JPS6390877A - Composite optical semiconductor light emitting device - Google Patents

Composite optical semiconductor light emitting device

Info

Publication number
JPS6390877A
JPS6390877A JP61235939A JP23593986A JPS6390877A JP S6390877 A JPS6390877 A JP S6390877A JP 61235939 A JP61235939 A JP 61235939A JP 23593986 A JP23593986 A JP 23593986A JP S6390877 A JPS6390877 A JP S6390877A
Authority
JP
Japan
Prior art keywords
lasers
optical
semiconductor lasers
semiconductor
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61235939A
Other languages
Japanese (ja)
Inventor
Mamoru Uchida
護 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61235939A priority Critical patent/JPS6390877A/en
Publication of JPS6390877A publication Critical patent/JPS6390877A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-output and multi-functional device by monolithically integrating a plurality of semiconductor lasers and a plurality of optical detectors, placing the semiconductor lasers so that the optical axes join at one point in front of them, and placing the optical detectors along the optical axes of the lasers and backward of the lasers, thereby providing a plurality of semiconductor lasers. CONSTITUTION:In a composite semiconductor light emitting device constructed by monolithically integrating a plurality of semiconductor lasers 1-5 and a plurality of optical detectors 11-15, the semiconductor lasers 1-5 are placed so that the optical axes join at one point in front of them, and the optical detectors 11-15 are placed along the optical axes of the semiconductor lasers 1-5 and backward of those semiconductor lasers 1-5. For instance, on a GaAs substrate 101, five lasers 1-5 and the same number of optical detectors 11-15 are monolithically integrated, the end face of which is consisting of an etched mirror. And, the lasers 1-5 are placed so that they are close to each other with a 10mum spacing at the emitting surface side (the center distance of light emitting regions is 10mum) and they are apart with a 50mum spacing at the optical detectors 11-15 side, whereby the optical axes of the respective lasers 1-5 join at one point in front of them.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光情報処理用、特に読み書き可能な光デイスク
ファイルシステム用光源に適した半導体レーザに関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser suitable for optical information processing, particularly as a light source for a read/write optical disk file system.

