JPS639015A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS639015A
JPS639015A JP15317986A JP15317986A JPS639015A JP S639015 A JPS639015 A JP S639015A JP 15317986 A JP15317986 A JP 15317986A JP 15317986 A JP15317986 A JP 15317986A JP S639015 A JPS639015 A JP S639015A
Authority
JP
Japan
Prior art keywords
layer
thickness
lower layer
magnetic
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15317986A
Other languages
Japanese (ja)
Other versions
JPH0754563B2 (en
Inventor
Mitsuru Takai
充 高井
Koji Kobayashi
康二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61153179A priority Critical patent/JPH0754563B2/en
Publication of JPS639015A publication Critical patent/JPS639015A/en
Publication of JPH0754563B2 publication Critical patent/JPH0754563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the film strength of a magnetic layer by providing thin ferromagnetic metallic film layers consisting of an upper layer and lower layer essentially consisting of Co on a plastic film having a prescribed thickness and specifying the ratio of the thickness between the upper and lower layers to 0.2-0.9. CONSTITUTION:The lower layer part 3 and upper layer part 4 of the thin ferromagnetic metallic film are formed on a substrate 2 formed of the plastic having <=8mum thickness. These layers are so formed that the direction of the inclination of the lower layer crystal grains 5 in the lower layer part 3 is different from the direction of inclination of the upper crystal grains 6 in the upper layer part 4. The thin ferromagnetic metallic film layers 3, 4 are decreased in the length of the columnar crystal grains by forming the same into the two-layered constitution. The film strength of the thin film layers 3, 4 is, therefore, improved. The ratio of the thickness between the upper layer 3 and the lower layer 4 is specified to 0.2-0.9, by which the signal of about 5MHz having a relatively shallow magnetic field is held in the upper layer 3 having the relatively small layer thickness and the signal of about 0.75MHz having the relatively deep magnetic field is effectively held by the lower layer 4 having the larger layer thickness and having the structure in which the columnar crystal grains are more erected with respect to the main plane of the substrate 1.

Description

【発明の詳細な説明】 工 発明の背景 技術分野 本発明は、磁気記録媒体、特に金属薄膜型の磁気記録媒
体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium, particularly a metal thin film type magnetic recording medium.

先行技術とその問題点 ビデオ用、オーディオ用等の磁気記録媒体として、テー
プ化して巻回したときのコンパクト性から、金属薄膜型
の磁性層を有するものの開発が活発に行われている。
Prior art and its problems As magnetic recording media for video, audio, etc., media having a metal thin film type magnetic layer are being actively developed because of their compactness when wound into tapes.

このような金属薄膜型の媒体の磁性層としては、特性上
、基体法線に対して所定の傾斜角にて蒸着を行う、いわ
ゆる斜め蒸着法によって形成したCo系、Co−Ni系
等からなる蒸着膜が好適である。
The magnetic layer of such a metal thin film type medium is made of Co-based, Co-Ni-based, etc., formed by the so-called oblique evaporation method, which is performed at a predetermined angle of inclination to the normal to the substrate due to its characteristics. A vapor deposited film is preferred.

このような媒体では、小型化、長時間記録等のため、従
来より、例えば10戸以Fのフィルムを用いた媒体の研
究が進められているが、走行性、耐久性、強磁性金属薄
膜の強度等の点で問題が生じる。
For such media, research has been progressing on media using films of, for example, 10 F or higher in order to achieve miniaturization and long-term recording, but there are issues with running performance, durability, and the strength of ferromagnetic metal thin films. Problems arise in terms of strength, etc.

そこで、これらの不都合を解消す゛るため、フィルム裏
面に金属薄膜補強層を設ける旨の提案(特開昭56−1
6939号、同58−97131号、同57−7862
7号、同57−37737号)あるいはフィルム表面に
微粒子を配設してヘッドタッチ、走行面で改良をなす旨
の提案(特開昭58−68227号、同58−1002
21号)等がなされている。
Therefore, in order to eliminate these inconveniences, a proposal was made to provide a metal thin film reinforcing layer on the back side of the film (Japanese Unexamined Patent Publication No. 56-1
No. 6939, No. 58-97131, No. 57-7862
7, No. 57-37737) or a proposal to improve the head touch and running surface by disposing fine particles on the film surface (Japanese Patent Application Laid-open No. 58-68227, No. 58-1002).
No. 21) etc. have been made.

また、耐久性や電磁変換特性を向上させるために、強磁
性金属薄膜層を2層に分割する旨の提案も種々行われて
いる(特開昭54−141608号、特公昭56−26
892号、特開昭57−130228号等)。
In addition, various proposals have been made to divide the ferromagnetic metal thin film layer into two layers in order to improve durability and electromagnetic conversion characteristics (Japanese Patent Application Laid-open No. 54-141608, Japanese Patent Publication No. 56-26
No. 892, JP-A-57-130228, etc.).

しかし、上記公報記載の技術では、10−以下のフィル
ムを用いた媒体における問題点の解決は完全ではない。
However, the technique described in the above-mentioned publication does not completely solve the problems in media using films of 10- or less.

 さらに、今日、より長時間記録を実現するために、走
行性、磁性層の耐久性および磁気特性の安定性を兼ね備
えたフィルム厚8μm以下の媒体の要望が強くなるに及
んで、従来の技術では、対処不充分となっている。
Furthermore, today, in order to realize longer recording times, there is a growing demand for media with a film thickness of 8 μm or less that combines good running performance, durability of the magnetic layer, and stability of magnetic properties. , it has not been adequately addressed.

■ 発明の目的 本発明の目的は、フィルム厚8−以下のフィルム支持体
を用い、媒体の走行性が良好で、走行による磁性層のク
ラックやケズレが少なく、ざらにヘッド摩耗量およびド
ロップアウトの少ない金属薄膜型の磁気記録媒体を提供
することにある。
■ Purpose of the Invention The purpose of the present invention is to use a film support with a film thickness of 8 mm or less, to provide good running properties of the medium, to reduce cracks and scratches in the magnetic layer due to running, and to reduce head wear and dropouts. It is an object of the present invention to provide a magnetic recording medium of a thin metal film type with a small amount of metal.

