JPS638971B2 - - Google Patents

Info

Publication number
JPS638971B2
JPS638971B2 JP55153781A JP15378180A JPS638971B2 JP S638971 B2 JPS638971 B2 JP S638971B2 JP 55153781 A JP55153781 A JP 55153781A JP 15378180 A JP15378180 A JP 15378180A JP S638971 B2 JPS638971 B2 JP S638971B2
Authority
JP
Japan
Prior art keywords
reaction
temperature
ptmg
polymerization
conversion rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55153781A
Other languages
Japanese (ja)
Other versions
JPS5777638A (en
Inventor
Masayuki Endo
Kenji Yasuda
Shuichi Matsumoto
Toko Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP55153781A priority Critical patent/JPS5777638A/en
Priority to US06/316,287 priority patent/US4371713A/en
Priority to DE8181305252T priority patent/DE3173834D1/en
Priority to EP81305252A priority patent/EP0051499B1/en
Publication of JPS5777638A publication Critical patent/JPS5777638A/en
Publication of JPS638971B2 publication Critical patent/JPS638971B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyethers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリエーテルグリコールの製造方法に
関し、更に詳細にはポリウレタン、弾性ポリエス
テル、弾性ポリアミドなどの原料として有用な比
較的低分子量で官能度の高い、オキシテトラメチ
レン基を主成分とするポリエーテルグリコールを
効率的かつ容易に製造するための新規な方法に関
する。 テトラヒドロフランあるいはこれと共重合可能
な他の環状エーテルとの混合物を開環重合触媒の
存在下に重合させて、次いで重合反応生成物を加
水分解することによりポリテトラメチレングリコ
ール(以下PTMGと略記する)およびオキシテ
トラメチレン基を主成分とするポリエーテルグリ
コール(以下PTMGを含めこれらをPTMG系ポ
リエーテルグリコールと総称する)を製造するこ
とはよく知られている。かくして得られる
PTMG系ポリエーテルグリコールはポリウレタ
ン、弾性ポリエステル、弾性ポリアミド等の原料
として用いた場合、機械的特性や耐加水分解性等
の物性のすぐれた材料を与えるところから近年そ
の工業的重要性が注目されており、多方面の用途
で使用されるに至つている。これらの用途に使用
されるのは通常数平均分子量で500〜5000程度の
比較的低分子量のものであり、またその分子の両
末端が水酸基であること、換言すれば官能度が高
い(2に近い)ことが重要である。従来テトラヒ
ドロフランの開環重合触媒としては各種のものが
知られているが、比較的低分子量で両末端に水酸
基を持つPTMG系ポリエーテルグリコールが容
易に得られる触媒は比較的数少ない。かかる開環
重合触媒として発煙硫酸またはフルオロ硫酸を用
いることは既に知られている。(例えば日本特許
公告公報第48−25438、同第49−28917、同第45−
3104)。これらの強酸性プロトン酸を主成分とす
る触媒を用いる方法によれば、数平均分子量が
1000〜3000程度の重合反応生成物を容易に製造す
ることができ、また重合後酸性条件下で加水分解
を行なうことにより容易に両末端水酸基の
PTMG系ポリエーテルグリコールを得ることが
できる。しかしながらこれらの触媒を用いる方法
では、工業的実施に際して妥当な転化率を得るた
めには比較的多量の触媒を必要とし、このため触
媒の貯蔵あるいは取り扱いの設備として大型のも
のが必要となるほか、廃棄物として多量の酸が排
出されることとなり、これの処理に多くの労力と
費用を要するという問題がある。このように多量
の触媒を必要とするのは、これらの触媒の触媒効
率が低く、加えた触媒が十分有効に利用されてい
ないことに起因するものであり、触媒効率を向上
させもつて触媒の使用量を低減し得る方法の開発
が望まれている。またこれらの触媒は強酸性プロ
トン酸であるが故にテトラヒドロフラン等との接
触時に多大の混合熱を放出し、このため反応温度
の制御が困難であるばかりか、重合反応生成物の
着色や分解などの好ましくない現象を伴ない易い
という問題もある。これらの好ましくない現象を
回避するために0℃以下の低温で重合を行なうこ
ともできるが、低温では重合速度が低下して反応
に長時間を要する上に、PTMG系ポリエーテル
グリコールの分子量が1000以上の場合は高転化率
において重合反応系全体が固まつて流動性がなく
なり、撹拌、移送などの操作が不可能になる。ま
たこのような低温における重合では、比較的高分
子量の重合反応生成物を生成しやすく、分子量が
1000以下のPTMG系ポリエーテルグリコールを
製造することは極めて困難である。本発明者らは
このような事情に鑑みPTMG系ポリエーテルグ
リコールの製造方法につき種々研究した結果、触
媒効率を顕著に増大させ得ると同時に、重合反応
生成物の着色や重合系が固化することなく、高転
化率でPTMG系ポリエーテルグリコールを製造
し得る新規な方法を見出し、本発明に到達したも
のである。 本発明の目的の第一は、発煙硫酸やフルオロ硫
酸を開環重合触媒としてPTMG系ポリエーテル
グリコールを製造するに際して、触媒効率を顕著
に増大させ、数平均分子量500〜5000程度の、特
に500〜3000程度のPTMG系ポリエーテルグリコ
ールを効率良く製造する方法を提供することにあ
る。ここで触媒効率はPTMG系ポリエーテルグ
リコール分子のモル数と重合時に使用した触媒の
モル数の比として定義され、計算式は後記実施例
に示した。また第二の目的は重合反応生成物の着
色や高転化率における重合系の固化などの好まし
くない現象を伴なうことなく、PTMG系ポリエ
ーテルグリコールを容易に製造する方法を提供す
ることである。 本発明に従つて、発煙硫酸および/またはフル
オロ硫酸を主成分とする開環重合触媒の存在下に
テトラヒドロフランまたはこれと共重合可能な他
の環状エーテルとの混合物を重合させ、次いで重
合反応生成物を加水分解してポリエーテルグリコ
ールを製造するにあたり、(1)重合反応の第1段階
においてテトラヒドロフラン等の単量体と開環重
合触媒とを―30℃〜10℃の範囲の温度で接触させ
て、上記単量体の重合を行なわせ、(2)次いで該単
量体の重合体への転化率が5%以上に達した段階
で反応温度を0℃〜40℃の範囲で且つ第1段階の
反応温度より少なくとも10℃高い温度に昇温させ
て重合反応を続けることを特徴とするポリエーテ
ルグリコールの製造方法が提供される。 本発明の方法においては、テトラヒドロフラン
等の重合反応を特定の2つの段階で行なうことに
より、触媒効率を顕著に増大させることができ、
もつて触媒の使用量(原単位)を引下げ、触媒コ
ストの低減を計り得る上、製造工程で出る廃酸の
量を低減し、その処理に要する負担を軽減するこ
とができる。また本発明の方法は従来公知の方法
に比べて、重合反応生成物の着色および高転化率
における重合系の固化を伴なうことがないので、
工業的に最も有用な500〜5000程度の数平均分子
量を有するPTMG系ポリエーテルグリコールを
極めて容易に製造することができる。このように
本発明の方法は数々の利点を有するのでその工業
的利用価値は極めて大である。特に発煙硫酸を主
成分とする触媒を用いた場合には、従来公知の方
法では触媒効率が低く、また重合反応生成物の着
色を起す傾向が大きいため低温で重合を行なう必
要があり、このために高転化率において重合反応
系の固化が起りやすいという問題があつた。この
ようなことから本発明の方法は発煙硫酸を主成分
とする触媒を使用する重合を実施する場合に特に
利用価値が大きい。 次に本発明を一層詳細に説明する。 本発明の方法においては、テトラヒドロフラン
等の単量体と触媒との接触および重合反応をまず
低温において行ない(第1段階)、次いで特定の
条件下で昇温して重合を続ける(段2段階)こと
が重要である。第1段階においては反応温度は−
30℃〜10℃の範囲に設定される。第1段階の温度
が10℃をこえる場合には触媒効率の向上がほとん
どなくなる上、単量体と触媒の混合時の発熱によ
つて反応のコントロールが困難となり、重合反応
生成物の着色や分解が起り易くなる。一方第1段
階の温度が−30℃より低い場合には冷却設備の能
力の大きなものが必要になる上、重合速度が非常
に遅くなつて生産性が低下するので工業的観点か
ら好ましくない。特に顕著な触媒効率の向上を達
成するために第1段階の温度は−30℃〜0℃とす
ることが好ましい。 次に第2段階として、単量体の重合体への転化
率が5%以上に達した時点で、反応温度を0℃〜
40℃の範囲でかつ第1段階の反応温度よりも少な
くとも10℃高い温度に昇温させて重合反応を継続
する。第1段階終了時の転化率が5%未満のとき
は触媒効率の顕著な向上を得ることができないの
で不適当である。触媒効率の向上効果の大きさか
ら第1段階終了時の転化率は好ましくは10%以上
である。一方第1段階終了時の転化率の上限は、
単量体と触媒の使用比率や製造するPTMG系ポ
リエーテルグリコールの分子量などによつて変
り、一義的には決められないが、一般的にはこの
転化率が高くなりすぎると触媒効率の向上効果が
小さくなり、また高分子量体の場合に重合反応系
の粘度が増大しさらには系全体が固体状となるの
で、これらの点を勘案して設定される。触媒効率
の向上効果の大きさおよび操作性の両者を考えた
場合には、第1段階終了時の転化率は目的とする
PTMG系ポリエーテルグリコールの数平均分子
量に応じて下記の範囲とすることが好ましい。
The present invention relates to a method for producing polyether glycol, and more particularly to a polyether glycol containing oxytetramethylene groups as a main component, which has a relatively low molecular weight and high functionality and is useful as a raw material for polyurethane, elastic polyester, elastic polyamide, etc. This invention relates to a novel method for efficiently and easily manufacturing. Polytetramethylene glycol (hereinafter abbreviated as PTMG) is produced by polymerizing tetrahydrofuran or a mixture of tetrahydrofuran and other cyclic ethers copolymerizable with it in the presence of a ring-opening polymerization catalyst, and then hydrolyzing the polymerization reaction product. It is well known to produce polyether glycols containing oxytetramethylene groups as main components (hereinafter collectively referred to as PTMG-based polyether glycols including PTMG). thus obtained
In recent years, PTMG-based polyether glycol has gained attention in industrial importance because it provides materials with excellent physical properties such as mechanical properties and hydrolysis resistance when used as a raw material for polyurethane, elastic polyester, elastic polyamide, etc. It has come to be used in a wide variety of applications. The molecules used for these purposes usually have a relatively low number average molecular weight of about 500 to 5,000, and have hydroxyl groups at both ends of the molecule, in other words, have a high degree of functionality (2 closeness) is important. Various types of catalysts for ring-opening polymerization of tetrahydrofuran are known, but there are relatively few catalysts that can easily yield PTMG-based polyether glycols that have a relatively low molecular weight and have hydroxyl groups at both ends. It is already known to use fuming sulfuric acid or fluorosulfuric acid as such a ring-opening polymerization catalyst. (For example, Japanese Patent Publication No. 48-25438, Japanese Patent Publication No. 49-28917, Japanese Patent Publication No. 45-
3104). According to methods using catalysts mainly composed of these strongly acidic protonic acids, the number average molecular weight can be reduced.
Polymerization reaction products of about 1000 to 3000 can be easily produced, and both terminal hydroxyl groups can be easily removed by hydrolysis under acidic conditions after polymerization.