(従来の技術) 民生用半導体レーザには高出力化および多機能化が望ま
れている。高出力化を実現する一例として位相同期型レ
ーザがあシ、これはワット級の光出力が必要な分野に用
いられる。一方、多機能化の一例としては複数のレーザ
及び光検出器をモノリシックKかつ近接して集積した独
立駆動型レーザがある。その代表例は第46回応用物理
学会学術講演会(論文番号3p−N−14)において、
内円らによってrRIBEによるA 1 z G a 
I−X As2−Beam LD  PDアレイの製作
」と題して報告されている。本発明はこのLD−PDプ
レイを発展させたものであるのでこれについて簡単に説
明する。第3図は2ビームLD−PDプレイの構造図で
ある。その製作工程は、まずn型GaA3基板300上
に液相エピタキシャル法をもちいて、n型A1o、ss
 Gao、st Asクラッド層(厚さ1.0μm )
  301、n型A 1 o、s G a o、y A
 s光ガイド層(厚さ0.3μm)302、アンドーア
A 10.! 5Ga6.@@ As活性層(厚さ0.
08μm)303、p型Alo、s Gao、s As
中間層(厚さ0.3 μm )304、p型Alo、s
i Gao、st Asクラッド層(厚さ2.0μm)
305、p型GaAs  コンタクト層(厚さ0.8μ
m)306を形成する。次に通常のフォトリングラフィ
技術をもちいて(011)方向へ平向に50μm離れた
2本の幅8μmのストライプ状のエツチングマスクを形
成したあと、燐酸系のエツチング液を用いて高さ約5μ
mのメサを形成し、さらンζフッ酸系のエツチング液で
中間層のみを選択的に約0.2μmエツチングしメサに
くびれをつける。次に2回目の液相成長によりp型Al
GaAsブロック層307、n型AlGaAg埋め込み
層308を形成する。sio、膜をマスクとしてメサ部
のみにZn拡散を施したあと(拡散フロント309を点
線で示した)、電極として表面には4分割されたレーザ
用の正電極310.311及び光検出器用の正電極31
2.313を形成する。次にレジスト/Ti(チタン)
/レジストから成る三層レジストをエツチングマスクと
してリアクティブ・イオン・ビーム・エツチングを用い
てレーザの共振器面及び光検出器の端面形成を行う。こ
のあと結晶裏面に負電極を形成して2ビームLD−PD
 アレイは完成する。この2ビームLD−PDプレイの
特徴は近接した2本のレーザのうち一方を書き込み、他
方を読み込みに用いるとともにそれぞれの光出力を後方
にモノリシックに配置した光検出器でモニターすること
ができる点にある。この結果従来の光学系をよシ単純に
することができる。
(Prior Art) Consumer semiconductor lasers are desired to have higher output and multifunctionality. One example of achieving high output power is phase-locked lasers, which are used in fields where watt-level optical output is required. On the other hand, as an example of multifunctionality, there is an independently driven laser in which a plurality of lasers and photodetectors are monolithically integrated in close proximity. A typical example is the 46th Academic Conference of the Japan Society of Applied Physics (paper number 3p-N-14).
A 1 z G a by rRIBE by Uchimaki et al.
The report is titled ``Fabrication of I-X As2-Beam LD PD array''. Since the present invention is an evolution of this LD-PD play, it will be briefly explained. FIG. 3 is a structural diagram of a two-beam LD-PD play. The manufacturing process first uses the liquid phase epitaxial method on an n-type GaA3 substrate 300, and then
Gao, st As cladding layer (thickness 1.0 μm)
301, n-type A 1 o, s G a o, y A
s light guide layer (thickness 0.3 μm) 302, Andor A 10. ! 5Ga6. @@ As active layer (thickness 0.
08μm) 303, p-type Alo, s Gao, s As
Intermediate layer (thickness 0.3 μm) 304, p-type Alo, s
i Gao, st As cladding layer (thickness 2.0 μm)
305, p-type GaAs contact layer (thickness 0.8μ
m) form 306; Next, two 8-μm-wide stripe-shaped etching masks spaced apart by 50 μm in the (011) direction are formed using normal photolithography technology, and then etched with a height of approximately 5 μm using a phosphoric acid-based etching solution.
A mesa of m is formed, and only the intermediate layer is selectively etched by about 0.2 μm using a hydrofluoric acid-based etching solution to create a constriction in the mesa. Next, by second liquid phase growth, p-type Al
A GaAs block layer 307 and an n-type AlGaAg buried layer 308 are formed. After Zn is diffused only in the mesa area using the film as a mask (diffusion front 309 is indicated by a dotted line), a positive electrode 310 and 311 for the laser and a positive electrode for the photodetector, which are divided into four parts, are placed on the surface as electrodes. Electrode 31
2.313 is formed. Next, resist/Ti (titanium)
The resonator surface of the laser and the end face of the photodetector are formed by using reactive ion beam etching using a three-layer resist consisting of /resist as an etching mask. After this, a negative electrode is formed on the back surface of the crystal to create a two-beam LD-PD.
The array is complete. The feature of this two-beam LD-PD play is that one of the two closely spaced lasers is used for writing and the other is used for reading, and the optical output of each can be monitored by a photodetector placed monolithically at the rear. be. As a result, the conventional optical system can be made much simpler.

(発明が解決しようとする問題点) しかしながら、光情報処理システム用光源としては、今
後、2ビームだけでなく多ビームの独立駆動型の半導体
レーザが必要となることが予想される。この場合ビーム
間隔を小さくすることによシ、レーザ光を集光する光学
系を単純化出来れば、高速アクセス、信頼性、価格の点
で有利となる。
(Problems to be Solved by the Invention) However, in the future, it is expected that independently driven semiconductor lasers with not only two beams but also multiple beams will be required as light sources for optical information processing systems. In this case, if the optical system for focusing the laser beam can be simplified by reducing the beam interval, it will be advantageous in terms of high-speed access, reliability, and cost.

この面から考えると従来例は多ビーム用の光源として必
ずしも適していない。その理由は第1に、液相成長によ
る埋め込み型の構造を有していることに起因している。
From this point of view, the conventional example is not necessarily suitable as a multi-beam light source. The first reason for this is that it has a buried structure formed by liquid phase growth.

