JPS6389453A - Aluminum oxynitride-alumina base composite castable refractories - Google Patents
Aluminum oxynitride-alumina base composite castable refractoriesInfo
- Publication number
- JPS6389453A JPS6389453A JP61235393A JP23539386A JPS6389453A JP S6389453 A JPS6389453 A JP S6389453A JP 61235393 A JP61235393 A JP 61235393A JP 23539386 A JP23539386 A JP 23539386A JP S6389453 A JPS6389453 A JP S6389453A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum oxynitride
- alumina
- refractory
- base composite
- castable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 18
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims description 17
- 239000002131 composite material Substances 0.000 title claims description 3
- 239000011819 refractory material Substances 0.000 title description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002893 slag Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003628 erosive effect Effects 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 150000001722 carbon compounds Chemical class 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- ATRMIFNAYHCLJR-UHFFFAOYSA-N [O].CCC Chemical compound [O].CCC ATRMIFNAYHCLJR-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- WHOPEPSOPUIRQQ-UHFFFAOYSA-N oxoaluminum Chemical compound O1[Al]O[Al]1 WHOPEPSOPUIRQQ-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明はキャスタブル耐火物、特に、酸窒化アルミニ
ウム−アルミナ系複合キャスタブル耐火物に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to castable refractories, particularly aluminum oxynitride-alumina composite castable refractories.
近年、鋼の高級化を目的として、溶銑の脱珪。 In recent years, desiliconization of hot metal has been used for the purpose of upgrading steel.
脱硫等の予備処理が実施されている。この溶銑予備処理
に使用する高炉樋材、製鋼用キャスタブル耐火物として
SiC,Cを含有するA I! z O3系、或いはM
gO系の耐火物が使用されている。この種の耐火物は溶
銑、溶鋼、溶融スラグに対して濡れ難く、これらが浸透
し難いという利点がある反面、炭素の酸化によって耐火
物組織の脆弱化をもたらし、また、SiCを含むものに
ついてはSiO□を生成し、更に、スラグ成分であるF
ed、CaO等によって融点低下を招いて溶損量が大き
くなるのである。前記溶銑予備処理剤にはFed、Ca
b、CaFt 、Na、O等を含むものが多く、この中
のFeOは、SiCを酸化し、またNa、OはCを酸化
するので、上記溶損は更に大きくなることになる。Preliminary treatment such as desulfurization is being carried out. A I! containing SiC and C is used as blast furnace gutter material and castable refractory for steelmaking to be used for hot metal pretreatment. z O3 series or M
gO-based refractories are used. This type of refractory has the advantage of being difficult to wet with hot metal, molten steel, and molten slag, and is difficult to penetrate, but on the other hand, the oxidation of carbon weakens the refractory structure, and those containing SiC SiO□ is generated, and F, which is a slag component, is
ed, CaO, etc., lower the melting point and increase the amount of erosion. The hot metal pretreatment agent contains Fed, Ca
Many of the materials contain b, CaFt, Na, O, etc., of which FeO oxidizes SiC, and Na and O oxidize C, so the above-mentioned melting loss becomes even greater.
一方、xAj!N−YAlzOz (酸窒化アルミニウ
ム)材は、AINの共有結合的な特性から溶銑。On the other hand, xAj! N-YAlzOz (aluminum oxynitride) material is made of hot metal due to the covalent bond properties of AIN.
溶鋼、溶融スラグに対して漏れ難く、高融点であり、耐
酸化性に優れ、各種の予備処理剤に対して溶損の少ない
耐火物である。この酸窒化アルミニウム−アルミナ材の
耐用性を左右するのは窒素の揮散によるものと考えられ
、従って、窒素の揮散を何等かの方法で抑えることがで
きると、より耐用性の優れた耐火物とすることができる
。It is a refractory that does not easily leak against molten steel and molten slag, has a high melting point, has excellent oxidation resistance, and has little erosion loss when exposed to various pretreatment agents. It is thought that the durability of aluminum oxynitride-alumina material is determined by the volatilization of nitrogen, so if nitrogen volatilization can be suppressed in some way, it will be possible to make a refractory with better durability. can do.