PTMG polyether glycol can be obtained. However, methods using these catalysts require a relatively large amount of catalyst in order to obtain a reasonable conversion rate in industrial implementation, and therefore require large-scale catalyst storage and handling equipment. There is a problem in that a large amount of acid is discharged as waste, and the treatment of this requires a lot of labor and cost. The need for such a large amount of catalyst is due to the low catalytic efficiency of these catalysts and the fact that the added catalyst is not fully utilized. It is desired to develop a method that can reduce the amount used. In addition, since these catalysts are strongly protic acids, they release a large amount of heat of mixing when they come into contact with tetrahydrofuran, etc., making it difficult to control the reaction temperature and causing problems such as coloring and decomposition of the polymerization reaction product. Another problem is that it tends to cause undesirable phenomena. In order to avoid these undesirable phenomena, polymerization can be carried out at a low temperature below 0°C, but at low temperatures the polymerization rate decreases and the reaction takes a long time, and the molecular weight of the PTMG polyether glycol is 1000°C. In the above case, at high conversion rates, the entire polymerization reaction system solidifies and loses fluidity, making operations such as stirring and transfer impossible. In addition, polymerization at such low temperatures tends to produce relatively high molecular weight polymerization reaction products;
It is extremely difficult to produce PTMG polyether glycol with a molecular weight of 1000 or less. In view of these circumstances, the present inventors have conducted various studies on the production method of PTMG-based polyether glycol, and have found that it is possible to significantly increase the catalytic efficiency, and at the same time prevent coloring of the polymerization reaction product and solidification of the polymerization system. The present invention was achieved by discovering a new method for producing PTMG polyether glycol at a high conversion rate. The first object of the present invention is to significantly increase catalyst efficiency when producing PTMG-based polyether glycol as a ring-opening polymerization catalyst for fuming sulfuric acid or fluorosulfuric acid, and to improve The object of the present invention is to provide a method for efficiently producing about 3000 PTMG polyether glycols. Here, the catalyst efficiency is defined as the ratio of the number of moles of PTMG polyether glycol molecules to the number of moles of the catalyst used during polymerization, and the calculation formula is shown in Examples below. The second objective is to provide a method for easily producing PTMG polyether glycol without causing undesirable phenomena such as coloring of the polymerization reaction product or solidification of the polymerization system at high conversion rates. . According to the present invention, tetrahydrofuran or a mixture of tetrahydrofuran and other cyclic ethers copolymerizable with it is polymerized in the presence of a ring-opening polymerization catalyst containing oleum and/or fluorosulfuric acid as a main component, and then a polymerization reaction product is obtained. (1) In the first step of the polymerization reaction, a monomer such as tetrahydrofuran and a ring-opening polymerization catalyst are brought into contact at a temperature in the range of -30°C to 10°C. , the above monomer is polymerized, and (2) then, when the conversion rate of the monomer to the polymer reaches 5% or more, the reaction temperature is set in the range of 0°C to 40°C, and the first step Provided is a method for producing polyether glycol, characterized in that the polymerization reaction is continued at a temperature that is at least 10° C. higher than the reaction temperature. In the method of the present invention, the catalyst efficiency can be significantly increased by carrying out the polymerization reaction of tetrahydrofuran etc. in two specific stages,
Not only can the amount of catalyst used (unit consumption) be reduced, reducing catalyst costs, but also the amount of waste acid produced during the manufacturing process can be reduced, and the burden required for its treatment can be reduced. Furthermore, compared to conventionally known methods, the method of the present invention does not involve coloring of the polymerization reaction product and solidification of the polymerization system at high conversion rates.
PTMG polyether glycol having a number average molecular weight of about 500 to 5000, which is most useful industrially, can be produced very easily. As described above, the method of the present invention has many advantages and therefore has extremely high industrial utility value. In particular, when using a catalyst containing fuming sulfuric acid as a main component, conventional methods have low catalytic efficiency and tend to cause coloring of the polymerization reaction product, so polymerization must be carried out at low temperatures. However, there was a problem that solidification of the polymerization reaction system was likely to occur at high conversion rates. For this reason, the method of the present invention is particularly useful when carrying out polymerization using a catalyst containing fuming sulfuric acid as a main component. Next, the present invention will be explained in more detail. In the method of the present invention, contact between a monomer such as tetrahydrofuran and a catalyst and a polymerization reaction are first carried out at a low temperature (first stage), and then the temperature is raised under specific conditions to continue polymerization (second stage). This is very important. In the first stage, the reaction temperature is -
It is set in the range of 30°C to 10°C. If the temperature in the first stage exceeds 10°C, there will be little improvement in catalyst efficiency, and the reaction will be difficult to control due to the heat generated during mixing of the monomer and catalyst, resulting in coloration and decomposition of the polymerization reaction product. becomes more likely to occur. On the other hand, if the temperature in the first stage is lower than -30 DEG C., it is not preferred from an industrial point of view because not only will a cooling facility with a large capacity be required, but the polymerization rate will become very slow and productivity will decrease. In order to achieve a particularly significant improvement in catalyst efficiency, the temperature in the first stage is preferably -30°C to 0°C. Next, in the second step, when the conversion rate of monomer to polymer reaches 5% or more, the reaction temperature is increased from 0°C to
The polymerization reaction is continued by raising the temperature to a temperature in the range of 40°C and at least 10°C higher than the first stage reaction temperature. When the conversion rate at the end of the first stage is less than 5%, it is unsuitable because a significant improvement in catalyst efficiency cannot be obtained. In view of the magnitude of the effect of improving catalyst efficiency, the conversion rate at the end of the first stage is preferably 10% or more. On the other hand, the upper limit of the conversion rate at the end of the first stage is
Although it cannot be determined unambiguously because it varies depending on the ratio of monomers and catalyst used and the molecular weight of the PTMG polyether glycol produced, in general, if the conversion rate becomes too high, the catalyst efficiency will be improved. is small, and in the case of a high molecular weight substance, the viscosity of the polymerization reaction system increases and furthermore, the entire system becomes solid, so these points are taken into consideration when setting. Considering both the magnitude of the catalyst efficiency improvement effect and operability, the conversion rate at the end of the first stage should be set as the target.
The following range is preferable depending on the number average molecular weight of the PTMG polyether glycol.