液相成長は面方位依存性が強〈従来例のような構造では
(011)方向以外に方向を選ぶととは困難である。ま
たこの構造で複数のレーザを再現性良く製作するために
はビーム間隔50μm以下にはし難い。このため、たと
えば5ビームを集積化した場合、光学系200μm以上
のビームを集光しなければならず、NA (開口数)の
大きなコリメートレンズが必要となる。
Liquid phase growth has a strong plane orientation dependence (in a conventional structure, it is difficult to select a direction other than the (011) direction). Furthermore, in order to manufacture a plurality of lasers with good reproducibility with this structure, it is difficult to reduce the beam spacing to 50 μm or less. For this reason, for example, when five beams are integrated, the optical system must condense beams of 200 μm or more, and a collimating lens with a large NA (numerical aperture) is required.

このことはレンズのサーボ系に負担がかかるとともにビ
ームの非点隔差を増大することになシ好ましくない。@
2に、何等かの方法でレーザ間隔を小さく出来るとして
も、その配置結晶成長法に制限され互いに平行なレイア
ウト以外の自由度はない。さらに実装上は熱放散を考慮
するとビーム間隔は極姑に小さくすることは出来ない。
This is undesirable because it places a burden on the servo system of the lens and increases the astigmatism difference of the beam. @
Second, even if the laser spacing could be reduced by some method, the arrangement would be limited by the crystal growth method, and there would be no degree of freedom other than mutually parallel layouts. Furthermore, in consideration of heat dissipation in mounting, the beam spacing cannot be made extremely small.

本発明の目的は、以上の欠点を除去し、複数の半導体レ
ーザを備え、高出力かつ多機能な複合半導体発光装置と
して提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a high-output, multifunctional composite semiconductor light-emitting device that includes a plurality of semiconductor lasers.

(問題点を解決するための手段) 本発明は、複数の半導体レーザ及び複数の光検出器をモ
ノリシックに集積してなシ、前記半導体レーザは前方で
光軸が1点で交じわるように配置してあシ、前記光検出
器は前記レーザの光軸に沿ってそれら半導体レーザの後
方に配置してあることを特徴とするアレイ型半導体レー
ザ装置である。
(Means for Solving the Problems) The present invention is characterized in that a plurality of semiconductor lasers and a plurality of photodetectors are monolithically integrated, and the semiconductor lasers are arranged so that their optical axes intersect at one point in front. The array type semiconductor laser device is characterized in that the photodetector is arranged behind the semiconductor lasers along the optical axis of the laser.

(作 用) 任意の結晶方位にレーザの導波路と共振器とを形成する
ことは光集積回路、特にアレイ型レーザをよシ最適溝造
にする上で極めて効果的である。
(Function) Forming laser waveguides and resonators in arbitrary crystal orientations is extremely effective in creating optimal groove structures for optical integrated circuits, especially array-type lasers.

たとえば、モノリシックに集積された複数のレーザの光
軸が1点に交じわるように出来れば、この点をコリメー
トレンズの焦点位置付近に設定すれば光学系を複雑にす
ることなく多機能な光ヘッドを製作できる。さらにレー
ザ光をモニターする光検出器が集積されれば光学系はま
すます単純化される。一方、適切に制御されたドライエ
ツチングは結晶の異方性および鏡面性に優れたエツチン
グ面を形成できる。中でも、リアクティブイオンビーム
エツチング(以下RIBEと略す)は、AlzGa、−
zAsK対して等速にエツチングが進行し垂直かつ、平
滑な面を形成することができる。
For example, if it is possible to make the optical axes of multiple monolithically integrated lasers intersect at a single point, this point can be set near the focal position of the collimating lens to create a multifunctional light beam without complicating the optical system. Heads can be made. Furthermore, if a photodetector for monitoring laser light is integrated, the optical system will become even simpler. On the other hand, properly controlled dry etching can form an etched surface with excellent crystal anisotropy and specularity. Among them, reactive ion beam etching (hereinafter abbreviated as RIBE) is used for etching AlzGa, -
Etching progresses at a constant speed with respect to zAsK, making it possible to form a perpendicular and smooth surface.

