JPS6389452A - Magnesia base refractory material - Google Patents

Magnesia base refractory material

Info

Publication number
JPS6389452A
JPS6389452A JP61235138A JP23513886A JPS6389452A JP S6389452 A JPS6389452 A JP S6389452A JP 61235138 A JP61235138 A JP 61235138A JP 23513886 A JP23513886 A JP 23513886A JP S6389452 A JPS6389452 A JP S6389452A
Authority
JP
Japan
Prior art keywords
magnesia
slag
refractory material
zirconia
clinker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61235138A
Other languages
Japanese (ja)
Other versions
JPH0345026B2 (en
Inventor
牛込 進
喜久雄 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP61235138A priority Critical patent/JPS6389452A/en
Publication of JPS6389452A publication Critical patent/JPS6389452A/en
Publication of JPH0345026B2 publication Critical patent/JPH0345026B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、塩基性耐火材料として用いられるマグネシ
ア質耐火材料の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to improvement of a magnesia-based refractory material used as a basic refractory material.

(従来の技術) 現在、塩基性耐火物に使用される代表的材料はマグネシ
ア質材料であるが、このマグネシア質材料には、耐火性
に富む、塩基性スラグに対する溶解度が小さいなどの長
所がちる反面、スラグ等の異成分がタリンカー組織内に
容易に浸透するので、組織の変質、劣化を来たすとか、
高い熱膨張率を有するなどの短所がある。このため、こ
れらの原料を用いて成形及び施工する定形、不定形耐火
物は使用中、スラグ等の異成分を容易に吸収し、変質層
を形成することにより組織の劣化を来たす層ができるな
ど原材料との異質の層が生成し、熱的スボーリンダ並に
構造的剥離が生じ損瘍を大きくするなど、マグネシア材
本来の特性を充分生かし得ないのが現状である。
(Prior art) Currently, the typical material used for basic refractories is magnesia material, but this magnesia material has many advantages such as high fire resistance and low solubility in basic slag. On the other hand, foreign components such as slag easily penetrate into the tarinker structure, causing alteration and deterioration of the structure.
It has disadvantages such as a high coefficient of thermal expansion. For this reason, shaped and unshaped refractories formed and constructed using these raw materials easily absorb foreign components such as slag during use, forming an altered layer that causes structural deterioration. The current situation is that magnesia materials cannot take full advantage of their original properties, such as the formation of a layer that is different from the raw material, structural peeling similar to thermal spalling, and enlarged lesions.

従来の製法によるマグネシアクリンカ−の微構造は、ペ
リクレース微結晶と、これをとシまく珪酸塩マトリック
スとから成るため、ペリクレースは2ざo OOoと高
融点を持ち、かつ塩基性スラグ等に対する高い抵抗性を
示すが、珪酸塩マトリックスは融点が低く<、かつスラ
グとの反応性が高いため、高温下でスラグと接すると、
このマトリックス部に容易にかつ多量に昂ラグが浸入し
て低融液を生成する。ペリクレース微結晶はその凹)を
生成した低融液質物で包囲される構成となフ、組織がゆ
るみ、スラグは、さらに浸し易くなる。
The microstructure of magnesia clinker produced by the conventional method consists of periclase microcrystals and a silicate matrix surrounding them. Therefore, periclase has a high melting point of 2°C, OOo, and high resistance to basic slag, etc. However, the silicate matrix has a low melting point and high reactivity with slag, so when it comes into contact with slag at high temperatures,
The lag lag easily and in large quantities penetrates into this matrix portion to produce a low melting liquid. Since the periclase microcrystals are surrounded by the low-melting substance that produced the concavity, the structure becomes loose and the slag becomes more easily soaked.

このため厚い変質層を形成すると共に内部に脆弱な層を
も形成することになシ、熱的、構造的な剥離現象を起し
、大きな損傷につながっている。
As a result, a thick degraded layer is formed, and a fragile layer is also formed inside, which causes thermal and structural peeling phenomena, leading to major damage.

(発明が解決しようとする問題点) 上述の欠点を改善するため現在では、 1)高純度の水酸化マグネシウム原料を採用する。(Problem to be solved by the invention) In order to improve the above-mentioned shortcomings, currently, 1) Adopt high purity magnesium hydroxide raw material.

■)高圧造粒または仮焼高圧造粒を行い密度を高める。■) Increase density by performing high pressure granulation or calcining and high pressure granulation.

