JPS639031B2 - - Google Patents

Info

Publication number
JPS639031B2
JPS639031B2 JP14721979A JP14721979A JPS639031B2 JP S639031 B2 JPS639031 B2 JP S639031B2 JP 14721979 A JP14721979 A JP 14721979A JP 14721979 A JP14721979 A JP 14721979A JP S639031 B2 JPS639031 B2 JP S639031B2
Authority
JP
Japan
Prior art keywords
plating
bath
concentration
layer
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14721979A
Other languages
Japanese (ja)
Other versions
JPS5672195A (en
Inventor
Yoshio Shindo
Mitsuo Tanaka
Koichi Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14721979A priority Critical patent/JPS5672195A/en
Publication of JPS5672195A publication Critical patent/JPS5672195A/en
Publication of JPS639031B2 publication Critical patent/JPS639031B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は鋼板表面にZnメツキし、次いで亜硫
酸を含む硫酸Mnメツキ浴にてMnメツキするZn
−Mn二層メツキ方法に関するもので、Znメツキ
層上にMn電気メツキした二層メツキをすること
によつて金属光沢を有する加工性、溶接性の劣化
しない耐食性の優れたメツキ鋼板を得ることを目
的とするものである。 従来Mnを陰極で析出させる方法については電
解による金属Mnの製造方法が古くから知られて
いる。また、Znメツキ鋼板若しくは金属Znの表
面に薄い金属皮膜を析出させる技術に関する報告
として従来からの提案としてロダン塩添加による
Mnメツキ浴によるMnメツキする方法があるが、
このロダン塩添加による場合にはMnメツキ終了
時に青紫色等の着色が生じ、しかもMnメツキ浴
のダンピング又は排水中に含まれるメツキ浴中の
ロダンの分解処理を必要とする。これらの欠点を
解決すべく種々検討した結果、本発明はこの解決
手段としてMnメツキ浴への添加物とメツキ方法
を規制することによつて最適なZn−Mn二層メツ
キ鋼板を提供することにある。その要旨は鋼板表
面に非シアン浴にて1〜30g/m2の亜鉛を電析さ
せ、次いで亜硫酸イオン0.5g/以上、全硫酸
根濃度25〜250g/、全多価Mn濃度10g/
以下よりなる硫安を支持塩とするメツキ浴で電気
メツキにてMn付着量5〜30g/m2を付着させた
Zn−Mn二層メツキ方法にある。すなわち本発明
である下層となるZn層メツキは、まず鋼板を脱
脂、酸洗処理した後、非シアン浴である硫酸浴、
塩化浴、ホウフツ化浴、ジンケート浴、及びピロ
リン酸浴を用い、1〜30g/m2のZnの電析層を
形成させ、次いでMnを亜硫酸イオンを0.5g/
以上、全硫酸根濃度5〜500g/、全多価Mn
濃度10g/以下よりなる硫安を支持塩とするメ
ツキ浴で電析させるとMnメツキ層5〜30g/m2
でMnメツキ層とZnメツキ層間の密着性の良いも
のが得られ、かつ析出外観の優れたものが得られ
る。 而して本発明に係る亜硫酸イオンを0.5g/
以上Mnメツキ浴中に添加したことが本発明の最
大の特徴であつて、従来のロダン塩添加の場合は
亜鉛メツキした表面上にMnメツキをするときに
陽極でロダンSCN-イオンを酸化消耗することに
よりMnが酸化し、二酸化マンガンになるのを抑
制しつつMnメツキをするものであるが、本発明
にあつては、二酸化マンガンの生成を抑制するの
ではなく、Mnメツキするときに陽極で生成した
二酸化マンガンもしくは多価イオンを亜硫酸イオ
ンにて還元し2価のMnイオンにすることによつ
て不メツキ現象を押さえて亜鉛メツキ表面上に付
着させるものである。このための還元作用を働ら
かせるために亜硫酸イオンの添加量は0.5g/
以上必要である。この最適添加量としては0.5
g/〜50g/がよい。また電流効率を60%付
近に維持させるためには、電流密度を2000A/m2
以上とし、かつ全硫酸根濃度25〜250g/で2
価のMnイオン濃度を10〜100g/、全多価マ
ンガン濃度を10g/以下に保つ。この際均一電
析維持のためには、特にカリウムイオンを支持塩
の硫安によるアンモニウムイオンと共に存在させ
ると良好である。 また分割電析を行なう場合、メツキ浴による
Mnメツキ面が、前述の如く酸化、溶解が発生
し、Mnメツキ効率が低下するのみならず、表面
が黒化し、耐食性も劣化する。このための対策と
して、Mnの多価イオン増加を防ぐため、亜硫酸
0.5g/以上加え、かつ通電入槽、及び通電出
槽にてMnメツキを行なう必要がある。すなわち
通電入槽とは、Mnの析出電位以下より負の電位
の電圧が加わつた状態でMnメツキ液中に入れる
ことで、Mnの薄い析出層の様に特に反応性の高
い場合、効果があることを見い出したものであ
り、特に電流効率を高く、良好なMnメツキ外観
をZnメツキ上に得るには重要な技術である。 又、通電出槽とは、メツキ仕上後メツキ槽から
出る際、Mn析出電位よりも負の電位に保ち、自
然溶解をふせぎながら水洗槽に導びくことを意味
するもので、特に切板メツキの場合、設備的に本
条件にそつた対策が必要である。 又全硫酸根濃度としては、Pt電極、Ptメツキ
Ti電極、ルテニユウム、ロジユーム、インジユ
ーム処理Ptメツキ電極等Pt系電極を始めとして、
フエライト電極、マグネタイト電極といつた酸化
物電極及び鉛合金電極、或いはカーボン電極を陽
極とした場合、電極表面に析出するMnO2等、
Mn酸化物を浴中でSO2- 2イオンで還元出来る様に
するため、25〜250g/の範囲が良好である。
特に極間10cm以下にする、電気メツキではMnO2
の陽極での発生及び成長は、均一析出、押し傷の
観点から、PHとともに重要で、PH3.0の場合、押
し傷発生数に対するSO2- 4濃度の効果は第1図の
1(押し傷発生数10m2当り)に、又均一Mnメツ
キ性に対するSO2- 4濃度の効果は第1図の2 (付着量分布=(平均値より30%厚く、もしく
は薄くメツキされた面積)/(全Mnメツキ表面積)×10
0) のごとくなる。すなわちSO2- 4濃度が25g/未
満又250g/超えると曲線1の如く押し傷発生
数が増加し、また曲線2の如く付着量分布%が増