【表】 第2段階の反応温度が0℃未満のときは、触媒
効率の向上がほとんどなくなる上、数平均分子量
1000以下のPTMG系ポリエーテルグリコールを
製造するのが極めて困難になる。また第2段階の
反応温度が40℃をこえると重合反応の化学平衡の
影響で最終転化率が低下し触媒効率が低下しまた
未反応単量体の回収・精製の負担が増大して不利
となるほか、重合反応生成物の着色や分解が起る
ようになる。また第1段階の重合温度との差が10
℃未満のときは触媒効率の向上がほとんど見られ
ない。触媒効率の向上効果の大きさおよび操作性
の点から第2段階の反応温度は10℃〜40℃とし第
1段階の反応温度との差を少くとも15℃とするこ
とが好ましい。第2段階における重合時間は単量
体と触媒の使用比率や反応温度などによつて変
り、特に限定されるものではないが、通常1〜5
時間程度が好ましい。 本発明の方法において使用するに適した単量体
はテトラヒドロフランまたはこれと共重合可能な
他の環状エーテルとの混合物である。共重合可能
な環状エーテルの具体例としては、エチレンオキ
シド、プロピレンオキシド、エピクロルヒドリン
などの三員環エーテル、オキサシクロブタン、
3,3―ジメチルオキサシクロブタン、3,3―
ビス(クロルメチル)オキサシクロブタンなどの
四員環エーテル、2―メチルテトラヒドロフラ
ン、3―メチルテトラヒドロフラン、2,5―ジ
ヒドロフランなどの五員環エーテル、テトラヒド
ロピラン、オキサシクロヘプタンなどを挙げるこ
とができる。本発明に言う、オキシテトラメチレ
ン基を主成分とするポリエーテルグリコールを得
る場合、これらのテトラヒドロフランと共重合可
能な環状エーテルの使用量は通常テトラヒドロフ
ラン100重量部に対して100重量部以下であり、好
ましくは50重量部以下である。 本発明の方法においては、開環重合触媒として
発煙硫酸および/またはフルオロ硫酸を主成分と
する触媒が用いられる。発煙硫酸としては通常
PTMG系ポリエーテルグリコールの製造におい
て使用されている遊離SO3濃度が約40重量%以下
のものが適当であり、好ましくは20重量%〜35重
量%のものが使用される。 発煙硫酸はそれ単独で用いることもできるが、
必要とあらば重合速度の増大や分子量調節を達成
するために適当な助触媒を共存させることもでき
る。助触媒としては過塩素酸、過塩素酸塩、金属
フツ化物、金属ホウフツ化物、あるいは芳香族化
合物など公知のものを使用することができるが、
入手および取扱いの容易さや効果の点から金属ホ
ウフツ化物特にホウフツ化ナトリウムあるいはホ
ウフツ化カリウムが好ましい。フルオロ硫酸は通
常それのみで開環重合触媒として使用されるが、
場合によつては例えば鎖状カルボン酸の無水物な
どを共存させて用いることもできる。 本発明の方法を実施するにあたつて、開環重合
触媒の使用量は特に限定されるものではない。通
常使用される範囲の例を示すと発煙硫酸の場合は
単量体100重量部に対して10重量部〜40重量部、
更に助触媒を添加して用いる場合にはその使用量
は発煙硫酸100重量部に対して0.05重量部〜20重
量部を使用する。フルオロ硫酸の場合の使用量は
単量体100重量部に対して、1重量部〜20重量部
であり、必要により鎖状カルボン酸の無水物など
をフルオロ硫酸100重量部に対して5〜400重量部
程度併用する。これらの開環重合触媒の使用量
は、要求されるPTMGの分子量などにより適宜
選択される。開環重合反応方法は特に限定するも
のではなく回分式反応、連続式反応などで行なう
ことができ、回分式反応で行なう場合には混合熱
の除去を容易にするために触媒を適当な速度で単
量体中に連続的に添加しつつ重合系を撹拌するの
が好ましい。また本発明の方法においてはテトラ
ヒドロフラン等を、シクロヘキサン、ジクロロエ
タン、ジクロロメタンなどの不活性溶媒の存在下
で重合することもできるが、特に必要のない限り
溶媒を使用せずに重合を行なうのが好ましい。 本発明の方法では、上述のようにしてテトラヒ
ドロフラン等の単量体を重合させたのち、重合反
応生成物を加水分解するが、加水分解反応は酸性
条件下で行なう。例えば重合体終了後、希釈後の
硫酸濃度が5重量%〜40重量%となる量の水を加
えたのち混合物を80℃〜120℃の温度で1〜10時
間程度加熱還流させる方法を挙げることができ
る。加水分解反応は重合終了後ただちに行なつて
もよく、またあらかじめ少量の水などで重合を停
止させ、蒸留、ストリツピングなどの方法で未反
応単量体や溶剤を回収したのちに行なうこともで
きる。さらに加水分解反応と同時に未反応単量体
や溶剤を蒸留し回収することも可能である。 加水分解後の反応混合物からPTMG系ポリエ
ーテルグリコールを回収する方法は特に限定する
ものではなく、例えば加水分解後放冷して、
PTMG系ポリエーテルグリコールを油層として
分離させ、水層を抜きとつたのち、油層中の酸分
を固体のアルカリで中和し、固体を別して減圧
で揮発分を除去する方法によつて行なうことがで
きる。以上の操作において、PTMG系ポリエー
テルグリコールの回収を容易ならしめるために、
PTMG系ポリエーテルグリコールを溶解し水と
混合しない溶剤、例えばベンゼン、トルエン、ク
ロロホルム、n―ブタノールなどを加えることを
可能である。かくして得られたPTMG系ポリエ
ーテルグリコールは保存中の劣化を防ぐために窒
素などの不活性ガス中に貯えたり、あるいはヒン
ダードフエノール類などの酸化防止剤を少量添加
して安定化するなどの方策を講じることが好まし
い。 本発明の方法によれば、例えばロール、ベル
ト、ソリツドタイヤなどの用途に好適なポリウレ
タン、弾性ポリエステル、弾性ポリアミドなどの
原料として有用な、分子量が500〜5000程度で高
官能度のPTMG系ポリエーテルグリコールを効
率良く製造することができる。 以下実施例によつて本発明をさらに具体的に説
明するが、本発明はその主旨を越えない限り、こ
れらの実施例によつて限定されるものではない。
なお以下の例において数平均分子量はすべて蒸気
圧浸透計を用いて測定したものであり、水酸基価
(1gのポリマー中のOH基と当量に相当する
KOHのmg数)はすべてJIS―K1557―1970の方法
にしたがつて測定したものである。 実施例 1 テフロン製かきまぜ装置、滴下ロート、温度計
および三方コツクを備えた内容積1.2の四ツ口
セパラブルフラスコを真空乾燥後窒素ガスで置換
し、モレキユラーシーブで脱水した水分含量
80ppmのテトラヒドロフラン500gを仕込んで−
20℃に冷却した。次いでかきまぜながら滴下ロー
トから遊離SO3濃度25重量%の発煙硫酸(以下25
%発煙硫酸と記す)100gを40分かけて滴下した。
滴下中、反応混合物の温度を−20℃±2℃に保つ
よう冷却した。滴下終了後、−20℃でかきまぜな
がら2時間反応させたのち反応液の一部をサンプ
リングし、ガスクロマトグラフで未反応テトラヒ
ドロフランの量を測定して転化率をもとめたとこ
ろ32%であつた。次いで反応混合物の温度を10℃
に昇温してさらに2時間かきまぜながら反応させ
た。反応中を通じて反応混合物は無色であり、反
応系は固化することなく均一液状であつた。次い
で、前記と同様にして転化率をもとめたところ58
%であつた。反応終了後かきまぜながらイオン交
換水420gを加えて反応を停止させ、反応液をテ
フロン製かきまぜ装置および蒸留装置を備えた内
容積2の三ツ口セパラブルフラスコに移し、か
きまぜながら95℃のオイルバス中で2時間加熱し
重合反応生成物末端の加水分解を行なうと同時に
未反応テトラヒドロフランを蒸留、回収した。加
水分解後かきまぜを止め、反応混合物を室温で静
置放冷したのち分離した水層を抜きとり、残つた
油層にトルエン600gと水酸化カルシウム3gを
加えて室温で1時間かきまぜた。次いでロータリ
ーエバポレータを用い、減圧下約60℃でトルエン
の一部を残留する水とともに留去した。次いで固
体をフイルターで過し、再びロータリーエバポ
レーターで揮発分を完全に留去して無色の
PTMGを得た。このものの数平均分子量は1000、
水酸基価は112であり、これらから計算される官
能度は2.0であつた。また、触媒効率αをもとめ
たところ0.93であつた。なおαは次の(1)式によつ
て計算したものである。 α=〔PTMG系ポリエーテルグリコール分子のモル数〕/
〔使用した発煙硫酸中のSO3のモル数〕 =〔モノマー使用量〕×〔転化率〕×80/〔発煙硫酸
の使用量〕×25×〔PTMG系ポリエーテルグリコールの数
平均分子量〕……(1) 実施例 2 実施例1と同様の反応装置を用い、テトラヒド
ロフラン500gを−10℃に保ちながら25%発煙硫
酸105gにホウフツ化ナトリウム0.75gを溶解し
たものを40分かけて滴下した。滴下終了後さらに
−10℃で1時間反応させた。このときのテトラヒ
ドロフランの転化率は40%であつた。次いで反応
混合物の温度を30℃にしてさらに2時間反応させ
た。反応終了後の転化率は55%であつた。反応中
を通じて反応系の固化や着色は認められなかつ
た。次いで重合反応混合物を実施例1と同様に処
理して無色のPTMGを得た。このものの分析結
果および触媒効率αは表1に示す通りであつた。 実施例 3 実施例1と同じ反応装置を用い、テトラヒドロ
フラン500gを−20℃に保ちながら25%発煙硫酸
150gを1時間かけて滴下し、滴下終了後さらに
−20℃で10分間反応させた。このときの転化率は
14%であつた。次いで反応温度を30℃に上げて1
時間反応させた。反応終了後の転化率は47%であ
つた。反応中を通じて反応系の固化や着色はなか
つた。次に反応混合物をよくかきまぜながらイオ
ン交換水180gを加えて反応を停止させ、続いて
45%の水酸化ナトリウム溶液145gを加え硫酸の
1部を中和した。滴下ロートを蒸留装置にかえた
のち、95℃のオイルバス中で2時間加熱し、重合
反応生成物末端の加水分解を行なうと同時に未反
応テトラヒドロフランを留去した。反応後かきま
ぜをとめて室温まで静置放冷したのち、分離した
水相を抜き取り、油層にイオン交換水180gを加
えて、再びかきまぜながら95℃のオイルバス中で
2時間加熱した。反応後室温で静置放冷したの
ち、分離した水層を抜きとり、油層を実施例1と
同様に処理して無色液状のPTMGを得た。この
ものの分析結果ならびに触媒効率αは表1に示す
通りであつた。 実施例 4 実施例1と同様にして準備した内容積600mlの
四ツ口セパラブルフラスコを使用し、テトラヒド
ロフラン250gを−10℃に保ちながら25%発煙硫
酸27.5gにホウフツ化ナトリウム0.75gを溶解し
た溶液を30分かけて滴下し、滴下終了後さらに−
10℃で2時間反応させた。次いで反応温度を30℃
に上げて2時間反応させた。第1段階終了時点で
の転化率は37%、最終転化率は59%であつた。反
応中を通じて反応系の固化や着色は全く認められ
なかた。反応終了後、混合物をかきまぜながらイ
オン交換水195gを加えて反応を停止させたのち
実施例1と同様の処理を行なつて、無色半固体状
のPTMGを得た。このものの分析結果ならびに
触媒効率αは表1に示す通りであつた。 実施例 5 実施例4と同じ反応装置を用い、テトラヒドロ
フラン250gを−20℃に保ちながら25%発煙硫酸
27.5gにホウフツ化ナトリウム0.75gを溶解した
溶液を30分かかつて滴下し、滴下終了後さらに−
20℃で2時間反応させた。次いで反応温度を10℃
に昇温して2時間反応させた。第1段階終了時の
転化率および最終転化率はそれぞれ19%および69
%であり、反応中を通じて反応系の固化や着色は
認められなかつた。反応終了後実施例4と同様の
処理を行なつて無色半固体状のPTMGを得た。
このものの分析結果ならびに触媒効率αは表1に
示す通りであつた。 実施例 6 実施例1と同じ反応装置を使用して、テトラヒ
ドロフラン500gを−10℃に保ちながら25%発煙
硫酸105gにホウフツ化カリウム0.82gを溶解し
たものを40分かけて滴下した。滴下終了後さらに
−10℃で1時間反応させた。このときのテトラヒ
ドロフランの転化率は38%であつた。次いで反応
混合物の温度を10℃にしてさらに2時間反応させ
た。反応終了後の転化率は60%であつた。反応中
を通じて反応系の固化や着色は認められなかつ
た。次いで重合反応混合物を実施例1と同様に処
理して無色のPTMGを得た。このものの分析結
果および触媒効率αは表1に示す通りであつた。 比較例 1 実施例1の実験において、発煙硫酸滴下時の温
度を10℃とし、滴下終了後も同一温度において4
時間反応させた以外は同一条件下で反応を行なつ
た。得られたPTMGは微黄色液体であり、分析
結果ならびに触媒効率αは表1に示す通りであつ
た。本比較例の結果を実施例1の結果と比較すれ
ば、本発明の方法がすぐれていることは明白であ
る。 比較例 2 実施例1の実験において、第1段階の反応終了
後昇温することなしに、さらに−20℃で4時間反
応を行なつたほかは同一の条件下で反応を行なつ
た。反応終了後重合反応混合物はワツクス状にな
つており、かきまぜはほとんど不可能であつた。
最終転化率は45%であり、実施例1と同様の方法
で回収した無色のPTMGの分析結果ならびに触
媒効率αは表1に示す通りであつた。 比較例 3 実施例1と同様の反応装置を使用して、テトラ