したがってRIBEによるエツチング面をレーザの共振
器端面に利用することは半導体レーザの集積化及び量産
性向上に有効な手段となシうる。さらにRIBEは化学
エツチングと異なシ任意の結晶方位に共振器方向を選べ
ることからアレイ型レーザの場合の配置の自由度が広が
ることになる。
Therefore, using the etched surface by RIBE as the resonator end face of a laser can be an effective means for increasing the integration and mass productivity of semiconductor lasers. Furthermore, unlike chemical etching, RIBE allows the resonator direction to be selected in any desired crystal orientation, thereby increasing the degree of freedom in arrangement in the case of an array type laser.

しかし、レーザの導波路は必ずしも任意の結晶方位に選
ぶことは出来ない。これは主に結晶成長技術に制約され
る。たとえば、従来例のような埋め込み型レーザの場合
、液相成長を用いる限シ(100)GaAs基板に対し
て(011:>方向に対してのみ埋め込み型導波路が再
現性よく形成可能である。したがってエツチドミラーを
用いて集積するとしても共振器方向は便来通りに決まっ
てしまう。
However, the laser waveguide cannot necessarily be selected to have an arbitrary crystal orientation. This is primarily constrained by crystal growth techniques. For example, in the case of a conventional buried laser, a buried waveguide can be formed with good reproducibility only in the (011:> direction on a (100) GaAs substrate using liquid phase growth. Therefore, even if an etched mirror is used for integration, the direction of the resonator is determined conventionally.

また、有機金属熱分解成長法(MOCVD法と以下記す
)あるいは分子線エピタキシー法(MBE法と以下記す
)等の成長条件が完全熱平衡状態からずれた成長法では
、結晶方位依存性は小さい。
Further, in growth methods such as metal organic pyrolysis growth method (hereinafter referred to as MOCVD method) or molecular beam epitaxy method (hereinafter referred to as MBE method) in which the growth conditions deviate from a perfect thermal equilibrium state, the dependence on crystal orientation is small.

そのため埋め込み型屈折率光導波路が任意の結晶方位に
形成可能である。
Therefore, a buried refractive index optical waveguide can be formed in any crystal orientation.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

(実施例) 第1図は本発明の一実施例の概略的な構造を示す斜視図
である。GaAs基板101上に5本のレーザ1〜5及
び同数の光検出器11〜15がモノリシックに集積され
、その端面はエツチドミラーで構成されている。レーザ
1〜5及び光検出器11〜15はそれぞれの光導波路で
代表して示しである。レーザの配置は出射面側では互い
[10μm間隔に接近しく発光領域111の中心間隔が
10μm)、光検出器側では50μm間隔に離れた構造
になっておシ、各々のレーザの光軸は前方で1点で交じ
わるよう配置しである。第2図は第1図実施例における
出射面側を拡大して示す図である。レーザ構造はセルフ
ァライン構造と呼ばれる横モード制御型である。その製
造方法は、例えば、nfiGaAs基板200上にn型
A 1 o、45 Gao、1sA3クラッド層(厚さ
2μm)201、n型Alo、ss Gaa、ss A
s活性層(厚さ0.1μm)202、p型Alo、4s
 Goo、is As クラッド層(厚さ0.5μm)
203、n型GaAs光吸収層(厚さ10μm ) 2
04をM OCV D法で順次積層する。次【、フォト
リソグラフィ技術を用いて幅3μmのストライプマスク
を共振器方向VC沿って形成し、ドライエツチング等を
用いてn型クラッド層203に達するまでエツチングを
行う。引続き2回目のMOCVD 法で同基板上にp型
AlGmAgクラッド層(厚さ2μm)205、p型G
aAs  コンタクト層(厚さ2μm)206をエピタ
キシャル成長する。このあとの電極形成及びRIBEに
よる端面を形成する工程等は従来例と同様である。最後
だ各レーザおよび光検出器に必要なコーティングを施し
本発明の実施例は完成する。
(Embodiment) FIG. 1 is a perspective view showing a schematic structure of an embodiment of the present invention. Five lasers 1 to 5 and the same number of photodetectors 11 to 15 are monolithically integrated on a GaAs substrate 101, the end faces of which are constructed of etched mirrors. Lasers 1 to 5 and photodetectors 11 to 15 are shown as representatives of their respective optical waveguides. The lasers are arranged so that they are close to each other at 10 μm intervals on the emission surface side (the center spacing of the light emitting regions 111 is 10 μm), and are spaced apart by 50 μm on the photodetector side, with the optical axis of each laser facing forward. They are arranged so that they intersect at one point. FIG. 2 is an enlarged view of the exit surface side of the embodiment shown in FIG. The laser structure is a transverse mode control type called a self-line structure. The manufacturing method includes, for example, forming an n-type A 1 o, 45 Gao, 1sA3 cladding layer (thickness 2 μm) 201, n-type Alo, ss Gaa, ss A on an nfiGaAs substrate 200.
s active layer (thickness 0.1 μm) 202, p-type Alo, 4s
Goo, is As cladding layer (thickness 0.5μm)
203, n-type GaAs light absorption layer (thickness 10 μm) 2
04 are sequentially stacked using the MOCVD method. Next, a stripe mask with a width of 3 μm is formed along the cavity direction VC using photolithography, and etching is performed using dry etching or the like until the n-type cladding layer 203 is reached. Subsequently, a p-type AlGmAg cladding layer (thickness 2 μm) 205 and a p-type G
An aAs contact layer (2 μm thick) 206 is epitaxially grown. The subsequent steps of forming electrodes and forming end faces by RIBE are the same as in the conventional example. Finally, each laser and photodetector is coated with the necessary coatings to complete the embodiment of the present invention.