加する。 次に全多価Mn濃度(Mn3+〜Mn7+)を10g/
以下にする理由は、仕上り外観を良好に保つと
同時に不メツキをさけることを目的とするもので
ある。電極近傍で発生する多価Mnイオン(Mn3+
〜Mn7+)は、電解による金属Mn製造工程ではPH
と隔膜を使用して陰極への移動が阻止されてい
る。しかしメツキでは、溶液が激しく撹拌される
ため陰極(Mnメツキ面)への接触をふせぐこと
は出来ない。 この対策として溶液中で多価Mn濃度(Mn3+
Mn7+)をSO2で還元するか該多価Mnの全濃度が
10g/を越すと複雑な不溶性Mn酸化物及び水
酸化物が生成し、仕上外観や電流効率が低下し、
かつピンホール数も増加する。 以上述べたMnメツキ方法に従つてZnメツキ上
にMnを析出させるが、その際Znメツキ厚みは1
〜30g/m2にする。Znメツキを中間層としてあ
らかじめほどこす理由は、(1)亜鉛の水素化電圧が
高いこと、(2)加工時のMnメツキ剥離を押える、
(3)腐食に対するガルバニツク作用のコントロール
を目的としていることにある。よつてZnの付着
量は均一なZn析出層を形成し、かつ均一なMn析
出が可能で、加工中のMnメツキ層剥離が押えら
れる1g/m2以上、水素吸蔵やメツキ層内部応力
等によつて時効剥離を起こさぬ30g/m2以下とす
る。 さらに、高電流密度で、安定したMnの析出効
率を維持するためにはMn++の濃度は10〜100
g/の範囲が良く、10g/以下では電流効率
が急激に低下し、100g/を越すと、電極表面
でMnO2、Mn(OH)2、MnSO4等の混じつた析出
物が発生し、電流が流れにくくなると同時に、こ
の沈降物による押傷が発生する。又、浴のPHは通
常の金属Mn製造法の高PHとことなり、PH=2.0〜
4.5と低い値の範囲にしないと、電極で発生した
MnO2やMn3+等を、溶液中で高速還元出来ない。
ただし、PH=2.0よりも低くくすると電流効率が
いちぢるしく低下する。更に電流密度としては、
2500A/m2までの範囲では高い方が良好だが、陽
極での沈殿物発生や、メツキ表面の肌荒れがある
ため2000A/m2〜15000A/m2の範囲が良い。 なお、本発明でのMnメツキ浴中のアンモニウ
ムイオンは10g/以上が好ましく、かつLi、
K、Na、アミン等異種イオンを添加する場合
NH+ 4/異種アルカリイオンの比は重量比で0.1以
上が必要である。 以下、本発明の実施例を示す。 実施例 1 鋼板(10cm×18cm、板厚0.8mm、メツキ用原板)
を3%のNaOH及びSiO2分で0.2%のオルソ・ケ
イ酸ソーダを含む脱脂液にて60℃×1分脱脂し、
次に50℃の5%H2SO4溶液中で15秒間酸洗し、
水洗後、0.1%NaOH溶液で中和し、更に水洗後
浴温50℃、ZnSO4・7H2O200g/、
Na2SO4100g/、を含み、H2SO4にてPH=1.3
に調整した亜鉛メツキ浴で、電流密度60A/dm2
でZnを10g/m2、両面にメツキした。 次いで、水洗後、MnSO4・H2O120g/、
(NH42SO468g/、K2SO410g/、亜硫酸
イオン5.1g/を含み、かつ多価マンガン濃度
0.4g/KOH、H2SO4にてPH=3.5に調整したも
のをメツキ浴として、極間距離5cmにて、該Zn
メツキを完了した鋼板にあらかじめ、負の20Vの
電圧を加えて、通電入槽法で、Mnを電流密度
40A/dm2(4000A/m2)にて11g/m2電析さ
せ、水洗、乾燥した。Mnメツキ浴の液量を3
に固定して3000枚を連続的にメツキしたところ第
1表に示すごとき電流効率の変化が記録された。
The present invention involves Zn plating on the surface of a steel plate, and then Mn plating in a sulfuric acid Mn plating bath containing sulfurous acid.
- Concerning the Mn double-layer plating method, it is possible to obtain a galvanized steel sheet with metallic luster and excellent corrosion resistance without deterioration of workability and weldability by performing two-layer plating of Mn electroplating on a Zn plating layer. This is the purpose. Conventionally, as a method for depositing Mn at a cathode, a method for producing metal Mn by electrolysis has been known for a long time. In addition, as a report on the technology for depositing a thin metal film on the surface of Zn-plated steel sheets or metal Zn, a conventional proposal was made by adding Rodan salt.
There is a method of Mn plating using a Mn plating bath.
When this rhodan salt is added, coloration such as bluish-purple occurs upon completion of Mn plating, and furthermore, it is necessary to dump the Mn plating bath or to decompose the rhodan contained in the waste water in the plating bath. As a result of various studies to solve these drawbacks, the present invention provides an optimal Zn-Mn double-layer plated steel sheet by regulating the additives to the Mn plating bath and the plating method. be. The gist of the method is to electrodeposit 1 to 30 g/ m2 of zinc on the steel plate surface in a non-cyanide bath, then sulfite ions of 0.5 g/m or more, total sulfate concentration of 25 to 250 g/m, and total polyvalent Mn concentration of 10 g/m2.