ヒドロフラン500gを0℃に保ちながら25%発煙
硫酸150gを1時間かけて滴下し、さらに0℃で
2時間反応を行なつた。反応終了後も反応系は液
状であり、転化率は68%であつた。反応終了後イ
オン交換水630gを加えた以外は実施例1と同様
の操作を行ない無色のPTMGを得た。得られた
PTMGの分析結果、および触媒効率αは表1の
通りであり、本発明の方法に比べて触媒の利用効
率が大幅に低下することがわかる。またこの方法
で分子量が650程度のPTMGを得るべく、発煙硫
酸の使用量、SO3濃度、発煙硫酸の滴下速度およ
び滴下後の重合時間を種々変化させて実験を行な
つたが、いずれもPTMGの分子量は850以上であ
り、分子量650程度のPTMGを得ることはできな
かつた。 比較例 4 実施例3の実験において、第1段階終了後に反
応温度を上げることなく−20℃においてさらに3
時間反応を続けた以外は同一の条件下で実験を行
なつた。反応終了後も反応系は一部固化がはじま
つており、白く濁つていた。最終転化率は58%、
得られたPTMGは無色で、その分析結果および
触媒効率αは表1に示す通りであつた。 比較例 5 実施例3の実験において、発煙硫酸滴下時の温
度を30℃とし、滴下終了後も同一温度において2
時間反応させた以外は同一条件下で実験を行なつ
た。発煙硫酸滴下中は発熱のため反応混合物の温
度をコントロールするのが困難な上、滴下開始後
5分位から反応混合物は黄色になり、滴下終了時
には褐色となつた。得られたPTMGも褐色に着
色しており、その分析結果および触媒効率αは表
1に示す通りであつた。 比較例 6 実施例4と同じ反応装置を用い、テトラヒドロ
フラン250gを0℃に保ちながら、25%発煙硫酸
50gとホウフツ化ナトリウム1.75gの混合物を1
時間かけて滴下し、さらに同一温度で2時間反応
を行なつた。最終転化率は66%であり、反応系は
ワツクス状に固化していた。実施例4と同様の方
法で無色のPTMGを得たが、その分析結果およ
び触媒効率αは表1に示す通りであつた。 比較例 7 実施例4の実験において、第1段階の反応終了
後昇温することなく−10℃でさらに反応を続け
た。滴下終了後5時間位で反応系はワツクス状に
固化し、かきまぜは不可能となつた。この時点で
反応を停止させ、実施例4と同様の方法で
PTMGを回収した。このものの分析結果および
触媒効率αは表1に示した通りである。 比較例 8 実施例4の実験において、テトラヒドロフラン
を30℃に保ちながら発煙硫酸の滴下を行ない、そ
の後も同一温度のまま4時間反応を続けた他は同
様に実験を行なつた。最終転化率は30%であり、
回収したPTMGは淡褐色を帯びていた。このも
のの分析結果および触媒効率αは表1に示した通
りである。 比較例 9 実施例5の実験において、第1段階の反応時間
を滴下終了後30分とし第2段階の反応時間を2.5
時間とした以外は同一条件下で実験を行なつた。
第1段階終了時の転化率および最終転化率は1.5
%および63%であつた。このものの分析結果およ
び触媒効率αは表1に示した通りであり、この結
果から第1段階における転化率が5%に達しない
ときは、触媒効率の増大はほとんど認められない
ことがわかる。 比較例 10 実施例1の実験において、触媒滴下時および第
一段階の反応の温度を5℃とした以外は同一の条
件下で実験を行なつた。最終転化率は46%で得ら
れた無色のPTMGの分析結果および触媒効率α
は表1に示した通りであつた。この結果から第一
段階と第2段階の反応温度の差が10℃より小さい
場合には、触媒効率はほとんど増加しないことが
わかる。
[Table] When the reaction temperature in the second stage is less than 0°C, there is almost no improvement in catalyst efficiency, and the number average molecular weight
It becomes extremely difficult to produce PTMG polyether glycol with a molecular weight of 1000 or less. Furthermore, if the reaction temperature in the second stage exceeds 40℃, the final conversion rate will decrease due to the influence of the chemical equilibrium of the polymerization reaction, the catalyst efficiency will decrease, and the burden of recovering and purifying unreacted monomers will increase, which is disadvantageous. In addition, coloration and decomposition of the polymerization reaction product occur. Also, the difference from the first stage polymerization temperature is 10
When the temperature is below ℃, almost no improvement in catalyst efficiency is observed. In view of the magnitude of the effect of improving catalyst efficiency and operability, the reaction temperature in the second stage is preferably 10°C to 40°C, with a difference of at least 15°C from the reaction temperature in the first stage. The polymerization time in the second stage varies depending on the ratio of monomers and catalyst used, reaction temperature, etc., and is not particularly limited, but is usually 1 to 5
About an hour is preferable. A suitable monomer for use in the process of the invention is tetrahydrofuran or mixtures thereof with other cyclic ethers copolymerizable with it. Specific examples of copolymerizable cyclic ethers include ethylene oxide, propylene oxide, three-membered ring ethers such as epichlorohydrin, oxacyclobutane,
3,3-dimethyloxacyclobutane, 3,3-
Examples include four-membered ring ethers such as bis(chloromethyl)oxacyclobutane, five-membered ring ethers such as 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, and 2,5-dihydrofuran, tetrahydropyran, and oxacycloheptane. When obtaining a polyether glycol containing an oxytetramethylene group as a main component according to the present invention, the amount of the cyclic ether copolymerizable with tetrahydrofuran is usually 100 parts by weight or less per 100 parts by weight of tetrahydrofuran. Preferably it is 50 parts by weight or less. In the method of the present invention, a catalyst containing fuming sulfuric acid and/or fluorosulfuric acid as a main component is used as a ring-opening polymerization catalyst. Normally used as fuming sulfuric acid
Suitably, the free SO 3 concentration used in the production of PTMG-based polyether glycols is about 40% by weight or less, preferably 20% to 35% by weight. Although fuming sulfuric acid can be used alone,
If necessary, a suitable co-catalyst may be present in order to increase the polymerization rate or control the molecular weight. As the cocatalyst, known ones such as perchloric acid, perchlorate, metal fluorides, metal borofluorides, or aromatic compounds can be used.
Metal borofluorides, particularly sodium borofluoride and potassium borofluoride, are preferred from the viewpoint of ease of acquisition and handling and effectiveness. Fluorosulfuric acid is usually used alone as a ring-opening polymerization catalyst, but
Depending on the case, for example, an anhydride of a chain carboxylic acid may be used together. In carrying out the method of the present invention, the amount of ring-opening polymerization catalyst used is not particularly limited. Examples of commonly used ranges include 10 to 40 parts by weight for 100 parts by weight of monomer in the case of oleum;