このような理由から、例えば、特開昭61−10145
4号公報には、酸窒化アルミニウムに対して炭素又は炭
素化合物を混入した耐火物が開示されている。しかしな
がら、このような耐火物では混入された炭素、或いは炭
素化合物が酸化し、充分に目的を達成できないという欠
点があった。For this reason, for example, JP-A-61-10145
No. 4 discloses a refractory in which carbon or a carbon compound is mixed into aluminum oxynitride. However, such refractories have the disadvantage that the carbon or carbon compound mixed therein oxidizes, making it impossible to fully achieve the intended purpose.
c問題点を解決するための手段〕
この発明は上記事情に鑑みて提案されたものであって、
酸窒化アルミニウム−アルミナ材に於ける窒素の揮散を
抑え、より耐用性のあるキャスタブル耐火物を提供する
ことを目的とする。Means for Solving Problem c] This invention was proposed in view of the above circumstances, and
The purpose is to suppress the volatilization of nitrogen in an aluminum oxynitride-alumina material and provide a more durable castable refractory.
上記目的を達成する為に、この発明は以下のような手段
を採用している。即ち、酸窒化アルミニウム−アルミナ
系耐火物原料に平均粒径10μm以下のシリカ超微粉、
或いは平均粒径74μm以下の金属シリコンの中の少な
くとも何れか一方を0.5〜5重量%含有せしめるよう
にしている。In order to achieve the above object, the present invention employs the following means. That is, ultrafine silica powder with an average particle size of 10 μm or less is added to the aluminum oxynitride-alumina refractory raw material.
Alternatively, at least one of metal silicones having an average particle size of 74 μm or less is contained in an amount of 0.5 to 5% by weight.
上記酸窒化アルミニウム耐火物原料は、xAIN−yA
lzoxで表される固溶体であり、Xとyの比率は生成
条件によって異なる。この中の窒化アルミニウムAlN
は前記したように共有結合的性質を有し、本来耐酸化性
が高く、溶銑。The aluminum oxynitride refractory raw material is xAIN-yA
It is a solid solution represented by lzox, and the ratio of X and y varies depending on the production conditions. Aluminum nitride AlN in this
As mentioned above, it has covalent properties and is inherently highly oxidation resistant, making it similar to hot metal.
溶鋼、溶融スラグに対して濡れ難いという性質を有して
おり、また、酸化されてもAl2O2が生成されるのみ
で、この時点での耐蝕性に大きな変化が生じない。It has the property of being difficult to wet with molten steel and molten slag, and even if it is oxidized, only Al2O2 is produced, and there is no major change in corrosion resistance at this point.
一方、SiO□の超微粉は耐火物組織を緻密にする性質
を有しており、これを上記酸窒化アルミニウム−アルミ
ナ系耐火物に混入することによってその組成を緻密化し
、窒素の揮散を抑えることになる。On the other hand, ultrafine powder of SiO□ has the property of densifying the refractory structure, and by mixing it into the aluminum oxynitride-alumina refractory, the composition can be densified and nitrogen volatilization can be suppressed. become.
また、金属シリコンを酸窒化アルミニウムに混入すると
、
Aj!N+Si+−02→5t−A1−0−Nなる反応
によって窒素が耐火物組織内に固定化され、窒素の揮散
を防止することになる。Also, when metallic silicon is mixed into aluminum oxynitride, Aj! Nitrogen is fixed within the refractory structure by the reaction N+Si+-02→5t-A1-0-N, and volatilization of nitrogen is prevented.
上記シリカ超微粉、或いは金属シリコンの添加量は、耐
火物中に0.5〜5重量%である。添加量が0.5重量
%以下であると充分な効果を得ることができない。また
、添加量が5重量%以上になると溶損量が大きくなる。The amount of the ultrafine silica powder or metal silicon added to the refractory is 0.5 to 5% by weight. If the amount added is less than 0.5% by weight, sufficient effects cannot be obtained. Further, when the amount added is 5% by weight or more, the amount of melting loss becomes large.
シリカの粒度は緻密化効果をもたらすという条件から1
0μm以下に限定される。また金属シリコンの粒度も分
散性の点を考慮すると74μm以下に限定される。The particle size of silica is 1 from the condition that it brings about a densification effect.
It is limited to 0 μm or less. Further, the particle size of metallic silicon is also limited to 74 μm or less in consideration of dispersibility.
〔実施例1〕
第1表は平均粒径が74μm以下の金属シリコンを添加
したア!レミナ系と、酸窒化アルミニウム−アルミナ系
の配合と、それらを混練して作製した試料の耐蝕性テス
トの結果を示す。[Example 1] Table 1 shows A! containing metal silicon with an average particle size of 74 μm or less. The results of a corrosion resistance test on a sample made by kneading the remina-based and aluminum oxynitride-alumina-based blends and kneading them are shown.