A Mn deposition amount of 5 to 30 g/m 2 was deposited by electroplating in a plating bath using ammonium sulfate as a supporting salt consisting of the following:
It is a Zn-Mn double layer plating method. In other words, in the plating of the lower Zn layer according to the present invention, the steel plate is first degreased and pickled, and then treated with a sulfuric acid bath, which is a non-cyanide bath.
Using a chloride bath, a hofusing bath, a zincate bath, and a pyrophosphoric acid bath, an electrodeposited layer of 1 to 30 g/m 2 of Zn was formed, and then Mn and sulfite ions were deposited at 0.5 g/m 2 .
Above, total sulfate concentration 5-500g/, total polyvalent Mn
When electrodeposited in a plating bath using ammonium sulfate as a supporting salt at a concentration of 10 g/m or less, a Mn plating layer of 5 to 30 g/m 2 is formed.
With this method, a product with good adhesion between the Mn plating layer and the Zn plating layer and an excellent appearance of the precipitation can be obtained. Therefore, the sulfite ion according to the present invention is 0.5g/
The greatest feature of the present invention is that Mn is added to the plating bath, and in the case of conventional Rodan salt addition, when Mn is plated on a galvanized surface, Rodan SCN - ions are oxidized and consumed at the anode. This method performs Mn plating while suppressing the oxidation of Mn to become manganese dioxide. However, in the present invention, rather than suppressing the production of manganese dioxide, Mn plating is performed at the anode during Mn plating. The produced manganese dioxide or multivalent ions are reduced with sulfite ions to form divalent Mn ions, thereby suppressing the unplating phenomenon and allowing them to adhere to the galvanized surface. To achieve this reduction effect, the amount of sulfite ion added is 0.5g/
The above is necessary. The optimal addition amount is 0.5
g/~50g/ is good. In addition, in order to maintain the current efficiency around 60%, the current density must be 2000A/m 2
or more, and the total sulfate concentration is 25 to 250 g/2
Keep the valent Mn ion concentration at 10 to 100 g/, and the total polyvalent manganese concentration at 10 g/or less. At this time, in order to maintain uniform electrodeposition, it is especially good to have potassium ions present together with ammonium ions formed by ammonium sulfate as a supporting salt. In addition, when performing split electrodeposition, a plating bath is used.
As mentioned above, the Mn plating surface undergoes oxidation and dissolution, which not only reduces the Mn plating efficiency, but also causes the surface to blacken and deteriorate corrosion resistance. As a countermeasure for this, in order to prevent an increase in multivalent ions of Mn, sulfite
