JPS6389418A - Production of spherical-shaped porous basic magnesium carbonate - Google Patents

Production of spherical-shaped porous basic magnesium carbonate

Info

Publication number
JPS6389418A
JPS6389418A JP23524086A JP23524086A JPS6389418A JP S6389418 A JPS6389418 A JP S6389418A JP 23524086 A JP23524086 A JP 23524086A JP 23524086 A JP23524086 A JP 23524086A JP S6389418 A JPS6389418 A JP S6389418A
Authority
JP
Japan
Prior art keywords
magnesium carbonate
suspension
basic magnesium
magnesium hydroxide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23524086A
Other languages
Japanese (ja)
Other versions
JPH0262483B2 (en
Inventor
Tsuneo Morie
森江 恒男
Toshihiro Kuroki
俊宏 黒木
Yasuhiro Matsumoto
靖弘 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUNOSHIMA KAGAKU KOGYO KK
Konoshima Chemical Co Ltd
Original Assignee
KOUNOSHIMA KAGAKU KOGYO KK
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUNOSHIMA KAGAKU KOGYO KK, Konoshima Chemical Co Ltd filed Critical KOUNOSHIMA KAGAKU KOGYO KK
Priority to JP23524086A priority Critical patent/JPS6389418A/en
Publication of JPS6389418A publication Critical patent/JPS6389418A/en
Publication of JPH0262483B2 publication Critical patent/JPH0262483B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To produce a product with good dispersibility into water and organic solvent, easy to handle and having good workability by blowing gaseous CO2 into a starting suspension of basic magnesium carbonate while adding magnesium hydroxide suspension and allowing the mixture to cause carbonation reaction. CONSTITUTION:The carbonatation reaction is started by blowing the gaseous CO2 into the basic magnesium carbonate suspension contained in a reaction tank while adding the magnesium hydroxide suspension. The carbonatation reaction is continued by continuously blowing the gaseous CO2 into the suspension in the reaction tank while adding the magnesium hydroxide suspension. Thereby, the spherical-shaped porous basic magnesium carbonate having uniform particle size is produced without spreading a distribution of the particle size. Then, the concentration of the starting suspension of the basic magnesium carbonate and the concentration of the magnesium hydroxide suspension are preferably 10-80g MgO/l and the temp. of the carbonatation system is preferably 40-80 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、塩基性炭酸マグネシウムの製造方法に関する
。更に詳しくは本発明は、多孔質球状塩基性炭酸マグネ
シウムを、粒度分布を広げることなく、粒径の均一なも
のとして製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing basic magnesium carbonate. More specifically, the present invention relates to a method for producing porous spherical basic magnesium carbonate having a uniform particle size without widening the particle size distribution.

塩基性炭酸マグネシウムは、ゴム、プラスチックなどの
ポリマーへの無機光てん剤として、とくに天然ゴムの透
明配合用光てん剤として多く使用されている。また、塗
料や化粧料の分野、あるいは製紙の分野において、白色
の無機光てん剤として使用されている。さらに、薬剤の
キャリアー、芳香剤の担体等としても使用されている。
Basic magnesium carbonate is widely used as an inorganic brightening agent for polymers such as rubber and plastics, especially as a brightening agent for transparent compounding of natural rubber. It is also used as a white inorganic brightening agent in the fields of paints, cosmetics, and paper manufacturing. Furthermore, it is used as a carrier for drugs, a carrier for fragrances, etc.

本発明で得られる多孔質球状塩基性炭酸マグネシウムも
、上記と同様の分野で利用の期待されるものである。
The porous spherical basic magnesium carbonate obtained by the present invention is also expected to be used in the same fields as above.

〔従来の技術〕[Conventional technology]

塩基性炭酸マグネシウムの製造方法として従来採用され
ている主なものとしては、■水酸化マグネシウムの炭酸
化法、■苦汁・炭酸アルカリ法、0重炭酸マグネシウム
の熱分解法がある。
The main methods conventionally employed for producing basic magnesium carbonate are: (1) carbonation of magnesium hydroxide, (2) bittern/alkali carbonate method, and thermal decomposition of magnesium bicarbonate.