■ 発明の開示 このような目的は、下記の本発明によって達成される。■Disclosure of invention Such objects are achieved by the invention described below.

すなわち、本発明は、厚さ8−以下のプラスチックフィ
ルム上にCoを主成分とする強磁性金属薄膜層を有し、
この強磁性金属薄膜層が上層と下層とを有し、上層の厚
さと下層の厚さとの比か0.2〜0.9であることを特
徴とする磁気記録媒体である。
That is, the present invention has a ferromagnetic metal thin film layer mainly composed of Co on a plastic film having a thickness of 8 mm or less,
This magnetic recording medium is characterized in that the ferromagnetic metal thin film layer has an upper layer and a lower layer, and the ratio of the thickness of the upper layer to the thickness of the lower layer is 0.2 to 0.9.

■ 発明の具体的構成 以下、本発明の具体的構成について詳細に説明する。■Specific structure of the invention Hereinafter, a specific configuration of the present invention will be explained in detail.

本発明における磁性層としての強磁性金属薄膜層は、C
oを主成分とし、これに0を含み、さらに必要に応じN
iおよび/またはCrが含有される組成を有する。
The ferromagnetic metal thin film layer as the magnetic layer in the present invention is C
The main component is o, including 0, and further N as necessary.
It has a composition containing i and/or Cr.

すなわち、好ましい態様においては、Co単独からなっ
てもよく、CoとNiからなってもよい。 Niが含ま
れる場合、Co / N iの重量比は、1.5以上で
あることか好ましい。
That is, in a preferred embodiment, it may be made of Co alone, or it may be made of Co and Ni. When Ni is included, the weight ratio of Co/Ni is preferably 1.5 or more.

さらに、強磁性金属薄膜層中には、Crが含有されてい
てもよい。
Furthermore, Cr may be contained in the ferromagnetic metal thin film layer.

このような場合、Cr / CoあるいはCr/(Co
+Ni)の重量比は0.1以下、特に0.001〜0.
1、より好ましくは、0.005〜0.05であること
が好ましい。
In such cases, Cr/Co or Cr/(Co
+Ni) weight ratio is 0.1 or less, especially 0.001 to 0.
1, more preferably 0.005 to 0.05.

さらに、強磁性金属薄膜中には0が含有されるものであ
る。
Furthermore, the ferromagnetic metal thin film contains zero.

強磁性金属薄膜中の平均酸素量は、原子比、特にO/(
CoまたはCo+Ni)の原子比で、0.5以下、より
好ましくは0.05〜0.5であることが好ましい。
The average amount of oxygen in a ferromagnetic metal thin film is determined by the atomic ratio, especially O/(
The atomic ratio of Co or Co+Ni is preferably 0.5 or less, more preferably 0.05 to 0.5.

この場合、強磁性金属薄膜層の表面では、酸素が強磁性
金属(Co、Ni)と酸化物を形成している。
In this case, oxygen forms an oxide with the ferromagnetic metal (Co, Ni) on the surface of the ferromagnetic metal thin film layer.

すなわち、表面部、特に表面から50人〜500人、よ
り好ましくは50〜200人の厚さの範囲には、オージ
ェ分光分析により、酸化物を示すピークが認められるも
のである。 そして、この酸化物層の酸素含有量は、原
子比で0.5〜160程度である。
That is, in the surface area, particularly in the thickness range of 50 to 500, more preferably 50 to 200, from the surface, a peak indicating an oxide is observed by Auger spectroscopy. The oxygen content of this oxide layer is about 0.5 to 160 in atomic ratio.

なお、このような強磁性金属薄膜中には、さらに他の!
を量成分、特に遷移元素、例えばFe、Mn、V、Zr
、Nb、Ta、Ti、Zn、Mo、W、Cu等が含まれ
ていてもよいる。
Furthermore, in such a ferromagnetic metal thin film, there are other!
Quantitative components, especially transition elements such as Fe, Mn, V, Zr
, Nb, Ta, Ti, Zn, Mo, W, Cu, etc. may be included.

このような強磁性金属薄膜層は、好ましい態様において
、上記したCoを特徴とする特許結晶粒の集合体からな
る。
In a preferred embodiment, such a ferromagnetic metal thin film layer is composed of an aggregate of the above-mentioned patent crystal grains characterized by Co.

この場合、強磁性金属薄膜層の厚さは、総計で0.05
〜0.5−1好ましくは、0.07〜0.3−とされる
In this case, the total thickness of the ferromagnetic metal thin film layer is 0.05
~0.5-1, preferably 0.07-0.3-.

本発明のこのような強磁性金属薄膜層は上層と下層の2
層から構成されている。
Such a ferromagnetic metal thin film layer of the present invention has two layers, an upper layer and a lower layer.
It is composed of layers.

そして、上層の厚さは下層のそれより小さいものである
The thickness of the upper layer is smaller than that of the lower layer.

この場合、上層の厚さと下層の厚さとの比は0.2〜0
.9、より好ましくは0.4〜0.9の範囲である。
In this case, the ratio of the thickness of the upper layer to the thickness of the lower layer is between 0.2 and 0.
.. 9, more preferably in the range of 0.4 to 0.9.

そして、柱状の結晶粒は、各層の厚さ方向のほぼ全域に
亘る長さをもち、その長手方向が基体の主面の法線に対
して傾斜する角度は特に制限はない。
The columnar crystal grains have a length spanning almost the entire thickness direction of each layer, and there is no particular restriction on the angle at which the longitudinal direction is inclined with respect to the normal to the main surface of the base body.

そして、この場合、下層の結晶粒と上層の結晶粒の傾斜
の向きは、基体の主面の法線に対して媒体の長さ方向で
同方向であってよいが、好ましくは相対向する向きであ
ることが好ましい。
In this case, the direction of inclination of the crystal grains in the lower layer and the crystal grains in the upper layer may be in the same direction in the length direction of the medium with respect to the normal to the main surface of the substrate, but preferably they are in opposite directions. It is preferable that

このような、結晶粒の傾斜の向きを模式的に例示すると
第1図および第2図のようになる。
FIGS. 1 and 2 schematically illustrate the direction of the inclination of crystal grains.