It is necessary to add 0.5 g or more and perform Mn plating in an energized input tank and an energized output tank. In other words, energizing is the process of placing the material into the Mn plating solution while applying a voltage with a negative potential below the Mn deposition potential. This is effective in cases where the Mn deposition layer is particularly highly reactive, such as a thin deposited layer. This is an important technology for achieving high current efficiency and good Mn plating appearance on Zn plating. In addition, the energized tank means that when leaving the plating tank after plating, it is kept at a potential more negative than the Mn deposition potential and guided to the washing tank while preventing natural dissolution. In such cases, it is necessary to take measures that meet these conditions in terms of equipment. In addition, as for the total sulfate concentration, Pt electrode, Pt plating
Including Pt-based electrodes such as Ti electrodes, ruthenium, rhodium, and indium-treated Pt plating electrodes,
When using oxide electrodes such as ferrite electrodes, magnetite electrodes, lead alloy electrodes, or carbon electrodes as anodes, MnO 2 etc. precipitate on the electrode surface.
In order to enable the Mn oxide to be reduced by SO 2-2 ions in the bath, a range of 25 to 250 g/g is good.
In particular, the distance between electrodes should be 10 cm or less, and MnO 2 should be used in electroplating.
The generation and growth of SO 2-4 at the anode is important from the viewpoint of uniform precipitation and pressure scratches, as well as pH . In the case of pH 3.0, the effect of SO 2-4 concentration on the number of pressure scratches is 1 (pressure scratches) in Figure 1. The effect of SO 2- 4 concentration on the number of occurrences per 10 m 2 and on the uniform Mn plating property is shown in Figure 1 as follows: 2 (Deposition amount distribution = (area plated 30% thicker or thinner than the average value) / (total plated area) Mn plating surface area)×10
0) becomes as follows. That is, when the SO 2-4 concentration is less than 25g/ or more than 250g/, the number of scratches increases as shown by curve 1, and the % adhesion weight distribution increases as shown by curve 2. Next, the total polyvalent Mn concentration (Mn 3+ ~Mn 7+ ) was determined at 10 g/
The reason for the following is to maintain a good finished appearance and at the same time avoid defects. Multivalent Mn ions (Mn 3+
~Mn 7+ ) is PH in the electrolytic Mn manufacturing process.
A diaphragm is used to prevent migration to the cathode. However, in plating, since the solution is vigorously stirred, contact with the cathode (Mn plating surface) cannot be prevented. As a countermeasure for this, the multivalent Mn concentration (Mn 3+ ~
Mn 7+ ) is reduced with SO 2 or the total concentration of polyvalent Mn is
If the amount exceeds 10g/, complex insoluble Mn oxides and hydroxides will be generated, resulting in a decrease in finished appearance and current efficiency.
Moreover, the number of pinholes also increases. Mn is deposited on the Zn plating according to the Mn plating method described above, but the thickness of the Zn plating is 1