上記■の製造方法は、水酸化マグネシウム懸濁液に炭酸
ガスを吹き込んで炭酸化せしめ塩基性炭酸マグネシウム
とする方法である。■の製造方法は、苦汁の希釈液に当
量よシやや過剰の炭酸ナトリウムあるいは炭酸アンモニ
ウムなどの炭酸アルカリ溶液を反応させて正炭酸マグネ
シウム(MgCO、・3H20)を生成させ、これを熟
成して塩基性炭酸マグネシウムを得る方法である。また
■の製造方法は、重炭酸マグネシウム(M y(HCO
、)2)の溶液を加熱分解して正炭酸マグネシウムとし
、これを熟成して塩基性炭酸マグネシウムとする方法で
ある。
The production method (2) above is a method in which carbon dioxide gas is blown into a magnesium hydroxide suspension to carbonate it to obtain basic magnesium carbonate. The production method (2) involves reacting a dilute solution of bittern with an equivalent amount or excess of an alkaline carbonate solution such as sodium carbonate or ammonium carbonate to produce orthomagnesium carbonate (MgCO, .3H20), which is then aged to form a base. This is a method of obtaining magnesium carbonate. In addition, the manufacturing method of ■ is magnesium bicarbonate (M y (HCO
,) 2) is thermally decomposed to produce normal magnesium carbonate, which is then aged to produce basic magnesium carbonate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記製造方法によって得られた塩基性炭酸マグネシウム
は、いずれも園外状の微細粒子から成シ、見掛比重が小
さく、吸油量が大きい等の特徴を持つが、反面、これら
の塩基性炭酸マグネシウムを水、有機溶媒あるいはポリ
マー等に分散させる場合に、粘度が増大するために、多
量かつ均一に分散させることが困難であった。また、粉
末の流動性が悪く、飛散するなど取シ扱い作業性が悪い
といり問題を有してい念。さらに、これらの塩基性炭酸
マグネシウムを製造する際に、脱水ケーキの含水率が高
く、乾燥に多量のエネルギーを必要とするため、生産コ
ストが高くなるという欠点があった。
The basic magnesium carbonate obtained by the above production method has characteristics such as being composed of microscopic particles, having a small apparent specific gravity, and having a large oil absorption amount. When dispersing in water, organic solvents, polymers, etc., the viscosity increases, making it difficult to disperse uniformly in a large amount. In addition, the powder has poor flowability and is difficult to handle, such as scattering, making it difficult to handle. Furthermore, when producing these basic magnesium carbonates, the moisture content of the dehydrated cake is high and a large amount of energy is required for drying, resulting in high production costs.

本発明は、上記の如き問題点を解決し、水、有機溶媒へ
の分散性が良く、かつ取扱い作業性が良好で安価な多孔
質球状塩基性炭酸マグネシウムを容易に製造しうる方法
を提供せんとするものである0 に、多孔質球状塩基性炭酸マグネシウムを、粒度分布を
広げることなく、粒径の均一なものとして一挙に製造す
る方法を研究し、本発明に到達し念。
The present invention solves the above-mentioned problems and provides a method for easily producing porous spherical basic magnesium carbonate that has good dispersibility in water and organic solvents, is easy to handle, and is inexpensive. In order to achieve this goal, we researched a method for producing porous spherical basic magnesium carbonate with a uniform particle size without widening the particle size distribution, and finally arrived at the present invention.

すなわち本発明は、反応槽内の塩基性炭酸マグネシウム
出発懸濁液に水酸化マグネシウム懸濁液を添加しながら
炭酸ガスを吹き込んで炭酸化反応を開始し、引き続き同
反応槽内の懸濁液に水酸化マグネシウム懸濁液を添加し
ながら炭酸ガスを吹き込んで炭酸化反応を続行すること
を特徴とする、多孔質球状塩基性炭酸マグネシウムの製
造方法に係るものである。
That is, in the present invention, a carbonation reaction is started by blowing carbon dioxide gas into a basic magnesium carbonate starting suspension in a reaction tank while adding a magnesium hydroxide suspension, and then the carbonation reaction is continued into a basic magnesium carbonate starting suspension in the same reaction tank. The present invention relates to a method for producing porous spherical basic magnesium carbonate, which is characterized by continuing the carbonation reaction by blowing carbon dioxide gas while adding a magnesium hydroxide suspension.

〔作 用〕[For production]

本発明に用いる塩基性炭酸マグネシウム出発懸濁液は、
通常のいずれの製造方法によるものでもよく、例えば、
本発明で得た多孔質球状塩基性炭酸マグネシウムでも使
用できる。
The basic magnesium carbonate starting suspension used in the present invention is:
Any conventional manufacturing method may be used, for example,
Porous spherical basic magnesium carbonate obtained in the present invention can also be used.