第1図および第2図において、磁気記録媒体1は、基体
2上に強磁性金属薄膜下層部3および強磁性金属薄膜上
層部4とを存する。 そして、強磁性金属薄膜下層部3
内の下層結晶粒5の傾斜の向き、強磁性金属薄膜上層部
4内の上層結晶粒6の傾斜の向きは、第1図では媒体の
長さ方向aで相対向する向きであり、第2図では媒体の
長さ方向aで同方向である。
1 and 2, a magnetic recording medium 1 includes a ferromagnetic metal thin film lower layer 3 and a ferromagnetic metal thin film upper layer 4 on a base 2. As shown in FIGS. Then, the ferromagnetic metal thin film lower layer part 3
The direction of inclination of the lower layer crystal grains 5 in the ferromagnetic metal thin film upper layer section 4 and the direction of inclination of the upper layer crystal grains 6 in the ferromagnetic metal thin film upper layer section 4 are opposite directions in the longitudinal direction a of the medium in FIG. In the figure, the length direction a of the medium is the same direction.

本発明では、第1図あるいは第2図のいずれの結晶粒傾
斜を有するものであってよいが、好ましくは、第1図に
示される結晶粒傾斜を有するものが好ましい。
In the present invention, the crystal grains may have either the crystal grain inclination shown in FIG. 1 or FIG. 2, but those having the crystal grain inclination shown in FIG. 1 are preferable.

なお、酸素は、表面部の柱状の結晶粒の表面に前記のと
おり化合物の形で存在するものである。
Note that oxygen exists in the form of a compound on the surface of the columnar crystal grains in the surface portion, as described above.

また、強磁性金属薄膜層の酸素の濃度勾配の何如には特
に制限はない。
Further, there is no particular restriction on the oxygen concentration gradient of the ferromagnetic metal thin film layer.

また、結晶粒の短径は、50〜500人程度の長さをも
つことが好ましい。
Moreover, it is preferable that the short axis of the crystal grain has a length of about 50 to 500 grains.

このように、強磁性金属薄膜層が2層構成をなすことに
より、柱状結晶粒の長さが小さいものとなるため強磁性
金属薄膜層の膜強度が向上する。 また、上層の厚さと
下層の厚さの比が0.2〜0.9となることにより、比
較的浅い磁界を有する5MHz程度の信号は層厚の薄い
上層で保持され、比較的深い磁界を有する0、75MH
z程度の信号は層厚が厚く、柱状結晶粒が基体の主面に
対し、より立っている状態に近い構造をなす下層で有効
に保持されるものとなる。
In this way, by forming the ferromagnetic metal thin film layer into a two-layer structure, the length of the columnar crystal grains becomes small, so that the film strength of the ferromagnetic metal thin film layer is improved. In addition, because the ratio of the thickness of the upper layer to the thickness of the lower layer is 0.2 to 0.9, a signal of about 5 MHz with a relatively shallow magnetic field is retained in the thin upper layer, and a relatively deep magnetic field is retained in the thin upper layer. with 0,75MH
A signal of about z is effectively held in the lower layer, which has a thick layer and has a structure in which the columnar crystal grains stand more vertically with respect to the main surface of the substrate.

このような強磁性金属薄膜層を形成する基板は、非磁性
のものでありさえすれば特に制限はないが、特に可どう
性の基板、特にポリエステルフィルム、ポリアミドフィ
ルム、ポリイミドフィルム等のプラスチックフィルムで
あることか好ましい。
The substrate on which such a ferromagnetic metal thin film layer is formed is not particularly limited as long as it is non-magnetic, but flexible substrates, especially plastic films such as polyester films, polyamide films, and polyimide films, may be used. That's good.

また、その厚さは8−以下、特に5〜7−程度であるこ
とが好ましい。
Further, the thickness thereof is preferably 8 or less, particularly about 5 to 7.

この厚さか8−をこえると媒体の小型化、長時間記録等
の目的は達成されない。 また、この厚さがあまり薄く
なりすぎると、磁性層を上述のように2層構成として膜
強度を向上させた効果が相殺され、走行性、出力低下、
ヘッド摩耗等の問題が生じる。
If the thickness exceeds 8 mm, the objectives such as miniaturization of the medium and long-term recording cannot be achieved. In addition, if this thickness becomes too thin, the effect of improving the film strength by forming the magnetic layer with a two-layer structure as described above will be canceled out, resulting in a decrease in running performance and output.
Problems such as head wear occur.

従来の単層構造の強磁性金属薄膜層の場合には、ベース
厚を8−以下とすると、出力、特に5MHz程度の高域
の出力が大きく低下してしまい実用に耐えないものとな
る。
In the case of a conventional single-layer ferromagnetic metal thin film layer, if the base thickness is 8 mm or less, the output, especially the output in the high frequency range of about 5 MHz, will be significantly reduced, making it impractical.

これに対し、ベース厚8−より大のときには、強磁性金
属8膜層を2層構造とすれば、従来から提案されている
ように、出力および耐久性は向上する。
On the other hand, when the base thickness is greater than 8 -, if the 8 ferromagnetic metal layers are made into a two-layer structure, the output and durability will be improved as has been proposed in the past.

そして、ベース厚8−以下であっても、2層構造とすれ
ば、同様に出力および耐久性が向上する。
Even if the base thickness is 8 mm or less, if the two-layer structure is used, the output and durability will be similarly improved.

しかし、本発明における強磁性金属薄膜層の所定膜厚比
の2層構造化による特性向上、特に電子変換特性向上の
効果は、基板の厚さを8−以下と薄いものにした場合に
、きわめて顕著にかつ臨界的に現われるものである。 
これは従来予測しえなかったことである。
However, the effect of improving the characteristics, especially improving the electronic conversion characteristics, by forming the ferromagnetic metal thin film layer into a two-layer structure with a predetermined film thickness ratio in the present invention is extremely large when the substrate thickness is made as thin as 8 mm or less. This is something that appears significantly and critically.
This was something that could not have been predicted previously.

