A (en) Manufacture of semiconductor device
JP3684660B2 (en) Manufacturing method of semiconductor single crystal thin film
JPS6136699B2 (en)
JP2001180918A (en) Method of directly synthesizing indium phosphide
EP0712818B1 (en) Article for use under high vacuum at high temperature
JPH0652714B2 (en) Thin film material manufacturing method
JPS6134922A (en) Manufacture of super lattice semiconductor device
JP3574494B2 (en) Nitride compound semiconductor crystal growth method and growth apparatus
JPS63297293A (en) Method for growing crystal
JPH0427116A (en) Method of forming semiconductor heterojunction
JPH06275542A (en) Method and device for manufacturing nitrogendoped ii-vi compound semiconductor thin film
JP3735881B2 (en) Crystal manufacturing method
JPS6225249B2 (en)
JPH0218384A (en) Method for molecular beam epitaxial growth
JPH04345017A (en) Manufacturing method of semiconductor device
JP2001093848A (en) Method for manufacturing semiconductor device
JPH02254715A (en) Manufacture of compound semiconductor crystal layer
JPH01286991A (en) Method for molecular-beam epitaxial growth and apparatus therefor
JPH0375291A (en) Production of znse single crystal
JP2000351694A (en) Method of vapor-phase growth of mixed crystal layer and apparatus therefor