試料は各配合につき2種類作製した。1つは、混練、鋳
込み後24時間で脱型し、その後110°Cで24時間
乾燥した試料(D系試料)であり、他方は、同じく11
0℃で24時間乾燥した試料を電気炉中、酸化雰囲気で
1400℃で3時間焼成したものである(B系試料)。Two types of samples were prepared for each formulation. One is a sample (D-based sample) that was demolded 24 hours after kneading and casting and then dried at 110°C for 24 hours, and the other was
The sample was dried at 0°C for 24 hours and then fired at 1400°C for 3 hours in an oxidizing atmosphere in an electric furnace (B-series sample).
耐蝕性テストは、D系、D系それぞれの患1から覧8の
8個の試料を1組とし、酸素プロパンバーナーの加熱に
よる回転侵食テストを実施した。温度条件は1550℃
で60分加熱した後60分空冷することを1サイクルと
して、3サイクル繰り返し、その後、24時間放冷した
後、再び上記の条件で3サイクルのテストを繰り返した
。侵食剤として、高炉銑鉄(400g)+ミルスケール
(100g)を用い、各サイクル毎に取り替えた。テス
ト終了後試料を切断し、切断面の侵食剤の浸透層の厚さ
と溶損量を比較した。For the corrosion resistance test, a set of 8 samples, numbered 1 to number 8, of each of the D series and the D series was used, and a rotary corrosion test was conducted by heating with an oxygen-propane burner. Temperature condition is 1550℃
One cycle consisted of heating for 60 minutes and then cooling in the air for 60 minutes, and the test was repeated three times, then allowed to cool for 24 hours, and then the three-cycle test was repeated under the above conditions. Blast furnace pig iron (400 g) + mill scale (100 g) was used as the corrosive agent, and was replaced after each cycle. After the test was completed, the sample was cut and the thickness of the layer penetrated by the corrosive agent on the cut surface and the amount of erosion were compared.
第1表の浸透層の厚さの欄に示すように金属シリコンを
添加しないアルミナ系のキャスタブルによる試料Nll
に対する浸透は10鶴と大きいが、酸窒化アルミニウム
−アルミナ系による試料隘6〜阻8に対する浸透は殆ど
ないことが理解できる。As shown in the column of penetration layer thickness in Table 1, sample Nll is made of alumina-based castable without metal silicon added.
It can be seen that the penetration into Sample No. 6 to No. 8 by the aluminum oxynitride-alumina system is almost non-existent.
金属シリコンを添加していない、アルミナ系の患1試料
の溶損指数を100としたときの各試料の溶損量を溶損
指数として示す。ここで、金属シリコンを添加しない酸
窒化アルミニウム−アルミナ系の焼成試料B系、1lh
5の溶損は極めて太き(アルミナ系の1.5倍となって
おり、また、本願発明品隘6〜阻8は、B系試料、D系
試料を問わす従来品より溶損量が小さいことが理解でき
る。The melting loss amount of each sample is shown as the melting loss index when the melting loss index of one alumina-based sample to which metal silicon is not added is set as 100. Here, the fired sample B system of aluminum oxynitride-alumina without adding metal silicon, 1lh
The melting loss of No. 5 is extremely large (1.5 times that of the alumina-based product), and the amount of melting loss of the invention products No. 6 to No. 8 of the present invention is greater than that of conventional products for B-based and D-based samples. I can understand small things.
〔実施例2〕
第2表にはAltO3SiCC系と
A l z Os M g C系、酸窒化アルミニウ
ム−アルミナ系キャスタブル耐火物の各種処理剤に対す
る耐蝕性の比較を示す。[Example 2] Table 2 shows a comparison of the corrosion resistance of AltO3SiCC-based, AlzOsMgC-based, and aluminum oxynitride-alumina-based castable refractories against various treatment agents.
試料は実施例1と同じように8個を組合わせ、耐蝕性の
評価にあたっては2回の平均値をとった。Eight samples were combined in the same manner as in Example 1, and the average value of the two tests was taken for evaluation of corrosion resistance.
試料は110℃で24時間乾燥後のものを使用した。温
度、テスト方法とも実施例1と全(同じである。The sample used was after drying at 110°C for 24 hours. The temperature and test method were all the same as in Example 1.
第2表の結果から判るように、何れの処理剤に対しても
酸窒化アルミニウム−アルミナ系のキャスタブルは従来
のAl!gos 5iC−C系。As can be seen from the results in Table 2, for all treatment agents, aluminum oxynitride-alumina castables are better than conventional Al! gos 5iC-C system.