使用する塩基性炭酸マグネシウム出発懸濁液および水酸
化マグネシウム懸濁液の好ましい濃度範囲は10〜80
9Mg0/IJ であり、さらに好ましい濃度範囲は2
0〜509M90/(l テあるo 1(1gM90/
14! よシ希薄な濃度では、処理液量が多量になシ経
済的でなく、ま′11cao tntqo/lより濃厚
な濃度では炭酸化反応の均一性を保持することが困難で
所望する粒子径が均一な多孔材質球状塩基性炭酸マグネ
シウムとならない。
The preferred concentration range of the basic magnesium carbonate starting suspension and magnesium hydroxide suspension used is 10-80
9Mg0/IJ, and a more preferable concentration range is 2
0~509M90/(l Teal o 1(1gM90/
14! If the concentration is too dilute, the amount of processing liquid will be large and it is not economical, and if the concentration is thicker than 11 tntqo/l, it will be difficult to maintain the uniformity of the carbonation reaction and the desired particle size will not be uniform. It does not become a porous material spherical basic magnesium carbonate.

また炭酸化反応系の温度は40〜80℃が適している。Moreover, the temperature of the carbonation reaction system is suitably 40 to 80°C.

炭酸化反応系の温度が40でよシ低い場合、水酸化マグ
ネシウムよシ生成する正炭酸マグネシウムの熟成が速や
かに進行せず、生成する塩基性炭酸マグネシウムの凝集
状態を制御することが困難となシ所望する粒径が均一な
多孔質球状塩基性炭酸マグネシウムを得難い。炭酸化反
応系の温度が高くなるほど正炭酸マグネシウムから塩基
性炭酸マグネシウムの反応は速やかとなるが、80℃よ
り高温では反応速度にあtp変化がみられず、いたずら
に熱エネルギーを消費することとなシ、工業的に不経済
である。
If the temperature of the carbonation reaction system is too low at 40°C, the ripening of the normal magnesium carbonate produced from magnesium hydroxide will not proceed quickly, and it will be difficult to control the agglomeration state of the basic magnesium carbonate produced. It is difficult to obtain porous spherical basic magnesium carbonate with the desired uniform particle size. The higher the temperature of the carbonation reaction system, the faster the reaction from normal magnesium carbonate to basic magnesium carbonate, but at temperatures higher than 80°C, there is no change in the reaction rate and thermal energy is wasted unnecessarily. However, it is industrially uneconomical.

本発明の多孔質球状の塩基性炭酸マグネシウムを得るに
は、塩基性炭酸マグネシウム出発懸濁液に水酸化マグネ
シウム懸濁液を添加しながら炭酸化反応をおこなわせる
ことが必要で、これKよって塩基性炭酸マグネシウム−
欠粒子の凝集状態を制御することが可能となシ、粒径の
均一な多孔質球状塩基性炭酸マグネシウムを製造すると
とができる。
In order to obtain the porous spherical basic magnesium carbonate of the present invention, it is necessary to carry out the carbonation reaction while adding a magnesium hydroxide suspension to the basic magnesium carbonate starting suspension. magnesium carbonate
Porous spherical basic magnesium carbonate having a uniform particle size can be produced by making it possible to control the agglomeration state of missing particles.

水酸化マグネシウム懸濁液の添加速度5(lALr)は
、これを添加する反応槽内の懸濁液量V (J)に対し
て、V/S=0.5〜20の範囲が適している。
The addition rate 5 (lALr) of the magnesium hydroxide suspension is preferably in the range of V/S = 0.5 to 20, relative to the amount of suspension V (J) in the reaction tank to which it is added. .

このV/Sの値は、反応槽への水酸化マグネシウム懸濁
液の添加速度であるS(1/hr)を一定に維持する場
合、同反応槽内での炭酸化反応を進行させるに従い、大
きくなっていく。何故ならば、上記反応槽内の懸濁液量
V C1)は、炭酸化反応開始当初は、塩基性炭酸マグ
ネシウム出発懸濁液の液量に等しいが、時間n(hr)
の経過に伴い、同反応槽内に添加される水酸化マグネシ
ウム懸濁液量nxs(1)分だけ増加するからである。
When the addition rate of magnesium hydroxide suspension to the reaction tank, S (1/hr), is kept constant, the value of V/S is determined as follows as the carbonation reaction progresses in the reaction tank: It's getting bigger. This is because the amount of suspension V C1) in the reaction tank is equal to the amount of basic magnesium carbonate starting suspension at the beginning of the carbonation reaction, but as time n (hr)
This is because as time progresses, the amount of magnesium hydroxide suspension added to the reaction tank increases by nxs(1).