■)高温焼成を行う。■) Perform high temperature firing.

ことによシ、高純度でしかも高密度のクリンカーが製造
されているが、しかしこのように高純度化。
In particular, clinker with high purity and high density is manufactured;

高密度化が図られても、クリンカーの品質は基本的には
同じ構成でちるため、使用時スラグの易浸透性、即ち組
織内浸透機構も変らず、幾らかの改善は見られるが充分
なる効果を修めるまでに至っていないのが現状である。
Even if the density is increased, the quality of the clinker basically remains the same, so the easy permeability of the slag during use, that is, the mechanism for penetrating into tissues, will not change, and although there will be some improvement, it will not be enough. The current situation is that the effect has not yet been achieved.

そこでこの発明は現状に鑑み、従来のマグネシアクリン
カ−の特徴である高耐熱性と塩基性スラグに対する低い
溶解性を保持させ、一方ではその最大欠点であるスラグ
易浸透性を改良した各種塩基性耐火物として優れた性質
を備えたマグネシア耐火材料を提供することを技術的課
題とする。
Therefore, in view of the current situation, this invention has been developed to maintain the high heat resistance and low solubility in basic slag that are the characteristics of conventional magnesia clinker, while improving the slag permeability, which is its biggest drawback. The technical objective is to provide a magnesia refractory material with excellent properties as a product.

(問題点を解決するための手段) この発明は上記問題、技術的課題を解決するためになさ
れたもので、その手法は、マグネシア粒子にジルコニア
(ZrOz)を主成分とする可溶性材料および/または
微粉末を用いてマグネシアクリンカ−材の粒子表面を被
覆させた後、焼成することにより、該マグネシア粒子の
表層面被覆焼結層および/または結晶界面にジルコニア
材を介在させた構造を形成せしめたことを特徴とするマ
グネシア質耐火材料である。
(Means for Solving the Problems) The present invention was made to solve the above-mentioned problems and technical problems. After coating the particle surface of the magnesia clinker material using fine powder, by firing, a structure in which the zirconia material is interposed in the sintered layer covering the surface surface of the magnesia particle and/or the crystal interface is formed. It is a magnesia-based refractory material characterized by:

この発明をさらに詳しく説明すると、 マグネシアクリンカ−の粒子表面及び結晶粒界にジルコ
ニアを介在させるため、可溶性ジルコニア材および/ま
たは微粉末のジルコニアを主成分とする耐火材で被覆し
、高温で焼成することによって粒子表層部には一部被覆
材の強固な薄膜焼結層及びペリクレース、結晶粒界にジ
ルコニアを介在する組織を形成させることによシペリク
レースの結合性の高い、そしてスラグの浸透性の小さい
新規な優れたマグネシア質耐火材料を容易に得ることに
ある。
To explain this invention in more detail, in order to interpose zirconia on the particle surfaces and grain boundaries of magnesia clinker, the magnesia clinker is coated with a refractory material whose main component is soluble zirconia material and/or finely powdered zirconia, and fired at a high temperature. By forming a strong thin sintered layer of coating material and periclase on the grain surface, and a structure with zirconia interposed at the grain boundaries, cypericlase has high bonding properties and low slag permeability. An object of the present invention is to easily obtain a new and excellent magnesia-based refractory material.

次にこの発明の実施例について述べる。Next, embodiments of this invention will be described.

実施例/。Example/.

スラッジ状の水酸化マグネシウムを、先ず(昇温J 0
0”71 p最高温度りo ooa 、最高温度保持2
時間ンにて仮焼を行い、続いてブリケットマシンによっ
て造粒を行いIO×20xgの顆粒状物を作シ、次にそ
の粒子を/100°c/2Arの一次焼成を行う。そし
てその粒子に、塩化マグネシウム水溶液g%と酸化ジル
コニウム粉末g%とを加えミキサーでj分間混合して粒
表面被覆を行い、乾燥を行った後、ロータリーキルン(
ロータリーキルン内滞留を時間、最高温度/9(1’c
)で焼成を行い本発明品を得た。
First, sludge-like magnesium hydroxide is heated (at elevated temperature J 0
0”71 p maximum temperature o ooa, maximum temperature hold 2
Calcination is performed in a briquette machine, followed by granulation using a briquette machine to produce granules of IO x 20 x g, and the particles are then primary fired at /100°C/2Ar. Then, g% of magnesium chloride aqueous solution and g% of zirconium oxide powder were added to the particles and mixed for j minutes in a mixer to coat the particle surface. After drying, rotary kiln (
Residence time in rotary kiln, maximum temperature/9 (1'c)
) to obtain a product of the present invention.