Al、○、−MgO系キャスタブルより耐蝕性がよく、
特に、ミルスケール(Fed)にCaF、やN a z
CO3が加わった処理剤に対する耐蝕性は、Aj!z
os S i C−C系に比べて目立って良い結果を
示した。酸窒化アルミニウム−アルミナ系のキャスタブ
ルNci3.Ikdとも実施例1と同じく、浸透層は殆
ど見られなかった。It has better corrosion resistance than Al, ○, -MgO castable,
In particular, mill scale (Fed) contains CaF, Na z
Corrosion resistance against treatment agents containing CO3 is Aj! z
It showed significantly better results than the os Si C-C system. Aluminum oxynitride-alumina castable Nci3. As in Example 1, almost no permeation layer was observed in both Ikd and Ikd.
(以下余白)
〔発明の効果〕
以上述べたように、本発明に於ける酸窒化アルミニウム
−アルミナ系のキャスタブル耐火物は窒素の揮散を抑制
するように構成されているので、AIto3 SICC
系キャスタブル耐火物に見られる耐酸化性の弱点、Af
ltO3系キャスタブルに見られるスラグ浸透性の弱点
をカバーするキャスタブルとして使用できる。特に溶銑
予備処理用キャスタブルとして高耐用性が期待される。(The following is a blank space) [Effects of the Invention] As described above, the aluminum oxynitride-alumina castable refractory of the present invention is configured to suppress nitrogen volatilization, so AIto3 SICC
The weakness of oxidation resistance found in castable refractories, Af
It can be used as a castable to cover the weakness of slag permeability seen in ltO3 castable. It is expected to have high durability, especially as a castable for hot metal pretreatment.
Claims (1)
粒径74μm以下の金属シリコンの中の少なくとも何れ
か一方を0.5〜5重量%含むことを特徴とする酸窒化
アルミニウム−アルミナ系複合キャスタブル耐火物。An aluminum oxynitride-alumina composite castable refractory characterized by containing 0.5 to 5% by weight of at least one of ultrafine silica powder with an average particle size of 10 μm or less or metallic silicon with an average particle size of 74 μm or less thing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61235393A JPH07115950B2 (en) | 1986-10-01 | 1986-10-01 | Aluminum oxynitride-alumina composite castable refractory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61235393A JPH07115950B2 (en) | 1986-10-01 | 1986-10-01 | Aluminum oxynitride-alumina composite castable refractory |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6389453A true JPS6389453A (en) | 1988-04-20 |
JPH07115950B2 JPH07115950B2 (en) | 1995-12-13 |
Family
ID=16985421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61235393A Expired - Lifetime JPH07115950B2 (en) | 1986-10-01 | 1986-10-01 | Aluminum oxynitride-alumina composite castable refractory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07115950B2 (en) |
-
1986
- 1986-10-01 JP JP61235393A patent/JPH07115950B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07115950B2 (en) | 1995-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5212123A (en) | Refractory materials formed from refractory grains bonded by a sialon matrix containing dispersed graphite and/or boron nitride particles and a process for the preparation of these materials | |
JPS6389453A (en) | Aluminum oxynitride-alumina base composite castable refractories | |
JPH01305849A (en) | Magnesia-carbon brick | |
KR830001463B1 (en) | Manufacturing method of fire brick | |
JPS5921581A (en) | Refractories for continuous casting | |
JPS63285168A (en) | Carbon containing refractories | |
KR100446898B1 (en) | Compositions of Alsica brick | |
JPH01286950A (en) | Carbon-containing refractory | |
JP2765458B2 (en) | Magnesia-carbon refractories | |
JPH0345553A (en) | Carbon-containing refractory | |
JPH02141480A (en) | Castable refractory | |
JPH04342454A (en) | Magnesia-containing unburned refractory | |
JPH02267150A (en) | Carbon-containing refractory for iron melting | |
US3410930A (en) | Method of improving the operation of a cupola | |
JPH02274370A (en) | Refractories for vessel for pretreatment of molten iron | |
JPH01257164A (en) | Refractory incorporating carbon | |
JPH0632648A (en) | Carbon-containing refractory | |
JPS6256351A (en) | Carbon-containing refractories | |
JPH0283250A (en) | Production of carbon-containing calcined refractory | |
JPH05319902A (en) | Carbon-containing basic refractory | |
JPS60108362A (en) | Mgo-c refractories | |
JPS63166751A (en) | Carbon-containing basic refractory brick | |
JPH05319898A (en) | Carbon containing refractory | |
JPH04209744A (en) | Carbon-containing refractory | |
JPS63112457A (en) | Refractories for molten metal |