とのV/S値の増加は、水酸化マグネシウム懸濁液の反
応槽への連続添加によって、当該反応槽が一杯になる迄
続くが、本発明の実施にあたっては、水酸化マグネシウ
ム懸濁液の反応槽への添加開始時(炭酸化反応開始当初
)から、当該反応槽が一杯になる迄の間は、VlS値を
常に0.5〜20の範囲内に維持せしめることが望まし
い。
The increase in the V/S value continues until the reaction tank is full by continuously adding the magnesium hydroxide suspension to the reaction tank. It is desirable to maintain the VIS value within the range of 0.5 to 20 at all times from the start of addition to the reaction tank (at the beginning of the carbonation reaction) until the reaction tank is full.

尚、水酸化マグネシウム懸濁液の反応槽への添加開始時
から、当該反応槽が一杯になる迄の時間は、水酸化マグ
ネシウム懸濁液の添加速度や反応槽の容積によって異な
るが、V/S値が目的物の粒径を均一化するのに特に重
要な時点は、水酸化マグネシウム懸濁液の反応槽への添
加開始時から、しばらくの間である。
The time from the start of addition of the magnesium hydroxide suspension to the reaction tank until the reaction tank is full varies depending on the addition rate of the magnesium hydroxide suspension and the volume of the reaction tank, but V/ The point in time when the S value is particularly important for uniformizing the particle size of the target product is some time after the start of addition of the magnesium hydroxide suspension to the reaction vessel.

反応槽への水酸化マグネシウム懸濁液の添加速度S(l
/hr)が小さく、v/Sが囚よりも大きい場合には、
目的物である多孔質球状塩基性炭酸マグネシウムの製造
に時間がかかりすぎ、工業的規模での実施に不向きとな
る。一方、反応槽への水酸化マグネシウム懸濁液の添加
速度S(l/hr)が犬きぐ、V/Sが0.5より小さ
くなると、生成する塩基性炭酸マグネシウムの一次粒子
の凝集が不均一に起って、大小様々な多孔質球状塩基性
炭酸マグネシウムよシなる、粒度分布の広い生成物が生
起し、本発明の目的が達成し難い0 炭酸化に使用する炭酸ガスは、C02濃度が113容量
チ以上であれば良く、ガス流量は反応槽内の全懸濁液中
のMgO量に対して60〜6001/鱈・biM90の
範囲が好ましい。CO26度が10容i″チより低いと
炭酸化に要する時間が長くなり経済的でない。
Addition rate S(l) of magnesium hydroxide suspension to the reaction tank
/hr) is small and v/S is larger than the prisoner, then
It takes too much time to produce the target porous spherical basic magnesium carbonate, making it unsuitable for implementation on an industrial scale. On the other hand, when the addition rate S (l/hr) of the magnesium hydroxide suspension to the reaction tank is too high and V/S is less than 0.5, the agglomeration of the basic magnesium carbonate primary particles produced becomes uneven. As a result, products with a wide particle size distribution such as porous spherical basic magnesium carbonate of various sizes are generated, making it difficult to achieve the object of the present invention. The gas flow rate is preferably in the range of 60 to 6001/cod/biM90 based on the amount of MgO in the total suspension in the reaction tank. If the CO26 degree is lower than 10 vol i'', the time required for carbonation becomes longer and is not economical.

また、ガス流量が60〜60017m・kgM90の範
囲外ででも、多孔質な球状塩基性炭酸マグネシウムは得
られるが、粒度分布中の広いものとな如、粒子径の均一
な多孔質球状塩基性炭酸マグネシウムは得難い。
In addition, even if the gas flow rate is outside the range of 60 to 60017 m/kg M90, porous spherical basic magnesium carbonate can be obtained, but porous spherical basic magnesium carbonate with a uniform particle size may be obtained, such as a wide particle size distribution. Magnesium is difficult to obtain.

尚、反応槽を1檜のみ用意して、この反応槽内で以上の
本発明をバッチ式で実施する場合には、水酸化マグネシ
ウム懸濁液の添加によシ我該反応槽が一杯となった時点
で、水酸化マグネシウム懸濁液の添加を止め、その後は
同反応槽へ炭酸ガスのみを吹き込んで、未反応水酸化マ
グネシウムの炭酸化反応を進行完結させればよい。
In addition, when only one cypress reaction tank is prepared and the above-described invention is carried out in this reaction tank in a batch manner, the addition of the magnesium hydroxide suspension will cause the reaction tank to become full. At that point, the addition of the magnesium hydroxide suspension is stopped, and then only carbon dioxide gas is blown into the reaction tank to complete the carbonation reaction of unreacted magnesium hydroxide.