Further, when a co-catalyst is used, the amount used is 0.05 to 20 parts by weight per 100 parts by weight of oleum. In the case of fluorosulfuric acid, the amount to be used is 1 to 20 parts by weight per 100 parts by weight of the monomer, and if necessary, 5 to 400 parts by weight of chain carboxylic acid anhydride etc. to 100 parts by weight of fluorosulfuric acid. Use in combination in approximately parts by weight. The amount of these ring-opening polymerization catalysts to be used is appropriately selected depending on the required molecular weight of PTMG, etc. The ring-opening polymerization reaction method is not particularly limited, and can be carried out in a batch reaction, a continuous reaction, etc. When carried out in a batch reaction, the catalyst is heated at an appropriate rate to facilitate the removal of the heat of mixing. It is preferable to stir the polymerization system while continuously adding it to the monomer. In the method of the present invention, tetrahydrofuran or the like can be polymerized in the presence of an inert solvent such as cyclohexane, dichloroethane, or dichloromethane, but it is preferable to carry out the polymerization without using a solvent unless particularly necessary. In the method of the present invention, after polymerizing a monomer such as tetrahydrofuran as described above, the polymerization reaction product is hydrolyzed, and the hydrolysis reaction is carried out under acidic conditions. For example, after completing the polymerization, add water in an amount such that the sulfuric acid concentration after dilution is 5% to 40% by weight, and then heat the mixture under reflux at a temperature of 80°C to 120°C for about 1 to 10 hours. Can be done. The hydrolysis reaction may be carried out immediately after the completion of the polymerization, or it may be carried out after the polymerization has been stopped in advance with a small amount of water and unreacted monomers and solvents have been recovered by methods such as distillation or stripping. Furthermore, it is also possible to distill and recover unreacted monomers and solvents simultaneously with the hydrolysis reaction. The method for recovering PTMG polyether glycol from the reaction mixture after hydrolysis is not particularly limited, and for example, after hydrolysis, it can be left to cool,
This can be done by separating the PTMG polyether glycol as an oil layer, removing the aqueous layer, neutralizing the acid content in the oil layer with a solid alkali, separating the solid, and removing volatile components under reduced pressure. can. In the above operations, in order to facilitate the recovery of PTMG polyether glycol,
It is possible to add a solvent that dissolves the PTMG polyether glycol and is immiscible with water, such as benzene, toluene, chloroform, n-butanol, and the like. To prevent the PTMG polyether glycol thus obtained from deteriorating during storage, measures such as storing it in an inert gas such as nitrogen or adding a small amount of antioxidants such as hindered phenols to stabilize it are taken. It is preferable to take measures. According to the method of the present invention, a PTMG polyether glycol having a molecular weight of about 500 to 5000 and a high functionality is useful as a raw material for polyurethane, elastic polyester, elastic polyamide, etc. suitable for applications such as rolls, belts, and solid tires. can be manufactured efficiently. The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these Examples unless the gist thereof is exceeded.
In addition, in the following examples, all number average molecular weights were measured using a vapor pressure osmometer, and the hydroxyl value (equivalent to OH groups in 1 g of polymer)
All values (mg of KOH) were measured according to the method of JIS-K1557-1970. Example 1 A four-necked separable flask with an internal volume of 1.2 equipped with a Teflon stirrer, a dropping funnel, a thermometer, and a three-way pot was vacuum dried, replaced with nitrogen gas, and dehydrated with a molecular sieve. Moisture content
Prepare 500g of 80ppm tetrahydrofuran-
Cooled to 20°C. Next, add fuming sulfuric acid (hereinafter referred to as 25%) with a free SO 3 concentration of 25% by weight from the dropping funnel while stirring.
% fuming sulfuric acid) was added dropwise over 40 minutes.
During the dropwise addition, the reaction mixture was cooled to maintain a temperature of -20°C±2°C. After the dropwise addition was completed, the reaction was allowed to proceed for 2 hours with stirring at -20°C, and then a portion of the reaction solution was sampled and the amount of unreacted tetrahydrofuran was measured using a gas chromatograph to determine the conversion rate, which was 32%. Then the temperature of the reaction mixture was increased to 10°C.
The temperature was raised to , and the reaction was continued with stirring for an additional 2 hours. The reaction mixture was colorless throughout the reaction, and the reaction system remained homogeneous and liquid without solidifying. Next, the conversion rate was determined in the same manner as above, and it was found that 58
It was %. After the reaction was completed, 420 g of ion-exchanged water was added while stirring to stop the reaction, and the reaction solution was transferred to a three-neck separable flask with an internal volume of 2 equipped with a Teflon stirring device and distillation device, and placed in an oil bath at 95°C while stirring. The mixture was heated for 2 hours to hydrolyze the terminal end of the polymerization reaction product, and at the same time, unreacted tetrahydrofuran was distilled and recovered. After hydrolysis, stirring was stopped, and the reaction mixture was left to cool at room temperature. The separated aqueous layer was extracted. To the remaining oil layer, 600 g of toluene and 3 g of calcium hydroxide were added, and the mixture was stirred at room temperature for 1 hour. Then, a portion of the toluene was distilled off along with the remaining water using a rotary evaporator at about 60° C. under reduced pressure. The solid is then passed through a filter, and the volatile components are completely distilled off again using a rotary evaporator to form a colorless solid.
Got PTMG. The number average molecular weight of this substance is 1000,