~30g/ m2 . The reasons for applying Zn plating in advance as an intermediate layer are: (1) the hydrogenation voltage of zinc is high; (2) it prevents the Mn plating from peeling off during processing;
(3) The purpose is to control galvanic action against corrosion. Therefore, the amount of Zn deposited is 1 g/m2 or more , which forms a uniform Zn precipitated layer, enables uniform Mn precipitation, and suppresses peeling of the Mn plating layer during processing, and prevents hydrogen absorption and internal stress of the plating layer. It should be 30g/m 2 or less so that it does not peel off due to aging. Furthermore, to maintain stable Mn deposition efficiency at high current density, the Mn ++ concentration must be between 10 and 100.
A good range of g/ is below 10 g/, the current efficiency decreases rapidly, and when it exceeds 100 g/, precipitates mixed with MnO 2 , Mn(OH) 2 , MnSO 4 etc. are generated on the electrode surface, and the current It becomes difficult to flow, and at the same time, pressure injuries caused by this sediment occur. In addition, the PH of the bath is different from the high PH of the normal metal Mn production method, and is PH = 2.0 ~
If the value is not in the low value range of 4.5, the
MnO 2 , Mn 3+ , etc. cannot be reduced rapidly in solution.
However, if the pH is lower than 2.0, the current efficiency will drop significantly. Furthermore, the current density is
In the range of up to 2500 A/m 2 , a higher value is better, but since precipitation occurs on the anode and the plating surface becomes rough, a range of 2000 A/m 2 to 15000 A/m 2 is better. In addition, the ammonium ion in the Mn plating bath in the present invention is preferably 10 g/or more, and Li,
When adding different ions such as K, Na, amine, etc.
The ratio of NH + 4 /different alkali ions must be 0.1 or more by weight. Examples of the present invention will be shown below. Example 1 Steel plate (10cm x 18cm, plate thickness 0.8mm, original plate for plating)
was degreased for 1 minute at 60°C with a degreasing solution containing 3% NaOH and SiO for 2 minutes and 0.2% sodium orthosilicate.
Then pickled in 5% H2SO4 solution at 50 °C for 15 seconds ,
After washing with water, neutralize with 0.1% NaOH solution, and after washing with water, bath temperature is 50℃, ZnSO 4 7H 2 O 200g/,
Contains Na 2 SO 4 100g/, PH=1.3 at H 2 SO 4
Current density 60A/dm 2 in a galvanizing bath adjusted to
Both sides were plated with 10 g/m 2 of Zn. Then, after washing with water, 120 g of MnSO 4 H 2 O/,
Contains (NH 4 ) 2 SO 4 68g/, K 2 SO 4 10g/, sulfite ion 5.1g/, and polyvalent manganese concentration
Using 0.4 g/KOH, adjusted to pH=3.5 with H 2 SO 4 as a plating bath, the Zn
A negative 20V voltage is applied to the plated steel plate in advance, and the Mn is removed at a current density using the energizing bath method.
11 g/m 2 was electrodeposited at 40 A/dm 2 (4000 A/m 2 ), washed with water, and dried. Increase the liquid volume of the Mn plating bath to 3
When 3,000 sheets were plated continuously with the current efficiency fixed at