また、反応槽を数槽用童して、本発明を連続式で実施す
る場合には、第1図に示す如く、水酸化マグネシウム懸
濁液を添加する第1槽目の反応槽(1)において、前述
のV/S値、炭酸ガスのCO□儂度、同ガスの吹き込み
量等を適切に設定し、第1槽目の反応槽(1)をオーバ
フローした懸濁液を第2槽目の反応槽(2)へ導き、更
に反応槽(2)をオーバフローした懸濁液を第3槽目の
反応槽(3)へ導き、これら、第2楢目以後の反応槽(
2)、(5)・・・では、炭酸ガスの吹き込みのみをお
こなって、未反応水酸化マグネシウムの炭酸化反応を進
行完結させればよい。
In addition, when carrying out the present invention in a continuous manner using several reaction tanks, as shown in Fig. 1, the first reaction tank (1) to which the magnesium hydroxide suspension is added is used. In this step, the above-mentioned V/S value, CO□ degree of carbon dioxide gas, amount of gas blown, etc. are set appropriately, and the suspension that overflows from the reaction tank (1) of the first tank is transferred to the second tank. The suspension that overflowed the reaction tank (2) was further led to the third reaction tank (3), and these reactors (
In 2), (5)..., the carbonation reaction of unreacted magnesium hydroxide may proceed and be completed by only blowing carbon dioxide gas.

本発明においては、炭酸化反応開始当初に反応槽内に存
在する塩基性炭酸マグネシウムの一次粒子の凝集状態が
、添加する水酸化マグネシウムで均一に維持され、塩基
性炭酸マグネシウムの凝集粒子を核としてその表面で水
酸化マグネシウムの炭酸化反応が進行しているものと略
確信される。
In the present invention, the agglomerated state of the primary particles of basic magnesium carbonate present in the reaction tank at the beginning of the carbonation reaction is maintained uniformly by the added magnesium hydroxide, and the agglomerated particles of basic magnesium carbonate are used as cores. It is almost certain that the carbonation reaction of magnesium hydroxide is proceeding on the surface.

因みに、前述したVlS値等が生成物の粒径の均一化に
最も大きな影響を及ぼすのは、炭酸化反応の初期である
。また、生成する球状粒子の粒子径は、バッチ式の場合
には、反応槽の容積を大きくして、水酸化マグネシウム
懸濁液の添加総量を大きくすれば、反応槽の容積を小さ
なものとした場合に比較して(当初の塩基性炭酸マグネ
シウム出発懸濁液の液量は、同じとする)、大きくなシ
、一方、連続式の場合には、後述の実施例2にも示す如
く、水酸化マグネシウム懸濁液の添加時間が経過するに
従って大きくなる。
Incidentally, it is at the initial stage of the carbonation reaction that the above-mentioned VlS value and the like have the greatest influence on the uniformity of the particle size of the product. In addition, the particle size of the spherical particles produced can be reduced by increasing the volume of the reaction tank and increasing the total amount of magnesium hydroxide suspension added in the case of a batch system. On the other hand, in the case of a continuous system, as shown in Example 2 below, the amount of water It increases as the addition time of the magnesium oxide suspension passes.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、粒子径が均一で多
孔質な球状粒子からなる塩基性炭酸マグネシウムを一挙
に製造可能なため、別途分級作業をおこなうことなくそ
の生成物を水、有機溶媒あるいはポリマー等へ分散させ
る場合にも、その分散性が良好で、取扱い作業性も良好
である0さらに所望の粒子径に制御が可能であるため、
塗料、化粧料、紙あるいはポリマー等の充てん剤および
薬剤のキャリアー、芳香剤の担体等の広い用途に好適で
ある。
As explained above, according to the present invention, basic magnesium carbonate consisting of porous spherical particles with uniform particle size can be produced all at once, so the product can be mixed with water, organic solvents, etc. without separate classification work. Alternatively, when dispersing into polymers, etc., the dispersibility is good and the handling workability is also good. Furthermore, it is possible to control the particle size to the desired size.
It is suitable for a wide range of uses such as fillers for paints, cosmetics, paper or polymers, carriers for drugs, carriers for fragrances, etc.

〔実施例〕〔Example〕

以下、本発明を実施例によシ更に具体的に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 1゜ 水酸化マグネシウムを炭酸化して得た濃度509M9〜
句の塩基性炭酸マグネシウム出発懸濁液101を60℃
に保持して反応槽に入れ、これに濃度sayM gO/
lで60℃に保持した水酸化マグネシウム懸濁液を10
1/hrの速度で添加しながらC02濃度25容量チの
炭酸ガスを流量2001/m Jg Mり0で吹き込ん
で炭酸化反応させた。懸濁液量が501になるまで水酸
化マグネシウム懸濁液を添加し、添加終了後30分間さ
らに炭酸ガスを吹き込み、次いで生成物をろ過後、12
0℃で24時間乾燥した。
Example 1゜Concentration 509M9~ obtained by carbonating magnesium hydroxide
Basic magnesium carbonate starting suspension 101 at 60°C
The concentration of sayM gO/
A suspension of magnesium hydroxide kept at 60°C at
While adding at a rate of 1/hr, carbon dioxide gas having a CO2 concentration of 25 volumes was blown in at a flow rate of 2001/m Jg M 0 to cause a carbonation reaction. Magnesium hydroxide suspension was added until the suspension amount reached 501, carbon dioxide gas was further blown in for 30 minutes after the addition was completed, and the product was filtered and then added to 12
It was dried at 0°C for 24 hours.