より詳細には、例えば、基板の厚さ10−において、強
磁性金属薄膜層を従来の単層構造から本発明と同様の2
層構造にすることによる電磁変換特性の向上巾は、0.
75MHzの低周波領域の信号で+2(dB)程度、5
MHzの高周波領域の信号で+2(dB)程度である。
More specifically, for example, when the thickness of the substrate is 10 -, the ferromagnetic metal thin film layer is changed from the conventional single layer structure to 2 as in the present invention.
The extent of improvement in electromagnetic conversion characteristics due to the layered structure is 0.
Approximately +2 (dB) for signals in the low frequency region of 75 MHz, 5
It is approximately +2 (dB) for a signal in the high frequency region of MHz.

他方、基板の厚さを7%とした場合の向上巾は、0.7
5M)Izの低周波領域の信号で+2(dB)程度で基
板厚10−の場合と同等であるが、5MHzの高周波領
域の信号では+4 (dB)程度まで顕著に増大する。
On the other hand, when the substrate thickness is 7%, the improvement is 0.7
The signal in the low frequency region of 5M) Iz is about +2 (dB), which is equivalent to the case with a substrate thickness of 10-, but the signal in the high frequency region of 5MHz significantly increases to about +4 (dB).

このように、!〇−厚の基板に比べ、7膜厚の基板にお
ける電子変換特性の向上が著しいのは、基板厚みを10
−から7−にすることにより、基板剛度不足によるヘッ
ドタッチが急激に悪化し、5MHz等の高周波領域にお
いて、この影響がより大きく、このような場合に本発明
の効果が発現されるものである。
in this way,! 〇-The reason why the electronic conversion characteristics of the 7-thick substrate is significantly improved compared to that of the 10-thick substrate is that
By changing from - to 7-, the head touch due to insufficient board rigidity deteriorates rapidly, and this effect is even greater in a high frequency region such as 5 MHz, and it is in such cases that the effects of the present invention are manifested. .

従って、特に高域での出力の点で従来実用に耐えなかっ
た8−以下のベース厚のものを用いて、十分実用に耐え
る出力および耐久性を有する媒体が実現するものである
Therefore, by using a base thickness of 8 mm or less, which has hitherto been impractical in terms of output, especially in high frequencies, a medium with output and durability that is sufficiently suitable for practical use can be realized.

このようなプラスチックフィルムの磁性層が設けられて
いない他方の面上には裏地層を設層してもよい。
A backing layer may be provided on the other side of the plastic film on which the magnetic layer is not provided.

裏地層を設層する場合、裏地層はAfl、Cu、W%M
o、Cr、Ti等の単一金属ないしこれらを含む合金、
あるいはその酸化物等の薄膜であることが好ましい。
When installing a backing layer, the backing layer is Afl, Cu, W%M
single metals such as o, Cr, Ti or alloys containing these;
Alternatively, it is preferable to use a thin film of an oxide thereof.

上記の金属等の中では特に非磁性のものを用いるのが好
ましい。 その理由としては、例えば裏地層を磁性金属
とすると磁性面が磁化された状態で巻きとられた場合、
裏地層が磁性層の濡洩磁束により磁化されたり、あるい
は裏地層が磁化された状態で磁性面再記録して再びの巻
きとられると、裏地層の磁気の影響により磁性面の磁化
状態が乱れるためノイズが増加するなどの問題が生じつ
るからである。
Among the above-mentioned metals, it is particularly preferable to use non-magnetic ones. The reason for this is, for example, when the backing layer is made of magnetic metal and the magnetic surface is wound up in a magnetized state,
If the lining layer is magnetized by magnetic flux leakage from the magnetic layer, or if the lining layer is magnetized and the magnetic surface is re-recorded and re-wound, the magnetization state of the magnetic surface will be disturbed due to the influence of the magnetism of the lining layer. This is because problems such as increased noise occur.

裏地層の形成方法は、例えば、蒸着、スパッタ、イオン
ブレーティング等の真空薄膜形成法、ざらには各種CV
D等の気相成長法、あるいはメッキ法等を用いればよい
The forming method of the backing layer includes, for example, vacuum thin film forming methods such as vapor deposition, sputtering, and ion blating, and various CV methods.
A vapor phase growth method such as D, a plating method, or the like may be used.

このように形成された裏地層の膜厚は、0.05〜1.
5−1より好ましくは0607〜0.9−1さらにより
好ましいくは0.07〜0,7−とされる。
The film thickness of the lining layer formed in this way is 0.05 to 1.
5-1, more preferably 0607 to 0.9-1, and even more preferably 0.07 to 0.7-.

この膜厚が1.5−をこえると、走行によって、磁性層
のクラックや磁性面ケズレが生じる。 また、ヘッド摩
耗量が増大する。 そして、ドロップアウトが増大する
。 また、膜厚が0.05μm未満となると、走行安定
性が低下し、ヘッドタッチ不良が生じ、出力低下やエン
ベローブ不良が生じる。
If the film thickness exceeds 1.5 -, cracks in the magnetic layer or scratches on the magnetic surface occur due to running. Further, the amount of head wear increases. And dropouts increase. In addition, when the film thickness is less than 0.05 μm, running stability decreases, head touch failure occurs, output decreases, and envelope failure occurs.

本発明の磁気記録媒体の表面には、微細な突起が所定の
密度で設けられてもよい。
Fine protrusions may be provided at a predetermined density on the surface of the magnetic recording medium of the present invention.

微細な突起は、30〜300人、より好ましくは50〜
250人の高さを有するものである。
The fine protrusions are 30 to 300 people, more preferably 50 to 300 people.
It has a height of 250 people.

すなわち、本発明の突起は、光学顕微鏡で観察でき、か
つ触針型表面粗さ計で測定できるものではなく、走査型
電子顕微鏡にて観察できる程度のものである。
That is, the protrusions of the present invention cannot be observed with an optical microscope and measured with a stylus type surface roughness meter, but can be observed with a scanning electron microscope.