The hydroxyl value was 112, and the functionality calculated from these values was 2.0. Further, when the catalyst efficiency α was determined, it was 0.93. Note that α is calculated using the following equation (1). α=[Number of moles of PTMG polyether glycol molecules]/
[Number of moles of SO 3 in the fuming sulfuric acid used] = [Amount of monomer used] x [Conversion rate] x 80 / [Amount of fuming sulfuric acid used] x 25 x [Number average molecular weight of PTMG polyether glycol]... (1) Example 2 Using the same reaction apparatus as in Example 1, 0.75 g of sodium borofluoride dissolved in 105 g of 25% oleum was added dropwise to 500 g of tetrahydrofuran over 40 minutes while keeping the temperature at -10°C. After the dropwise addition was completed, the reaction was further carried out at -10°C for 1 hour. The conversion rate of tetrahydrofuran at this time was 40%. Then, the temperature of the reaction mixture was raised to 30°C, and the reaction was continued for an additional 2 hours. The conversion rate after the completion of the reaction was 55%. No solidification or coloring of the reaction system was observed throughout the reaction. The polymerization reaction mixture was then treated in the same manner as in Example 1 to obtain colorless PTMG. The analysis results and catalyst efficiency α of this product were as shown in Table 1. Example 3 Using the same reaction apparatus as in Example 1, 500 g of tetrahydrofuran was mixed with 25% oleum while keeping it at -20°C.
150 g was added dropwise over 1 hour, and after the addition was completed, the reaction was further carried out at -20°C for 10 minutes. The conversion rate at this time is
It was 14%. Then, the reaction temperature was raised to 30℃ and 1
Allowed time to react. The conversion rate after the completion of the reaction was 47%. There was no solidification or coloration of the reaction system throughout the reaction. Next, while stirring the reaction mixture well, add 180 g of ion-exchanged water to stop the reaction, and then
145 g of 45% sodium hydroxide solution was added to neutralize a portion of the sulfuric acid. After replacing the dropping funnel with a distillation apparatus, the mixture was heated in an oil bath at 95° C. for 2 hours to hydrolyze the terminal end of the polymerization reaction product and at the same time distill off unreacted tetrahydrofuran. After the reaction, stirring was stopped and the mixture was allowed to cool to room temperature. The separated aqueous phase was extracted, 180 g of ion-exchanged water was added to the oil layer, and the mixture was heated in an oil bath at 95° C. for 2 hours while stirring again. After the reaction, the mixture was left to cool at room temperature, the separated aqueous layer was extracted, and the oil layer was treated in the same manner as in Example 1 to obtain colorless liquid PTMG. The analysis results and catalyst efficiency α of this product were as shown in Table 1. Example 4 Using a four-neck separable flask with an internal volume of 600 ml prepared in the same manner as in Example 1, 0.75 g of sodium borofluoride was dissolved in 27.5 g of 25% oleum while maintaining 250 g of tetrahydrofuran at -10°C. The solution was added dropwise over 30 minutes, and then -
The reaction was carried out at 10°C for 2 hours. Then the reaction temperature was increased to 30℃
The temperature was increased to 2 hours and the reaction was carried out for 2 hours. The conversion rate at the end of the first stage was 37%, and the final conversion rate was 59%. No solidification or coloration of the reaction system was observed throughout the reaction. After the reaction was completed, 195 g of ion-exchanged water was added to the mixture while stirring to stop the reaction, and the same treatment as in Example 1 was carried out to obtain colorless semi-solid PTMG. The analysis results and catalyst efficiency α of this product were as shown in Table 1. Example 5 Using the same reactor as in Example 4, 25% oleum was added to 250 g of tetrahydrofuran while keeping it at -20°C.
A solution of 0.75 g of sodium borofluoride dissolved in 27.5 g was added dropwise for 30 minutes, and after the addition was complete, -
The reaction was carried out at 20°C for 2 hours. Then the reaction temperature was increased to 10℃
The temperature was raised to 1, and the mixture was allowed to react for 2 hours. The conversion rate and final conversion rate at the end of the first stage were 19% and 69, respectively.
%, and no solidification or coloring of the reaction system was observed throughout the reaction. After the reaction was completed, the same treatment as in Example 4 was carried out to obtain colorless semi-solid PTMG.
The analysis results and catalyst efficiency α of this product were as shown in Table 1. Example 6 Using the same reaction apparatus as in Example 1, 0.82 g of potassium borofluoride dissolved in 105 g of 25% oleum was added dropwise to 500 g of tetrahydrofuran over 40 minutes while keeping the temperature at -10°C. After the dropwise addition was completed, the reaction was further carried out at -10°C for 1 hour. The conversion rate of tetrahydrofuran at this time was 38%. Then, the temperature of the reaction mixture was raised to 10°C, and the reaction was continued for an additional 2 hours. The conversion rate after the completion of the reaction was 60%. No solidification or coloring of the reaction system was observed throughout the reaction. The polymerization reaction mixture was then treated in the same manner as in Example 1 to obtain colorless PTMG. The analysis results and catalyst efficiency α of this product were as shown in Table 1. Comparative Example 1 In the experiment of Example 1, the temperature during dropping of fuming sulfuric acid was set to 10°C, and after the completion of dropping, the temperature was set to 4°C at the same temperature.