乾燥品のX線回折の結果は全て塩基性炭酸マグネシウム
であった。得られた塩基性炭酸マグネシウムを走査型電
子顕微鏡にて観察したところ、鱗片状の一次粒子が多孔
質に凝集して、15μm程度の均一な粒子径を持つ球状
体をなしていた。脱水したケーキの含水率は、240%
であった。また、得られた粉末は見掛比重−0,259
A已吸油量=170鯖400gで水500πlに粉末1
009を懸濁させた際の粘度が200cpsであった0 実施例 2゜ 第1図に示すような反応装置を用いて炭酸化反応を連続
的に行なった。反応槽には、上部に排出口を設け、懸濁
液量が夫々501になるようにした。
The results of X-ray diffraction of the dried product showed that it was all basic magnesium carbonate. When the obtained basic magnesium carbonate was observed with a scanning electron microscope, it was found that the scale-like primary particles were porously aggregated to form a spherical body having a uniform particle diameter of about 15 μm. The moisture content of the dehydrated cake is 240%
Met. In addition, the obtained powder has an apparent specific gravity of −0,259
A amount of oil absorption = 170 mackerel 400g water 500πl powder 1
Example 2 The carbonation reaction was carried out continuously using a reaction apparatus as shown in FIG. 1. The reaction vessels were provided with a discharge port at the top, so that the amount of suspension was 50 liters in each case.

塩基性炭酸マグネシウム出発懸濁液および水酸化マグネ
シウム懸濁液の濃度および温度は、それぞれ30fMf
O/Jおよび60℃、炭酸ガスのCO□濃度お濁液10
1を第1槽目の反応槽(1)に入れ、水酸化マグネシウ
ム懸濁液を添加しながら炭酸ガスを吹き込んだ。水酸化
マグネシウム懸濁液の添加速度を10 l fir と
して、反応槽(3)から排出する懸濁液を排出開始より
、Ohr後、Shr後、20 hr後に採取し、ろ過後
、120℃で24時間乾燥した。
The concentration and temperature of the basic magnesium carbonate starting suspension and magnesium hydroxide suspension were 30 fMf, respectively.
O/J and 60℃, CO□ concentration of carbon dioxide gas turbid liquid 10
1 was placed in the first reaction tank (1), and carbon dioxide gas was blown into the reactor while adding the magnesium hydroxide suspension. The magnesium hydroxide suspension was added at a rate of 10 l fir, and the suspension discharged from the reaction tank (3) was collected after Ohr, Shr, and 20 hr from the start of discharge, and after filtration, it was incubated at 120°C for 24 hours. Dry for an hour.

乾燥品はいずれも塩基性炭酸マグネシウムのみのX線回
折ピークを示し、走査型電子顕微鏡にて観察したところ
鱗片状の一次粒子が多孔質に凝集写真を示す。
All dried products showed an X-ray diffraction peak of only basic magnesium carbonate, and when observed with a scanning electron microscope, the scale-like primary particles showed a porous aggregation photograph.

顕微鏡による平均粒子径および粉末の性状は下表の通シ
であった。
The average particle diameter and properties of the powder determined by microscopy were as shown in the table below.

比較例 1゜ 濃度309M1Φ句の塩基性炭酸マグネシウム懸濁液l
Q lと濃度s o y M y o/lの水酸化マグ
ネシウム懸濁液401とを混合し、液温を60t−に保
持して、co2濃度25容量チの炭酸ガスを流量200
1Aix−#M90で吹き込んで炭酸化反応させた。炭
酸化反応終了後、生成物をろ過し、120℃で24時間
乾燥した。
Comparative Example 1゜Basic magnesium carbonate suspension with a concentration of 309M1Φ
Q l and a magnesium hydroxide suspension 401 with a concentration of s o y M y o/l are mixed, the liquid temperature is maintained at 60 t-, and carbon dioxide gas with a CO2 concentration of 25 volumes is mixed at a flow rate of 200 t.
A carbonation reaction was carried out by blowing with 1Aix-#M90. After the carbonation reaction was completed, the product was filtered and dried at 120°C for 24 hours.