突起高さが300人をこえ、光学顕微鏡にて観察できる
ものとなると、電磁変換特性の劣化と、走行安定性の低
下をもたらす。
If the height of the protrusions exceeds 300 and becomes observable with an optical microscope, the electromagnetic conversion characteristics deteriorate and the running stability deteriorates.

また、50λ未満となると、物性の向上の実効がない。Moreover, when it is less than 50λ, there is no effective improvement in physical properties.

そして、その密度は1 mm2あたり平均10!′個以
上、より好ましくは105〜109個、特に106〜1
08である。
And its density is on average 10 per mm2! ' or more, more preferably 105 to 109, especially 106 to 1
It is 08.

突起密度が105個/mm2未満となると、ノイズが増
大し、スチル特性が低下する等物性の低下をきたし、実
用に耐えない。
When the protrusion density is less than 10 5 /mm 2 , noise increases, still characteristics deteriorate, and other physical properties deteriorate, making it unsuitable for practical use.

また、109個/a+m2をこえると、物性上の効果が
少なくなってしまう。
Moreover, if the number exceeds 109 pieces/a+m2, the effect on physical properties will decrease.

なお、突起径は、一般に200〜1000人程度とする
Note that the diameter of the projection is generally about 200 to 1000 people.

このような突起を設けるには、通常、基板上に微粒子を
配設すればよい。 微粒子径は、30〜1000人すれ
ばよく、これにより微粒子径に対応した微細突起が形成
される。
In order to provide such protrusions, it is usually sufficient to arrange fine particles on the substrate. The diameter of the fine particles may be 30 to 1000, thereby forming fine protrusions corresponding to the diameter of the fine particles.

用いる微粒子としては、通常コロイド粒子として知られ
ているものであって、例えば5in2 (コロイダルシ
リカ)、An203(アルミナゾル) 、 M g O
,T i 02、Zno、Fe2O3、ジルコニア、C
d01N i O,CaWO4、CaCo3、BaCo
3、Coco、、BaTiO3,Ti(チタンブラック
)、Au、Ag、Cu、Ni、Fe、各種ヒドロシルや
、樹脂粒子等が使用可能である。 この場合、特に無機
物質を用いるのが好ましい。
The fine particles used are those commonly known as colloidal particles, such as 5in2 (colloidal silica), An203 (alumina sol), MgO.
, T i 02, Zno, Fe2O3, Zirconia, C
d01N i O, CaWO4, CaCo3, BaCo
3. Coco, BaTiO3, Ti (titanium black), Au, Ag, Cu, Ni, Fe, various hydrosils, resin particles, etc. can be used. In this case, it is particularly preferable to use inorganic substances.

このような微粒子は、各種溶媒を用いて塗布液とし、こ
れを基板上に塗布、乾燥してもよく、あるいは塗布液中
に各種水性エマルジョン等の樹脂分を添加したものを塗
布、乾燥してもよい。
Such fine particles may be prepared by forming a coating liquid using various solvents, applying this onto a substrate, and drying it, or by applying a coating liquid containing a resin component such as various aqueous emulsions and drying it. Good too.

なお、場合によっては、これら塗布液を基板上に配設す
るのではなく、磁性薄膜層上にトップコート層として配
設することもできる。
Note that, in some cases, these coating liquids may be provided as a top coat layer on the magnetic thin film layer instead of being provided on the substrate.

また、樹脂分を用いる場合、これら微粒子にもとづく微
細突起に重畳してゆるやかな突起を設けることもできる
が、通常はこのようにする必要はない。
Further, when a resin component is used, gentle protrusions may be provided to overlap the microprotrusions based on these fine particles, but this is usually not necessary.

もし必要であるならば、強磁性金属薄膜層の上層と下層
との間に非磁性金属薄膜層を介在させてもよい。
If necessary, a non-magnetic metal thin film layer may be interposed between the upper and lower ferromagnetic metal thin film layers.

本発明において、磁性層の形成は、いわゆる斜め蒸着法
によって形成されることが好ましい。
In the present invention, the magnetic layer is preferably formed by a so-called oblique evaporation method.

この場合、基体法線に対する蒸着物質の入射角の最少値
は特に制限はない。
In this case, there is no particular restriction on the minimum value of the incident angle of the vapor deposition substance with respect to the normal to the substrate.

また、磁性層は一工程で下層と上層を連続して設層して
もよいが、通常は、下層を設層後、再度蒸着工nに流し
て上層を設層することが好ましい。
Further, although the lower layer and the upper layer of the magnetic layer may be successively formed in one step, it is usually preferable that after forming the lower layer, the magnetic layer is passed through the vapor deposition process again to form the upper layer.

このように、磁性層の設層を下層設層と上層設層の2工
程に分けることにより、前述のように、基体法線に対す
る磁性柱状結晶粒の傾斜の向きが上層と下層とで媒体の
長さ方向で相対向する向きとなる。
By dividing the formation of the magnetic layer into two steps, the lower layer formation and the upper layer formation, as described above, the direction of the inclination of the magnetic columnar crystal grains with respect to the normal to the substrate can be adjusted between the upper layer and the lower layer. They face each other in the length direction.

このような磁性層構成とすることにより、電磁変換特性
はきわめて良好となる。
With such a magnetic layer configuration, the electromagnetic conversion characteristics are extremely good.

なお、蒸着雰囲気は、通常、アルゴン、ヘリウム、真空
等の不活性雰囲気に、酸素ガスを含む雰囲気とし、10
−5〜10’Pa程度の圧力とし、また、蒸着距離、基
体搬送方向、キャンやマスクの構造、配置等は公知の条
件と同様にすればよい。
The vapor deposition atmosphere is usually an inert atmosphere such as argon, helium, or vacuum, and an atmosphere containing oxygen gas.
The pressure may be approximately -5 to 10'Pa, and the deposition distance, substrate conveyance direction, structure and arrangement of cans and masks, etc. may be the same as known conditions.