なお、本実施例の場合、セルファラインをの横モード制
御型のレーザを用いたが、本発明の複合光半導体発光装
置は他の構造で任意の素子数で構成することも可能であ
る。
In the case of this embodiment, a transverse mode control type laser was used for the self-line, but the composite optical semiconductor light emitting device of the present invention can also be constructed with other structures and an arbitrary number of elements.

(発明の効果) 本発明の効果は複数のレーザ及び複数の光検出器を単純
な光学系で利用できる点に、ある。例えば上記実施例の
場合5本のレーザ及び同数の光検出器を集積した例を示
したが従来2本のレーザで行っていたディスクの読み書
きを5本のレーザで行うととKよりアクセス時間を大幅
に短縮することができる。また、アレイ型レーザを扇状
に配置したことばよりレーザの駆動電流による熱の放散
を大きくする効果もある。
(Effects of the Invention) An advantage of the present invention is that a plurality of lasers and a plurality of photodetectors can be used in a simple optical system. For example, in the above embodiment, an example was shown in which five lasers and the same number of photodetectors were integrated, but if the reading and writing of a disk, which was conventionally done with two lasers, is done with five lasers, the access time will be longer than K. It can be significantly shortened. Furthermore, it has the effect of increasing heat dissipation due to the laser drive current compared to arranging the array type lasers in a fan shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概略的な構造を示す斜視図
、第2図はその出射端面部の拡大図、第3図は従来例の
概略的な構造を示す斜視図である。 1〜5・・・レーザ、11〜15・・・光検出器、10
1・・・n型GaAs基板、111・・・発光領域、2
00・・・nmGaAs 基板、201・・・n型Al
o4sGaossAsクラッド層、202・・・アンド
ープA 1G 1 lG!LoasAs活性層、203
.205=−p型A 1 o 4sGaossA8クラ
ッド層、204−n型GaAs光吸収層、206・・・
p型GaAs  コンタクト層、207 ・・・正電極
、300・・・n型GaAs 基板、301”・n凰A
le1@ GJLO,I! Asクラッド層、302”
n型Alo、go Gae、yo As 光ガイド層、
303 ・・・アンドープAlO,1s Gas、as
 As活性層、304=p型Alo、go Gao、s
o As中間層、305”’p型Alo、sa Gao
、ay Asクラッド層、306−・・p型GaAs 
コンタクト層、307・・・p型Alo、1sGao、
、、t Asブロック層、308・・・n型A 16,
36Gao、a*As埋め込み層、309・・・拡散フ
ロント、310.311・・・レーザ用正電極、312
.313・・・レーザ用光検出器用正電極、314・・
・負電極。 代理人 弁理士 本 庄 伸 介 第1図 第2図 第3図
FIG. 1 is a perspective view showing a schematic structure of an embodiment of the present invention, FIG. 2 is an enlarged view of its output end face, and FIG. 3 is a perspective view showing a schematic structure of a conventional example. 1-5... Laser, 11-15... Photodetector, 10
1... n-type GaAs substrate, 111... light emitting region, 2
00...nm GaAs substrate, 201...n-type Al
o4sGaossAs cladding layer, 202...Undoped A 1G 1 lG! LoasAs active layer, 203
.. 205=-p-type A 1 o 4s Gaoss A8 cladding layer, 204-n-type GaAs light absorption layer, 206...
p-type GaAs contact layer, 207...positive electrode, 300...n-type GaAs substrate, 301"・n-A
le1@GJLO,I! As cladding layer, 302”
n-type Alo, go Gae, yo As light guide layer,
303...Undoped AlO, 1s Gas, as
As active layer, 304 = p-type Alo, go Gao, s
o As middle layer, 305''' p-type Alo, sa Gao
, ay As cladding layer, 306-...p-type GaAs
Contact layer, 307...p-type Alo, 1sGao,
,,t As block layer, 308...n type A 16,