【表】 比較のために該Znメツキ完了した鋼板を、
MnSO4・H2O120g/、(NH42SO468g/、
亜硫酸イオンをまつたく含まぬ(0.01g/以
下)、かつ多価マンガンイオン1.0g/、KOH
及びH2SO4にてPH=3.5に調整したものをMnメツ
キ浴として、極間距離5cmにて、あらかじめ負の
20Vの電圧を加えて通電入槽法で、Mnを電流密
度40A/dm2、(4000A/m2)にて11g/m2電析
させ、水洗、乾燥した。Mnメツキ浴の液量を3
に固定して、3000枚を連続的にメツキしたとこ
ろ第2表に示すごとき電流効率の変化が記録され
た。
[Table] For comparison, the Zn-plated steel plate is
MnSO 4 H 2 O 120g/, (NH 4 ) 2 SO 4 68g/,
Contains no sulfite ions (0.01g/or less) and polyvalent manganese ions 1.0g/, KOH
The pH was adjusted to 3.5 with H 2 SO 4 and used as a Mn plating bath.
Mn was electrodeposited at 11 g/m 2 at a current density of 40 A/dm 2 (4000 A/m 2 ) by applying a voltage of 20 V by the current bath method, followed by washing with water and drying. Increase the liquid volume of the Mn plating bath to 3
When 3,000 sheets were plated continuously with the current efficiency fixed at , the changes in current efficiency as shown in Table 2 were recorded.