そして、酸素雰囲気での蒸着により、表面に金属酸化物
の被膜が形成される。 なお、金属酸化物が形成される
酸素ガス分圧は、実験から容易に求めることができる。
Then, a metal oxide film is formed on the surface by vapor deposition in an oxygen atmosphere. Note that the oxygen gas partial pressure at which metal oxides are formed can be easily determined through experiments.

なお、表面に金属酸化物の被膜を形成するには、各種酸
化処理が可能である。
Note that various oxidation treatments can be performed to form a metal oxide film on the surface.

適用できる酸化処理としては下記のようなものがある。Applicable oxidation treatments include the following.

り乾式処理 a、エネルギー粒子処理 特願昭58−76640号に記載したように、蒸着の後
期に、イオンガンや中性ガンにより酸素をエネルギー粒
子として磁性層にさしむけるもの。
Dry process a, energetic particle process As described in Japanese Patent Application No. 76,640/1982, oxygen is applied to the magnetic layer as energetic particles using an ion gun or a neutral gun in the latter stage of vapor deposition.

b、グロー処理 02、N20.0□+H20等とAr、N2等の不活性
ガスとを用い、これをグロー放電してプラズマを生じさ
せ、このプラズマ中に磁性膜表面をさらすもの。
b. Glow treatment 02, using N20.0□+H20, etc. and an inert gas such as Ar, N2, etc., generates plasma by glow discharge, and exposes the surface of the magnetic film to this plasma.

C9酸化性ガス オゾン、加熱水蒸気等の酸化性ガスを吹きつけるもの。C9 oxidizing gas Items that spray oxidizing gas such as ozone or heated steam.

d、加熱処理 加熱によって酸化を行うもの。 加熱温度は60〜15
0℃程度。
d. Heat treatment: Oxidation is performed by heating. Heating temperature is 60-15
Around 0℃.

2)湿式処理 a、陽極酸化 す、アルカリ処理 C8酸処理 クロム酸塩処理、過マンガン酸塩処理、リン酸塩処理等
を用いる。
2) Wet treatment a, anodic oxidation, alkali treatment, C8 acid treatment, chromate treatment, permanganate treatment, phosphate treatment, etc. are used.

d、酸化剤処理 H2O2等を用いる。d. Oxidizing agent treatment H2O2 etc. are used.

本発明の有機物のトップコート層は、放射線硬化型化合
物、すなわち放射線硬化型ポリマー、モノマー、オリゴ
マーの1種以上と、酸化防止剤と、さらに必要に応じ潤
滑剤とを含有し、かつ所定の密度と大きさの突起を有す
る強磁性金属薄膜上に設層されたものである。
The organic top coat layer of the present invention contains a radiation-curable compound, that is, one or more of radiation-curable polymers, monomers, and oligomers, an antioxidant, and, if necessary, a lubricant, and has a predetermined density. This is a layer formed on a ferromagnetic metal thin film having protrusions of the size of .

さらに、本発明の媒体は、磁性層上に表面層を設層して
、走行性をより一層向上することもできる。
Furthermore, the running properties of the medium of the present invention can be further improved by providing a surface layer on the magnetic layer.

表面層としては、公知の種々のものが適用でき、例えば
、各種高分子物質被膜、ないしはこれに潤滑剤、酸化防
止剤、界面活性剤、無機微粒子等を含有させたものや、
各種潤滑剤の塗膜ないし気相被着膜等がある。
As the surface layer, various known materials can be applied, such as various polymeric substance coatings or coatings containing lubricants, antioxidants, surfactants, inorganic fine particles, etc.
There are various types of lubricant coatings or vapor phase deposits.

表面層の厚さは、5〜300λ程度とする。The thickness of the surface layer is approximately 5 to 300λ.

■ 発明の具体的作用効果 本発明によれば、厚さ8−以下の基体を用いているため
、媒体の小型化、長時間記録が可能となる。
(2) Specific Effects of the Invention According to the present invention, since a substrate having a thickness of 8 mm or less is used, it is possible to miniaturize the medium and record for a long time.

また、磁性層が上層と下層の2層構成をなすことにより
、磁性柱状結晶粒の長さが小さいものとなるため磁性層
の膜強度が向上する。 このため、走行安定性がきわめ
て高く、また、走行による磁性層のクラックや磁性面の
ケズレの発生がきわめて少なく、ヘッド摩耗量もきわめ
て少ないものとなる。
Further, since the magnetic layer has a two-layer structure of an upper layer and a lower layer, the length of the magnetic columnar crystal grains becomes small, so that the film strength of the magnetic layer is improved. Therefore, the running stability is extremely high, the occurrence of cracks in the magnetic layer or scratching of the magnetic surface due to running is extremely small, and the amount of wear on the head is also extremely small.

さらに、磁性層の上層の厚さと下層の厚さとの比が0.
2〜0.9となることにより、比較的浅い磁界を有する
5MHz程度の信号は層厚の薄い上層で保持され、比較
的深い磁界を有する0、75MHz程度の信号は層厚が
厚い下層で有効に保持されるものである。
Furthermore, the ratio between the thickness of the upper layer and the thickness of the lower layer of the magnetic layer is 0.
2 to 0.9, a signal of about 5 MHz with a relatively shallow magnetic field is retained in the thin upper layer, and a signal of about 0.75 MHz with a relatively deep magnetic field is effective in the thick lower layer. It is held in

■ 発明の具体的実施例 以下、本発明の具体的実施例を示し、本発明をさらに詳
細に説明する。
(2) Specific Examples of the Invention Hereinafter, specific examples of the present invention will be shown and the present invention will be explained in more detail.

実施例1 下記表1に示す厚さのポリエステル(PET)フィルム
を円筒状、冷却キャンの周面に沿わせて移動させ、02
+Ar (容積比1:1)を毎分800ccの速さで流
し真空度を1.0xlO−’Torrとしたチャンバー
内で、C。
Example 1 A polyester (PET) film having the thickness shown in Table 1 below was moved along the circumferential surface of a cylindrical cooling can.
+Ar (volume ratio 1:1) was flowed at a rate of 800 cc per minute in a chamber with a vacuum level of 1.0 x lO-' Torr.