乾燥品のX線回析の結果は全て塩基性炭酸マグネシウム
であった。得られた塩基性炭酸マグネシウムを走査型電
子顕微鏡にて観察したところ、第5図に示した如く鱗片
状の微細な粒子であった(第3図参照)0脱水したケー
キの含水率は570%であった。また、得られた粉末は
見掛比重=0.13g /cc、吸油量= 140ff
?/100gで水500m/に粉末1田qを懸濁させた
際の粘度が1500cpsであった。
The results of X-ray diffraction of the dried product showed that it was all basic magnesium carbonate. When the obtained basic magnesium carbonate was observed with a scanning electron microscope, it was found to be fine scale-like particles as shown in Figure 5 (see Figure 3).The moisture content of the dehydrated cake was 570%. Met. In addition, the obtained powder has an apparent specific gravity of 0.13 g/cc and an oil absorption amount of 140 ff.
? The viscosity when 1 q of powder was suspended in 500 m/100 g of water was 1500 cps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例2の連続式装置の概略図であ図中、(
1)、(2人(′5)は(支)応槽、(l)は水酸化マ
グネシウム懸濁液用配管、(5)は炭酸ガス用配管、(
6)、(7)はける塩基性炭酸マグネシウムの1000
倍の走査型電子顕微鏡写真を示す。
FIG. 1 is a schematic diagram of the continuous type device of Example 2. In the figure, (
1), (2 people ('5) are (support) reaction tank, (l) is piping for magnesium hydroxide suspension, (5) is piping for carbon dioxide gas, (
6), (7) 1000% of basic magnesium carbonate
A scanning electron micrograph at 100% magnification is shown.

Claims (1)

【特許請求の範囲】 1)反応槽内の塩基性炭酸マグネシウム出発懸濁液に水
酸化マグネシウム懸濁液を添加しながら炭酸ガスを吹き
込んで炭酸化反応を開始し、引き続き同反応槽内の懸濁
液に水酸化マグネシウム懸濁液を添加しながら炭酸ガス
を吹き込んで炭酸化反応を続行することを特徴とする、
多孔質球状塩基性炭酸マグネシウムの製造方法。 2)炭酸化反応系の温度が40〜80℃であり、塩基性
炭酸マグネシウム出発懸濁液および水酸化マグネシウム
懸濁液の濃度がいずれも10〜80gMgO/lである
、特許請求の範囲第1)項記載の多孔質球状塩基性炭酸
マグネシウムの製造方法。 3)反応槽への水酸化マグネシウム懸濁液の添加速度S
(l/hr)が同反応槽内の懸濁液量V(l)に対し、
V/S=0.5〜20を満足する、特許請求の範囲第1
)項又は第2)項記載の多孔質球状塩基性炭酸マグネシ
ウムの製造方法。 4)炭酸ガスの濃度がCO_2換算で10容量%以上で
あり、炭酸ガスの吹き込み流量が反応槽内の懸濁液中の
MgO量に対して60〜600l/min kg Mg
Oである、特許請求の範囲第1)項乃至第3)項のいず
れかの項に記載の多孔質球状塩基性炭酸マグネシウムの
製造方法。
[Claims] 1) Start the carbonation reaction by blowing carbon dioxide gas into the basic magnesium carbonate starting suspension in the reaction tank while adding the magnesium hydroxide suspension, and then It is characterized by continuing the carbonation reaction by blowing carbon dioxide gas while adding a magnesium hydroxide suspension to the turbid liquid.
A method for producing porous spherical basic magnesium carbonate. 2) The temperature of the carbonation reaction system is 40 to 80°C, and the concentrations of the basic magnesium carbonate starting suspension and the magnesium hydroxide suspension are both 10 to 80 gMgO/l, Claim 1 ) The method for producing porous spherical basic magnesium carbonate. 3) Addition rate S of magnesium hydroxide suspension to the reaction tank
(l/hr) is the amount of suspension V(l) in the same reaction tank,
Claim 1 satisfying V/S=0.5 to 20
The method for producing porous spherical basic magnesium carbonate according to item ) or item 2). 4) The concentration of carbon dioxide gas is 10% by volume or more in terms of CO_2, and the flow rate of carbon dioxide gas is 60 to 600 l/min kg Mg with respect to the amount of MgO in the suspension in the reaction tank.
The method for producing porous spherical basic magnesium carbonate according to any one of claims 1) to 3), wherein the porous spherical basic magnesium carbonate is O.
JP23524086A 1986-10-02 1986-10-02 Production of spherical-shaped porous basic magnesium carbonate Granted JPS6389418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23524086A JPS6389418A (en) 1986-10-02 1986-10-02 Production of spherical-shaped porous basic magnesium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23524086A JPS6389418A (en) 1986-10-02 1986-10-02 Production of spherical-shaped porous basic magnesium carbonate