【表】【table】

【表】 実施例 2 実施例1の方法に従い、Znメツキを施こされ
た該Znメツキ完了鋼板を、同じく実施例1に記
載したMnメツキ浴にてMnメツキする際、通電
入槽のかわりに入槽通電を行なうと、第3表に示
す結果が得られた。
[Table] Example 2 When the Zn-plated steel sheet that has been Zn-plated according to the method of Example 1 is Mn-plated in the Mn-plating bath also described in Example 1, instead of the energizing bath. When the tank was energized, the results shown in Table 3 were obtained.

【表】 実施例 3 実施例1に示す方法で、Zn−Mn2層メツキを
する際Znメツキ量を通電時間を変えて、1g/
m2〜50g/m2の範囲でふらした後、さらにMnメ
ツキ量も変えて試験片を試作した。すると第4表
に示す様な、メツキ付着量と加工性、外観、電流
効率の関係が得られた。
[Table] Example 3 When performing Zn-Mn two-layer plating using the method shown in Example 1, the amount of Zn plating was changed to 1 g/
After swinging in the range of m 2 to 50 g/m 2 , test pieces were made by changing the amount of Mn plating. As a result, the relationship between the plating amount, workability, appearance, and current efficiency as shown in Table 4 was obtained.

【表】【table】

【表】 ◎ 良好 ○ 普通 △ やや劣る × 悪し
実施例 4 鋼板(10cm×18cm、板厚0.8mm、メツキ用原板)
を3%のNaOH及びSiO2分で0.2%のオルソ・ケ
イ酸ソーダを含む脱脂液にて60℃で1分間脱脂
し、次に50℃の5%H2SO4溶液中で15秒間酸洗
し、水洗後、0.1%NaOH溶液にて中和し、水洗
後、次の第5表に示すZnメツキ浴で片面につき
10g/m2を夫々メツキした。
[Table] ◎ Good ○ Fair △ Slightly poor × Bad Example 4 Steel plate (10cm x 18cm, thickness 0.8mm, original plate for plating)
was degreased in a degreasing solution containing 3% NaOH and SiO for 2 min at 60 °C containing 0.2% sodium ortho-silicate for 1 min, then pickled for 15 s in a 5% H 2 SO 4 solution at 50 °C. After washing with water, neutralize with 0.1% NaOH solution, and after washing with water, coat one side with Zn plating bath shown in Table 5 below.
Each plate was plated at 10 g/m 2 .

【表】 (*1 シアン化ナトリウム無添加浴)
Znメツキを完了した夫々の試片は、次に第6
表に示すMnメツキ浴で10g/m2Mnメツキを行
なつたところ第7表に示した電流効率への影響が
起つた。
[Table] (*1 Sodium cyanide-free bath)
Each specimen that has undergone Zn plating is then
When 10 g/m 2 Mn plating was performed using the Mn plating bath shown in the table, the effects on the current efficiency shown in Table 7 occurred.

【表】【table】

【表】【table】

【表】 又、Znメツキ層上に析出した、Mnメツキ層の
密着性は第8表に示す通りである。本発明のメツ
キ方法に従がう、A、B、C、D、E浴による、
ロ、ハ、へのメツキ条件によれば外観が良好で、
しかもMnメツキ層とZnメツキ層の密着性が充分
な加工性に優れたMn/Zn2層メツキ鋼板が、高
電流効率で製造されることが示されている。 実施例 5 実施例1に従いZnを10g/m2メツキした鋼板
を第9表に示す、亜硫酸根濃度のことなる7種類
のMnメツキ浴で4000A/m2の電流密度でMnメツ
キしたところ、第9表に示す性能のMnメツキ鋼
板が、Mn付着量に応じて得られた。耐食性の評
価は、クロム酸25g/溶液に5秒間浸漬した
後、塩水噴霧試験で評価した。評価基準は赤錆50
%発生までの時間とした。 ◎は1000時間以上、〇は800〜1000時間、△は
500〜800時間、×は500時間以下、又×〜△は試片
によつてバラツキが多く、×と△のものがほぼ半
数づつあることを示している。
[Table] Table 8 also shows the adhesion of the Mn plating layer deposited on the Zn plating layer. By A, B, C, D, E baths according to the plating method of the present invention,
According to the plating conditions for B, C, the appearance is good,
Furthermore, it has been shown that a Mn/Zn double-layer plated steel sheet with excellent workability and sufficient adhesion between the Mn plated layer and the Zn plated layer can be manufactured with high current efficiency. Example 5 A steel plate plated with 10 g/m 2 of Zn according to Example 1 was plated with Mn at a current density of 4000 A/m 2 in seven types of Mn plating baths with different concentrations of sulfite radicals shown in Table 9. Mn-plated steel sheets with the performance shown in Table 9 were obtained depending on the amount of Mn deposited. Corrosion resistance was evaluated by a salt spray test after immersion in 25 g of chromic acid/solution for 5 seconds. Evaluation standard is red rust 50
% time to occurrence. ◎ means 1000 hours or more, 〇 means 800-1000 hours, △ means
500 to 800 hours, x indicates 500 hours or less, and x to △ has a large variation depending on the sample, with approximately half of the samples being x and △.

【表】【table】

【表】 *1…(沈殿発生)
[Table] *1…(Precipitation occurs)

【図面の簡単な説明】[Brief explanation of the drawing]