The reaction was carried out under the same conditions except for a longer reaction time. The obtained PTMG was a slightly yellow liquid, and the analysis results and catalytic efficiency α were as shown in Table 1. Comparing the results of this comparative example with the results of Example 1, it is clear that the method of the present invention is superior. Comparative Example 2 In the experiment of Example 1, the reaction was carried out under the same conditions except that the reaction was further carried out at -20°C for 4 hours without raising the temperature after the first stage reaction was completed. After the reaction was completed, the polymerization reaction mixture was wax-like and stirring was almost impossible.
The final conversion rate was 45%, and the analysis results of colorless PTMG recovered in the same manner as in Example 1 and the catalyst efficiency α were as shown in Table 1. Comparative Example 3 Using the same reaction apparatus as in Example 1, 150 g of 25% oleum was added dropwise over 1 hour to 500 g of tetrahydrofuran while keeping the temperature at 0°C, and the reaction was further carried out at 0°C for 2 hours. The reaction system remained liquid even after the reaction was completed, and the conversion rate was 68%. After the reaction was completed, the same operation as in Example 1 was carried out except that 630 g of ion-exchanged water was added to obtain colorless PTMG. obtained
The PTMG analysis results and catalyst efficiency α are shown in Table 1, and it can be seen that the catalyst utilization efficiency is significantly lower than in the method of the present invention. In addition, in order to obtain PTMG with a molecular weight of about 650 using this method, experiments were conducted by varying the amount of oleum used, SO 3 concentration, dropping rate of oleum, and polymerization time after dropping, but in all cases PTMG had a molecular weight of 850 or more, and it was not possible to obtain PTMG with a molecular weight of about 650. Comparative Example 4 In the experiment of Example 3, after the first stage was completed, the reaction temperature was kept at -20°C for 3 more times.
The experiment was carried out under the same conditions except that the reaction was continued for an hour. Even after the reaction was completed, some of the reaction system had begun to solidify and was cloudy white. The final conversion rate is 58%,
The obtained PTMG was colorless, and the analysis results and catalytic efficiency α were as shown in Table 1. Comparative Example 5 In the experiment of Example 3, the temperature at the time of dropping oleum was set at 30°C, and after the completion of dropping, the temperature was set at 20°C at the same temperature.
The experiment was conducted under the same conditions except for the reaction time. During the dropping of the fuming sulfuric acid, it was difficult to control the temperature of the reaction mixture due to heat generation, and the reaction mixture turned yellow from about 5 minutes after the start of the dropping, and turned brown by the end of the dropping. The obtained PTMG was also colored brown, and the analysis results and catalytic efficiency α were as shown in Table 1. Comparative Example 6 Using the same reaction apparatus as in Example 4, 25% oleum was added to 250 g of tetrahydrofuran while keeping it at 0°C.
A mixture of 50g and 1.75g of sodium borofluoride
The mixture was added dropwise over a period of time, and the reaction was further carried out at the same temperature for 2 hours. The final conversion rate was 66%, and the reaction system had solidified into a waxy state. Colorless PTMG was obtained in the same manner as in Example 4, and the analysis results and catalytic efficiency α were as shown in Table 1. Comparative Example 7 In the experiment of Example 4, the reaction was continued at -10°C without increasing the temperature after the first stage reaction was completed. Approximately 5 hours after the completion of the dropwise addition, the reaction system solidified into a waxy state, and stirring became impossible. At this point, the reaction was stopped and the same procedure as in Example 4 was carried out.
PTMG was collected. The analysis results and catalyst efficiency α of this product are shown in Table 1. Comparative Example 8 The same experiment as in Example 4 was carried out except that fuming sulfuric acid was added dropwise while keeping the tetrahydrofuran at 30°C, and the reaction was continued for 4 hours at the same temperature. The final conversion rate is 30%,
The recovered PTMG had a light brown color. The analysis results and catalyst efficiency α of this product are shown in Table 1. Comparative Example 9 In the experiment of Example 5, the reaction time of the first stage was 30 minutes after the completion of dropping, and the reaction time of the second stage was 2.5 minutes.
The experiment was conducted under the same conditions except for the time.
The conversion rate at the end of the first stage and the final conversion rate are 1.5
% and 63%. The analysis results and catalytic efficiency α of this product are shown in Table 1, and the results show that when the conversion rate in the first stage does not reach 5%, almost no increase in catalytic efficiency is observed. Comparative Example 10 The experiment was conducted under the same conditions as in Example 1, except that the temperature during catalyst dropwise addition and the first stage reaction was 5°C. Analysis results of colorless PTMG obtained with final conversion rate of 46% and catalyst efficiency α
were as shown in Table 1. This result shows that when the difference in reaction temperature between the first stage and the second stage is less than 10°C, the catalyst efficiency hardly increases.