80、Ni20(重量比)の合金を溶融し、入射角を下
層設層時は60°〜90°、上層設層時は10°〜90
°とし、斜め蒸着により第1図な示されるようなCo−
Ni−0薄膜を形成した。 また、比較として、入射角
30〜90°の部分のみ斜め蒸着し膜Jgo、ts−の
Co−Ni−0の単層薄膜を形成した。
80 and Ni20 (weight ratio) are melted, and the incident angle is set to 60° to 90° when the lower layer is laid, and 10° to 90° when the upper layer is laid.
°, and by oblique evaporation, Co-
A Ni-0 thin film was formed. For comparison, a single-layer Co--Ni-0 thin film of Jgo and ts- was formed by obliquely depositing only the portion at an incident angle of 30 to 90 degrees.

酸素はベースとの界面下層と上層との界面およびベース
と反対側の表面に多く偏在してぃた。 また、ベースと
反対側の表面はほぼ酸化物のみで覆われていた。
A large amount of oxygen was unevenly distributed at the interface between the lower layer and the upper layer with the base, and on the surface opposite to the base. Furthermore, the surface opposite to the base was covered almost exclusively with oxide.

Hc=1000 0e、  膜中の平均酸素量はCoと
Niに対する原子比 で40%であった。
Hc=10000e, and the average amount of oxygen in the film was 40% in terms of atomic ratio to Co and Ni.

このようにして形成した下記表1に示す各サンプルにつ
き、下記の測定を行なった。
The following measurements were performed on each of the samples shown in Table 1 below formed in this manner.

1)耐久性 温度20℃、湿度60%RHの条件下で連続走行テスト
を行なった。
1) Durability A continuous running test was conducted under the conditions of a temperature of 20° C. and a humidity of 60% RH.

使用デツキ:5ONY  A−300 ヘツド  ニスバッタ センダスト なお、媒体の走行方向と下層の基体法線に対する磁性結
晶粒の傾きの方向とを同一方向とした。
Deck used: 5ONY A-300 Head Varnish Batter Sendust Note that the running direction of the medium and the direction of inclination of the magnetic crystal grains with respect to the normal to the underlying substrate were made to be the same direction.

2)電磁変換特性 中心周波数0.75MHzおよび5MHzの出力を測定
し、サンプルNo、10の出力を0dBとした時の値を
求めた。
2) Electromagnetic conversion characteristics Outputs at center frequencies of 0.75 MHz and 5 MHz were measured, and values were determined when the output of sample No. 10 was set to 0 dB.

使用デツキ:5ONY  A−300 ヘツド  ニスバッタ センダスト モード  :SPモード なお、サンプルNo、7 (ベース厚=7P、磁性層構
成二車層)の出力に対するサンプルN001〜6(ベー
ス厚ニア−1磁性層構成:2層)の出力の向上中を表1
の()内に記載した。
Deck used: 5ONY A-300 Head Varnish Batter Sendust mode: SP mode Samples No. 001 to 6 (base thickness near-1 magnetic layer structure: Table 1 shows the improvement in the output of the second layer)
It is written in parentheses.

表1に示される結果より本発明の効果は明らかである。The effects of the present invention are clear from the results shown in Table 1.

すなわち1、上層厚/下層厚が0.2〜0.9であると
、ベース厚8−以下では、特に5MHz出力のきわめて
高い向上がみられ、5MHz出力の点で実用に耐えない
ベース厚のうすいものでも、十分実用可能な電磁変換特
性を示すことがわかる。
That is, 1. When the upper layer thickness/lower layer thickness is 0.2 to 0.9, an extremely high improvement in the 5 MHz output is observed especially when the base thickness is 8- or less, and the base thickness is not practical in terms of the 5 MHz output. It can be seen that even a thin material exhibits sufficient electromagnetic conversion characteristics for practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁気記録媒体の1実施例の媒体方向に
平行な断面の模式図である。 第2図は、本発明の磁気記録媒体の他の実施例の媒体方
向に平行な断面の模式図である。 符号の説明 1・−磁気記録媒体、 2・・・基板、 3・−強磁性金属薄膜下層部、 4・・・強磁性金属薄膜上層部、 5・・・下層結晶粒、 6・・・上層結晶粒、 矢印a・−媒体長さ方向 特許出願人 ティーディーケイ株式会社代  理  人
  弁理士  石  井  陽−′、−・″ 5、°、− FIG、1 FIG、2 手続ネm正書(自発) 昭和61年 8月27日 昭和61特許願第153179号 2、発明の名称 磁気記録媒体 3、補正をする者 事件との関係        特許出願人任  所  
  東京都中央区日本橋−丁目13番1号名  称  
 (306)  ティーディーケイ株式会社代表者  
大 歳   寛 1、代理人  〒101 住  所    東京都千代田区岩本町3丁目2番2号
千代田岩本ビル4階 8864−4498  Fax、864−6280氏 
 名    (8286)  弁理士  石 井 陽 
−6、補正の内容 (1)委任状を別紙の通り補正する。 (2)明細書の「3、発明の詳細な説明」の欄を下記の
通り補正する。 (i)明細書第11ページ第1行目の「電子変換特性向
上」とあるのを、「電磁変換特性向上」と訂正する。 (ii)明細書第12ページ第8行目〜第13ベージ第
11行目に「このようなプラスチックフィルムの磁性層
が・・・・〜0.7μmとされる。」とあるのを、「こ
のようなプラスチックフィルムの磁性層が設けられてい
ない他方の面上には公知の種々の裏地層を設層すること
が好ましい。 裏地層の材質については特に制限はない
が、特に顔料と放射線硬化型樹脂とを含有するものが好
ましい。 裏地層の膜厚は、0.05〜1.5μ11よ
り好ましくは0゜07〜1.0μ履とされる。」と訂正
する。 (iii)明細書第22ページ第6行目の「で4θ%で
あった。」の後に1.改行して、「なお、磁性層Nm上
には、ミリスチン酸イソプロピルの表面層を膜厚25人
にて設層し、また、基体裏面側には0.5μ履厚にてカ
ーボン、シリカおよび放射線硬化樹脂を含む裏地層を設
層した。」を追加する。
FIG. 1 is a schematic diagram of a cross section parallel to the medium direction of one embodiment of the magnetic recording medium of the present invention. FIG. 2 is a schematic diagram of a cross section parallel to the medium direction of another embodiment of the magnetic recording medium of the present invention. Explanation of symbols 1: Magnetic recording medium, 2: Substrate, 3: Lower layer of ferromagnetic metal thin film, 4: Upper layer of ferromagnetic metal thin film, 5: Lower crystal grain, 6: Upper layer Crystal grain, arrow a - Medium length direction Patent applicant TDC Co., Ltd. Representative Patent attorney Yo Ishii -', -・'' 5, °, - FIG, 1 FIG, 2 Procedure name formal text ( (Spontaneous) August 27, 1988 Patent Application No. 153179 2 Name of the invention Magnetic recording medium 3 Relationship with the person making the amendment case Patent applicant location
Nihonbashi-chome 13-1, Chuo-ku, Tokyo Name
(306) Representative of TDC Co., Ltd.
Hiroshi Otoshi 1, Agent 101 Address 4th floor, Chiyoda Iwamoto Building, 3-2-2 Iwamotocho, Chiyoda-ku, Tokyo 8864-4498 Fax: 864-6280
Name (8286) Patent attorney Yo Ishii
-6. Contents of amendment (1) Amend the power of attorney as shown in the attached sheet. (2) The column “3. Detailed Description of the Invention” of the specification is amended as follows. (i) "Improved electronic conversion characteristics" in the first line of page 11 of the specification is corrected to "improved electromagnetic conversion characteristics." (ii) In the specification, page 12, line 8 to page 13, line 11, the statement ``The magnetic layer of such a plastic film is...~0.7 μm'' has been changed to `` It is preferable to provide one of various known backing layers on the other side of the plastic film on which the magnetic layer is not provided. There are no particular restrictions on the material of the backing layer, but pigments and radiation curing are particularly preferred. The thickness of the lining layer is preferably 0.07 to 1.0 μm, more preferably 0.07 to 1.0 μm. (iii) On page 22 of the specification, line 6, after "it was 4θ%." 1. Add a new line and write, ``On the magnetic layer Nm, a surface layer of isopropyl myristate is formed with a thickness of 25 mm, and on the back side of the substrate, a layer of carbon, silica, and radiation is formed with a thickness of 0.5 μm. A backing layer containing a hardened resin was installed.'' is added.