実施例2 マグネサイト砿をインペラーブレーカ−によシ粉砕し、
整粒子を実施例/と同じの粒表面被覆工程を経て、ロー
タリーキルンにて、ロータリーキルン内滞留を時間、最
高温度/ A OCPaにて焼成して本発明品を得た。
Example 2 Grinding magnesite with an impeller breaker,
The particles were subjected to the same particle surface coating process as in Examples, and then fired in a rotary kiln at a maximum temperature of A OCPa for a period of time to obtain a product of the present invention.

実施例3 製造されたマグネシアクリンカ−を元原料として改質を
行う・先ずマグネシアクリンカ−を、塩化マグネシウム
水溶液に%とジルコニア粉末(110μ以下)ざ%とを
加えミキサー混合で粒子表面被覆を行い、乾燥後、ロー
タリーキルン(/ヲOO°a)で焼成を行い本発明品を
得た。
Example 3 Modifying the produced magnesia clinker as a raw material - First, magnesia clinker was added to an aqueous magnesium chloride solution with zirconia powder (110μ or less) and mixed with a mixer to coat the particle surface. After drying, the product was fired in a rotary kiln (/woOO°a) to obtain a product of the present invention.

以上のような各実施例に基づき、新規なマグネシア質ク
リンカーを得た。
Based on the above examples, a novel magnesia clinker was obtained.

これらのクリンカーの特徴は主にMfO粒子の表層部の
結晶粒界にジルコニアが介在する居が形成されること及
びその表面にジルコニア被覆焼結層を形成する構造とな
った。
These clinkers are characterized mainly by the formation of zirconia intercalated grain boundaries at the grain boundaries in the surface layer of the MfO particles, and the structure in which a zirconia-coated sintered layer is formed on the surface.

(発明の効果) 以上の各実施例の手法による新規マグネシア質クリンカ
ーの特徴は、主にMfOの粒表面にジルコニア材の焼結
薄膜および/または粒表層部のペリクレース結晶粒界に
ジルコニアが介在する構成を成した素材を得た。
(Effects of the Invention) The novel magnesia clinker produced by the method of each of the above embodiments is characterized mainly by the presence of a sintered thin film of zirconia material on the MfO grain surface and/or the presence of zirconia at the periclase grain boundaries in the grain surface layer. I got the material that made up the composition.

なお品質評価試験結果は次の通シである。The quality evaluation test results are as follows.

品質特性値 物性値 スラグ浸食浸透試験 (浸漬時間30分)浸透試験 試験条件 製鋼の転炉よ)出る塩基度3のスラグを黒鉛質ルツボの
中で溶融してこの溶融スラグ中に浸漬するO なお本発明に用いられるマグネシアクリンカ−材の粒形
状は耐火物を製造する際、クリンカーを粉砕する工程を
必要としない大きさのものを使用することがよシ有効で
ある。
Quality Characteristics Physical Properties Slag Erosion Penetration Test (Immersion Time 30 minutes) Penetration Test Test Conditions Slag with a basicity of 3 from a steelmaking converter is melted in a graphite crucible and immersed in this molten slag. Regarding the particle shape of the magnesia clinker material used in the present invention, it is most effective to use one having a size that does not require a step of crushing the clinker when producing refractories.

以上のように本発明によるクリンカーは、ジルコニア材
の被覆、介在によシ高温下で接触するスラグの浸透をお
さえることに大きな効果をもたらすこと及びマグネシア
質クリンカーの特性を損なうことなく改善し得る耐火材
料を製造することができた。
As described above, the clinker according to the present invention has a great effect on suppressing the penetration of slag that comes into contact with the zirconia material at high temperatures through coating and intervening, and has a fire resistance that can be improved without impairing the characteristics of the magnesia clinker. material could be manufactured.

なお本実施例/で得たマグネシアクリンカ−を用い製造
した耐火煉瓦の試験結果は次の通シである。
The test results of the refractory bricks manufactured using the magnesia clinker obtained in this example are as follows.