図面は全硫酸根濃度に対する押し傷発生数及び
Mn付着量分布の関係を示す図である。
The figure shows the number of pressure injuries and the total sulfate root concentration.
FIG. 3 is a diagram showing the relationship between Mn adhesion amount distribution.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼板表面に非シアン浴にて1〜30g/m2の亜
鉛を電析させ、次いで、亜硫酸イオン0.5g/
以上、全硫酸根濃度25〜250g/、全多価Mn
濃度10g/以下よりなる硫安を支持塩とするメ
ツキ浴で電気メツキにてMn付着量5〜30g/m2
を付着させることを特徴とする亜硫酸添加硫酸
Mnメツキ浴によるZn−Mn二層メツキ方法。
1 Electrodeposit 1 to 30 g/m 2 of zinc on the steel plate surface in a non-cyanide bath, then 0.5 g/m 2 of sulfite ion.
Above, total sulfate concentration 25-250g/, total polyvalent Mn
Mn deposition amount is 5 to 30 g/m 2 by electroplating in a plating bath using ammonium sulfate as a supporting salt at a concentration of 10 g/m or less.
Sulfuric acid added with sulfite characterized by adhering to
Zn-Mn double layer plating method using Mn plating bath.
JP14721979A 1979-11-14 1979-11-14 Plating method for forming zn-mn double layer with mn sulfate bath by addition of sulfurous acid Granted JPS5672195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14721979A JPS5672195A (en) 1979-11-14 1979-11-14 Plating method for forming zn-mn double layer with mn sulfate bath by addition of sulfurous acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14721979A JPS5672195A (en) 1979-11-14 1979-11-14 Plating method for forming zn-mn double layer with mn sulfate bath by addition of sulfurous acid

Publications (2)

Publication Number Publication Date
JPS5672195A JPS5672195A (en) 1981-06-16
JPS639031B2 true JPS639031B2 (en) 1988-02-25

Family

ID=15425257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14721979A Granted JPS5672195A (en) 1979-11-14 1979-11-14 Plating method for forming zn-mn double layer with mn sulfate bath by addition of sulfurous acid

Country Status (1)

Country Link
JP (1) JPS5672195A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043230A (en) * 1990-05-11 1991-08-27 Bethlehem Steel Corporation Zinc-maganese alloy coated steel sheet

Also Published As

Publication number Publication date
JPS5672195A (en) 1981-06-16

Similar Documents

Publication Publication Date Title
US4601957A (en) Method for producing a thin tin and nickel plated steel sheet for welded can material
US4464232A (en) Production of one-side electroplated steel sheet
EP0092342B1 (en) Method for producing a steel strip having an excellent phosphate-coating property
US20010054557A1 (en) Electroplating of metals using pulsed reverse current for control of hydrogen evolution
KR890001107B1 (en) Process for preparing zn - fe base alloy electroplated steel strips
US3989604A (en) Method of producing metal strip having a galvanized coating on one side
JPH08120499A (en) Surface treatment of copper foil for printed circuit by in-liquid current collection
US4713301A (en) Sn-based multilayer coated steel strip having improved corrosion resistance, weldability and lacquerability
JPS639031B2 (en)
JPS6028918B2 (en) Post-treatment method for non-plated side of single-sided zinc-based electroplated steel sheet
JPS634635B2 (en)
US5000828A (en) Process for producing one-side electrogalvanized steel sheet with distinguished susceptibility to phosphate salt treatment and distinguished appearance on the non-electrogalvanized side
JPS58210194A (en) Production of surface treated steel plate
JPH0213039B2 (en)
JPS58133395A (en) After-treatment of uncoated surface of single-surface zinc-electroplated steel sheet
KR102524705B1 (en) Method of producing surface-treated steel sheet and surface-treated steel sheet
JPS59129793A (en) Steel sheet electroplated with zn-ni on one side and its production
JP3537255B2 (en) Electrode for electrolysis
JPH0369996B2 (en)
JPH05279891A (en) Method for electrogalvanizing aluminum strip and device therefor
JPS61163292A (en) One-side electroplating method
JPS6213595A (en) Production of one-side electroplated steel sheet
JP2610979B2 (en) Method for producing electrolytic chromated steel sheet having excellent corrosion resistance, surface color and weldability
JPH0678600B2 (en) Uniform electrolytic chromate treatment method for galvanized steel sheet
JPH06280088A (en) Galvanized aluminum and aluminum alloy excellent in adhesion property and production thereof