Claims (1)

【特許請求の範囲】[Claims] (1)厚さ8μm以下のプラスチックフィルム上にCo
を主成分とする強磁性金属薄膜層を有し、この強磁性金
属薄膜層が上層と下層とを有し、上層の厚さと下層の厚
さとの比が0.2〜0.9であることを特徴とする磁気
記録媒 体。
(1) Co on a plastic film with a thickness of 8 μm or less
The ferromagnetic metal thin film layer has an upper layer and a lower layer, and the ratio of the thickness of the upper layer to the thickness of the lower layer is 0.2 to 0.9. A magnetic recording medium characterized by:
JP61153179A 1986-06-30 1986-06-30 Magnetic recording method Expired - Lifetime JPH0754563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61153179A JPH0754563B2 (en) 1986-06-30 1986-06-30 Magnetic recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61153179A JPH0754563B2 (en) 1986-06-30 1986-06-30 Magnetic recording method

Publications (2)

Publication Number Publication Date
JPS639015A true JPS639015A (en) 1988-01-14
JPH0754563B2 JPH0754563B2 (en) 1995-06-07

Family

ID=15556776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61153179A Expired - Lifetime JPH0754563B2 (en) 1986-06-30 1986-06-30 Magnetic recording method

Country Status (1)

Country Link
JP (1) JPH0754563B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453886A (en) * 1990-09-11 1995-09-26 Tdk Corporation Digital recording method using a specified magnetic recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130228A (en) * 1981-02-06 1982-08-12 Fuji Photo Film Co Ltd Magnetic recording medium
JPS5860429A (en) * 1981-10-06 1983-04-09 Ulvac Corp Magnetic recording body and its manufacturing device
JPS60171626A (en) * 1984-02-17 1985-09-05 Toray Ind Inc Video tape

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130228A (en) * 1981-02-06 1982-08-12 Fuji Photo Film Co Ltd Magnetic recording medium
JPS5860429A (en) * 1981-10-06 1983-04-09 Ulvac Corp Magnetic recording body and its manufacturing device
JPS60171626A (en) * 1984-02-17 1985-09-05 Toray Ind Inc Video tape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453886A (en) * 1990-09-11 1995-09-26 Tdk Corporation Digital recording method using a specified magnetic recording medium

Also Published As

Publication number Publication date
JPH0754563B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
US4074016A (en) Magnetic record carrier
KR940009728B1 (en) Magnetic recording medium
JPH04259909A (en) Magnetic recording medium
JPS639015A (en) Magnetic recording medium
JPS6310315A (en) Magnetic recording medium
JPS6310314A (en) Magnetic recording medium
JPS6313117A (en) Magnetic recording medium
JPS60253018A (en) Magnetic recording method
JPS6314317A (en) Magnetic recording medium
JPS6314320A (en) Magnetic recording medium
JPH0612566B2 (en) Magnetic recording method
JP3531679B2 (en) Magnetic recording media
JP2003123241A (en) Magnetic recording medium and method of manufacturing the same
JP2976699B2 (en) Magnetic recording medium and manufacturing method thereof
JPH0760503B2 (en) video tape
JP2977617B2 (en) Magnetic recording media
JPS61294635A (en) Magnetic recording medium
JPS6378339A (en) Production of magnetic recording medium
JPH0624053B2 (en) Magnetic recording method
JPH0624052B2 (en) Magnetic recording method
JPS60234218A (en) Magnetic recording medium
JPS61214115A (en) Magnetic recording medium and its production
JPS59175030A (en) Production of magnetic recording medium
JPH03212814A (en) Magnetic recording medium
JPS60113320A (en) Base plate for recording medium and its production