Publications (2)

Publication Number Publication Date
JPS6389418A true JPS6389418A (en) 1988-04-20
JPH0262483B2 JPH0262483B2 (en) 1990-12-25

Family

ID=16983153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23524086A Granted JPS6389418A (en) 1986-10-02 1986-10-02 Production of spherical-shaped porous basic magnesium carbonate

Country Status (1)

Country Link
JP (1) JPS6389418A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224218A (en) * 1988-03-02 1989-09-07 Ube Kagaku Kogyo Kk Spherical basic magnesium carbonate and production thereof
US5137778A (en) * 1990-06-09 1992-08-11 Canon Kabushiki Kaisha Ink-jet recording medium, and ink-jet recording method employing the same
US5338597A (en) * 1991-01-14 1994-08-16 Canon Kabushiki Kaisha Recording medium and ink-jet recording method employing the same
JP2004331417A (en) * 2003-04-30 2004-11-25 Nittetsu Mining Co Ltd Basic magnesium carbonate-covered composite particle, its production method, and composition containing the same
JP2008137845A (en) * 2006-12-01 2008-06-19 Tateho Chem Ind Co Ltd Method of producing magnesium oxide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224218A (en) * 1988-03-02 1989-09-07 Ube Kagaku Kogyo Kk Spherical basic magnesium carbonate and production thereof
JP2602444B2 (en) * 1988-03-02 1997-04-23 宇部化学工業株式会社 Spherical basic magnesium carbonate and method for producing the same
US5137778A (en) * 1990-06-09 1992-08-11 Canon Kabushiki Kaisha Ink-jet recording medium, and ink-jet recording method employing the same
US5277962A (en) * 1990-06-09 1994-01-11 Canon Kabushiki Kaisha Ink-jet recording medium, ink-jet recording method employing the same
US5338597A (en) * 1991-01-14 1994-08-16 Canon Kabushiki Kaisha Recording medium and ink-jet recording method employing the same
JP2004331417A (en) * 2003-04-30 2004-11-25 Nittetsu Mining Co Ltd Basic magnesium carbonate-covered composite particle, its production method, and composition containing the same
JP2008137845A (en) * 2006-12-01 2008-06-19 Tateho Chem Ind Co Ltd Method of producing magnesium oxide

Also Published As

Publication number Publication date
JPH0262483B2 (en) 1990-12-25

Similar Documents

Publication Publication Date Title
US4124688A (en) Process for preparing cubic crystals of calcium carbonate
US4293426A (en) Coated calcium peroxide particles useful in the treatment of water
US4225464A (en) Process of preparing a porous, pure silica
JPH09503484A (en) Oblate sphere aggregates of plate-like synthetic hydrotalcite
EP1692213A1 (en) Composition containing a synthetic resin and a filler, methods for producing the composition and films obtained from this composition
JP2003306325A (en) Basic magnesium carbonate, its production method, and composition or structure including the basic magnesium carbonate
JP3910503B2 (en) Method for producing basic magnesium carbonate
US4010247A (en) Method for making water dispersible aluminum hydroxide
JPS6389418A (en) Production of spherical-shaped porous basic magnesium carbonate
JP3113315B2 (en) Porous calcium carbonate fine particles and method for producing the same
CN108190935B (en) Preparation method of strip-shaped and sheet-shaped calcium carbonate ultrafine particles
JPS6350316A (en) Method for forming hexagonal and plate-shaped calcium carbonate grain
CN113736094A (en) Synthesis method of hierarchical porous ZIF-9
JPH0781931A (en) Spherical calcite type calcium carbonate flocculate and production thereof
CN110128851B (en) Preparation method of hydrophobic nano calcium carbonate
KR0133232B1 (en) Process of preparation of a powder of porous silicagel with low density
CN112624171B (en) Preparation method of stable hollow calcium carbonate particles with controllable particle size
JP4157202B2 (en) Process for producing spindle-shaped calcium carbonate
JPH1053412A (en) Production of spherical calcium carbonate
JPS63123810A (en) Production of spherical basic magnesium carbonate containing calcium carbonate
JP6386949B2 (en) Fine calcium carbonate hollow particles
CN109772283B (en) Titanium dioxide photocatalyst and preparation method thereof
JPH02126933A (en) Spherical calcium carbonate and production thereof
JPH0489318A (en) Production of spherical titania
JPH0818830B2 (en) Method for producing spherical calcium carbonate