【表】【table】

【表】 実施例 7 実施例4と同じ反応装置を使用して、テトラヒ
ドロフラン250gを0℃に保ちながらフルオロ硫
酸20gを30分間かけて滴下し、さらに0℃で1時
間反応させたのち、反応温度を20℃に上げて5時
間反応させた。第一段階終了時の転化率および最
終転化率はそれぞれ18%および72%であり、重合
中を通じて反応系の固化や着色は全くなかつた。
反応終了後、混合物をかきまぜながらイオン交換
水135gを加え、その後は実施例4と同様の処理
を行なつて無色のPTMGを回収した。このもの
の数平均重合度は1880、水酸基価は60、で官能度
は2.0であつた。また触媒効率βを次の(2)式によ
つて計算した結果は0.96であつた。 β=〔PTMG系ポリエーテルグリコール分子のモル数〕/
〔使用したフルオロ硫酸のモル数〕×2 =〔モノマー使用量〕×〔転化率〕×2/〔フルオロ
硫酸の使用量〕×〔PTMG系ポリエーテルグリコールの数
平均分子量〕……(2) 実施例 8 単量体としてテトラヒドロフラン225gと3,
3―ジメチルオキサシクロブタン25gの混合物を
使用した以外は実施例4と同一条件下で実験を行
なつた。第1段階終了時点での転化率は40%、最
終転化率は64%であつた。反応中を通じて反応系
の固化や着色は認められなかつた。得られた無色
液状のポリエーテルグリコールの数平均分子量は
2050、水酸基価は54で官能度は2.0であり、触媒
効率αは0.91であつた。 実施例 9 実施例7の実験においてフルオロ硫酸滴下時お
よび第1段階の反応温度を5℃とし、滴下後の反
応時間を40分間とした以外は同一条件下において
実験を行なつた。第1段階終了時の転化率および
最終転化率はそれぞれ21%および71%であり、重
合中を通じて反応系の固化や着色は全くなかつ
た。得られたPTMGの数平均分子量は1900、水
酸基価は59官能度は2.0および触媒効率βは0.93
であつた。 比較例 11 実施例7の実験において第1段階の反応終了後
も昇温することなしに0℃で5時間反応させた。
最終転化率は68%であり、反応終了後反応系は固
化していた。実施例7と同様の処理を行なつて無
色のPTMGを回収した。その数平均分子量は
2020、水酸基価は52、官能度は2.0であり、触媒
効率βは0.84であつた。 比較例 12 実施例7の実験において、テトラヒドロフラン
を20℃に保ちながらフルオロ硫酸を添加し、その
後も同一温度に保つたままさらに6時間反応させ
たのち、実施例7と同様の処理を行なつて無色の
PTMGを得た。最終転化率は67%であり、得ら
れたPTMGの数平均分子量は1930、水酸基価は
58、官能度は2.0および触媒効率βは0.87であつ
た。
[Table] Example 7 Using the same reaction apparatus as in Example 4, 20 g of fluorosulfuric acid was added dropwise over 30 minutes to 250 g of tetrahydrofuran while keeping it at 0°C. After further reaction at 0°C for 1 hour, the reaction temperature was was raised to 20°C and reacted for 5 hours. The conversion rate at the end of the first stage and the final conversion rate were 18% and 72%, respectively, and there was no solidification or coloration of the reaction system throughout the polymerization.
After the reaction was completed, 135 g of ion-exchanged water was added to the mixture while stirring, and the same treatment as in Example 4 was carried out to recover colorless PTMG. The number average degree of polymerization of this product was 1880, the hydroxyl value was 60, and the functionality was 2.0. Further, the catalyst efficiency β was calculated using the following equation (2), and the result was 0.96. β = [Number of moles of PTMG polyether glycol molecules] /
[Number of moles of fluorosulfuric acid used] x 2 = [Amount of monomer used] x [Conversion rate] x 2 / [Amount of fluorosulfuric acid used] x [Number average molecular weight of PTMG polyether glycol]...(2) Implementation Example 8 225g of tetrahydrofuran and 3,
The experiment was carried out under the same conditions as in Example 4, except that a mixture of 25 g of 3-dimethyloxacyclobutane was used. The conversion rate at the end of the first stage was 40%, and the final conversion rate was 64%. No solidification or coloring of the reaction system was observed throughout the reaction. The number average molecular weight of the colorless liquid polyether glycol obtained is
2050, the hydroxyl value was 54, the functionality was 2.0, and the catalytic efficiency α was 0.91. Example 9 The experiment was carried out under the same conditions as in Example 7 except that the reaction temperature during the fluorosulfuric acid addition and in the first stage was 5° C., and the reaction time after the addition was 40 minutes. The conversion rate at the end of the first stage and the final conversion rate were 21% and 71%, respectively, and there was no solidification or coloring of the reaction system throughout the polymerization. The number average molecular weight of the obtained PTMG was 1900, the hydroxyl value was 59, the functionality was 2.0, and the catalytic efficiency β was 0.93.
It was hot. Comparative Example 11 In the experiment of Example 7, the reaction was continued at 0° C. for 5 hours without increasing the temperature even after the first stage reaction was completed.
The final conversion rate was 68%, and the reaction system was solidified after the reaction was completed. The same treatment as in Example 7 was performed to recover colorless PTMG. Its number average molecular weight is
2020, the hydroxyl value was 52, the functionality was 2.0, and the catalytic efficiency β was 0.84. Comparative Example 12 In the experiment of Example 7, fluorosulfuric acid was added while keeping tetrahydrofuran at 20°C, and after that, the reaction was continued for another 6 hours while keeping the same temperature, and then the same treatment as in Example 7 was carried out. colorless
Got PTMG. The final conversion rate was 67%, the number average molecular weight of the obtained PTMG was 1930, and the hydroxyl value was
58, functionality was 2.0 and catalytic efficiency β was 0.87.

Claims (1)

【特許請求の範囲】[Claims] 1 発煙硫酸および/またはフルオロ硫酸を主成
分とする開環重合触媒の存在下にテトラヒドロフ
ランまたはこれと共重合可能な他の環状エーテル
との混合物を重合させ、次いで重合反応生成物を
加水分解してポリエーテルグリコールを製造する
にあたり(1)重合反応の第1段階においてテトラヒ
ドロフラン等の単量体と開環重合触媒とを−30℃
〜10℃の範囲の温度で接触させて、上記単量体の
重合を行なわせ、(2)次いで該単量体の重合体への
転化率が5%以上に達した段階で反応温度を0℃
〜40℃の範囲で且つ第1段階の反応温度より少な
くとも10℃高い温度に昇温させて重合反応を続け
ることを特徴とするポリエーテルグリコールの製
造方法。
1 Polymerize tetrahydrofuran or a mixture with other cyclic ether copolymerizable with it in the presence of a ring-opening polymerization catalyst containing fuming sulfuric acid and/or fluorosulfuric acid as a main component, and then hydrolyze the polymerization reaction product. In producing polyether glycol (1) In the first step of the polymerization reaction, a monomer such as tetrahydrofuran and a ring-opening polymerization catalyst are heated at -30°C.
(2) Then, when the conversion rate of the monomer to the polymer reaches 5% or more, the reaction temperature is reduced to 0. ℃
A method for producing polyether glycol, characterized in that the polymerization reaction is continued at a temperature in the range of ~40°C and at least 10°C higher than the reaction temperature in the first stage.
JP55153781A 1980-11-04 1980-11-04 Preparation of polyether glycol Granted JPS5777638A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP55153781A JPS5777638A (en) 1980-11-04 1980-11-04 Preparation of polyether glycol
US06/316,287 US4371713A (en) 1980-11-04 1981-10-29 Process for the preparation of polyether glycol
DE8181305252T DE3173834D1 (en) 1980-11-04 1981-11-04 A process for the preparation of polyether glycols
EP81305252A EP0051499B1 (en) 1980-11-04 1981-11-04 A process for the preparation of polyether glycols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55153781A JPS5777638A (en) 1980-11-04 1980-11-04 Preparation of polyether glycol

Publications (2)

Publication Number Publication Date
JPS5777638A JPS5777638A (en) 1982-05-15
JPS638971B2 true JPS638971B2 (en) 1988-02-25

Family

ID=15569992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55153781A Granted JPS5777638A (en) 1980-11-04 1980-11-04 Preparation of polyether glycol

Country Status (1)

Country Link
JP (1) JPS5777638A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255372A (en) * 1989-03-30 1990-10-16 Mitsubishi Electric Corp Ink sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006027233A1 (en) * 2006-06-09 2007-12-13 Basf Ag Process for the preparation of polytetrahydrofuran or tetrahydrofuran copolymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255372A (en) * 1989-03-30 1990-10-16 Mitsubishi Electric Corp Ink sheet

Also Published As

Publication number Publication date
JPS5777638A (en) 1982-05-15

Similar Documents

Publication Publication Date Title
US4728722A (en) Preparation of polyoxybutylene polyoxyalkylene glycols having a narrow molecular weight distribution and a reduced content of oligomeric cyclic ethers
US5099074A (en) Process for the preparation of polyether glycols
US4243799A (en) Polymerization of tetrahydrofuran
JP3989548B2 (en) Polymerization of cyclic ethers
US4371713A (en) Process for the preparation of polyether glycol
KR19980070889A (en) Process for producing polyether polyol
Cataldo Iodine: A ring opening polymerization catalyst for tetrahydrofuran
JPH02248426A (en) Manufacture of oxetane polyether polyol
US4585592A (en) Reducing the content of oligomeric cyclic ethers in polyoxybutylene polyoxyalkylene glycols
JPS638971B2 (en)
JP2000501765A (en) Improved method for recovering diacetate of polytetramethylene ether
JPS6111969B2 (en)
JPS60152480A (en) Novel substituted trifluorooxetane and preparation thereof
JP4800568B2 (en) Process for producing polyether polyol with narrowed molecular weight distribution
JPH0434550B2 (en)
JP3931421B2 (en) Process for producing polytetramethylene ether glycol
JPS61123630A (en) Production of polyalkylene ether polyol
JPS638972B2 (en)
JPS6361964B2 (en)
JPH0116251B2 (en)
CN115612087B (en) Preparation method of perfluoropolyether iodide
JP3284031B2 (en) Method for producing polyether glycol
JPS61143428A (en) Production of polyalkylene ether polyol
JPH0446291B2 (en)
JP3267007B2 (en) Method for producing polytetramethylene ether glycol