スラグ浸食試験(転炉スラグ中鎖誘導炉ライニング方式
 6時間) 以上の如く溶損量においては殆んど同程度であり、スラ
グの浸漬深さは//7.!;と非常に少ない。
Slag erosion test (converter slag medium chain induction furnace lining method, 6 hours) As mentioned above, the amount of erosion is almost the same, and the slag immersion depth is /7. ! ; and very few.

また比較材は稼動面に平行して深さ20Mの所のキレン
の発生が認められるが、実施例/のものには全く認めら
れないなどの効果が得られている。
In addition, in the comparison material, generation of cracks was observed at a depth of 20M parallel to the operating surface, but in the example/material, no such occurrence was observed at all.

Claims (1)

【特許請求の範囲】[Claims]  マグネシア質耐火材料の粒子表面にジルコニアを主成
分とする耐火材料を被覆させた後、焼成することにより
形成された被覆焼結層および/または粒子表層部より組
織内に浸透した浸透層からなることを特徴とするマグネ
シア質耐火材料。
Consisting of a coating sintered layer formed by coating the particle surface of a magnesia-based refractory material with a refractory material mainly composed of zirconia and then firing it, and/or a permeation layer that penetrates into the structure from the particle surface layer. A magnesia fireproof material characterized by:
JP61235138A 1986-10-02 1986-10-02 Magnesia base refractory material Granted JPS6389452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61235138A JPS6389452A (en) 1986-10-02 1986-10-02 Magnesia base refractory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61235138A JPS6389452A (en) 1986-10-02 1986-10-02 Magnesia base refractory material

Publications (2)

Publication Number Publication Date
JPS6389452A true JPS6389452A (en) 1988-04-20
JPH0345026B2 JPH0345026B2 (en) 1991-07-09

Family

ID=16981616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61235138A Granted JPS6389452A (en) 1986-10-02 1986-10-02 Magnesia base refractory material

Country Status (1)

Country Link
JP (1) JPS6389452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055847A (en) * 2005-08-24 2007-03-08 Itochu Ceratech Corp Spherical calcia-based clinker and refractory obtained by using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055847A (en) * 2005-08-24 2007-03-08 Itochu Ceratech Corp Spherical calcia-based clinker and refractory obtained by using the same
JP4481904B2 (en) * 2005-08-24 2010-06-16 伊藤忠セラテック株式会社 Spherical calcia clinker and refractory obtained using the same

Also Published As

Publication number Publication date
JPH0345026B2 (en) 1991-07-09

Similar Documents

Publication Publication Date Title
JPS6024068B2 (en) Method for producing spalling-resistant dense refractories
CA2554301C (en) Burnt refractory ceramic product and mixture for its manufacture
JPS6389452A (en) Magnesia base refractory material
JPS62260765A (en) Refractory composition and refractory brick manufactured therefrom
KR20220141289A (en) Particles for the production of sintered refractory products, batches for the production of sintered refractory products, processes for the production of sintered refractory products and sintered refractory products
TW201628994A (en) Batch for the production of a refractory product, a process for the production of a refractory product, a refractory product as well as the use of a refractory product
JPS6044262B2 (en) magnesia clinker
JPS61222955A (en) Magnesia refractory material
JPS62132763A (en) Magnesia base refractory material
KR930009349B1 (en) Refractory brick of mgo-c matrix
JPS5839798B2 (en) Method for producing coal-fired firebrick
JPH0794343B2 (en) Magnesia clinker and method for producing the same
JPH0262510B2 (en)
US3262794A (en) Basic fused refractories
US3540898A (en) Creep resistant periclase refractories
JP3510642B2 (en) Magnesia clinker and manufacturing method thereof
JPS61232266A (en) Manufacture of alumina-carbon base refractories for immersion nozzle
JPH0412065A (en) Double structure refractory
CN105837180A (en) ZrSiO4-MgO material and preparation method thereof
JPH0262509B2 (en)
KR0150797B1 (en) Sintered magnesia clinker and its manufacturing method
JP2962927B2 (en) Carbon-containing irregular refractories
Peng et al. Effect of ZrO2 Additive on the Properties of MgO-Cr2O3 Refractory Used for RH Degasser
JP3091760B2 (en) Coarse-crystal magnesia clinker and method for producing the same
JP3209842B2 (en) Irregular refractories