36Gao, a*As buried layer, 309...diffusion front, 310.311...positive electrode for laser, 312
.. 313...Positive electrode for laser photodetector, 314...
・Negative electrode. Agent Patent Attorney Shinsuke Honjo Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 複数の半導体レーザ及び複数の光検出器をモノリシック
に集積してなる複合光半導体発光装置において、前記半
導体レーザは前方で光軸が1点で交じわるよう配置して
あり、前記光検出器は前記半導体レーザの光軸に沿つて
それら半導体レーザの後方に配置してあることを特徴と
する複合光半導体発光装置。
In a composite optical semiconductor light emitting device formed by monolithically integrating a plurality of semiconductor lasers and a plurality of photodetectors, the semiconductor lasers are arranged so that their optical axes intersect at one point in front, and the photodetector is arranged such that their optical axes intersect at one point. A composite optical semiconductor light emitting device characterized in that the semiconductor laser is disposed behind the semiconductor lasers along the optical axis thereof.
JP61235939A 1986-10-03 1986-10-03 Composite optical semiconductor light emitting device Pending JPS6390877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61235939A JPS6390877A (en) 1986-10-03 1986-10-03 Composite optical semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61235939A JPS6390877A (en) 1986-10-03 1986-10-03 Composite optical semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS6390877A true JPS6390877A (en) 1988-04-21

Family

ID=16993463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61235939A Pending JPS6390877A (en) 1986-10-03 1986-10-03 Composite optical semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS6390877A (en)

Similar Documents

Publication Publication Date Title
JPH06104535A (en) Multibeam semiconductor laser
EP0100242B1 (en) Optical system for a laser
US4905252A (en) Ring laser cavities
JPH10117U (en) Apparatus with laser and its output power detector
JPS6390877A (en) Composite optical semiconductor light emitting device
JPS61296785A (en) Semiconductor laser array device
JP2846668B2 (en) Broad area laser
JPS6387780A (en) Array type semiconductor laser device
JPH03196689A (en) Semiconductor laser
JPS61280693A (en) Complex semiconductor laser
JPH04199133A (en) Optical amplifier and optical integrated circuit
JPS6079791A (en) Semiconductor laser
JPS63200591A (en) Semiconductor laser device and manufacture thereof
JPS61290788A (en) Semiconductor laser device and manufacture thereof
JPS60227490A (en) Semiconductor laser
JPS63164286A (en) Semiconductor laser array device
JP3238734B2 (en) Optical semiconductor device
JPH01273378A (en) Semiconductor laser device
JP3131497B2 (en) Optical head device
JPH01175280A (en) Semiconductor laser array device
JPS6191988A (en) Semiconductor laser
JPS63215088A (en) Semiconductor laser array device
JPH0667070A (en) Semiconductor laser module
JPH0294684A (en) Semiconductor laser and laser array
JPH01120082A (en) Semiconductor laser integrated device