JPH0489318A - Production of spherical titania - Google Patents

Production of spherical titania

Info

Publication number
JPH0489318A
JPH0489318A JP20387790A JP20387790A JPH0489318A JP H0489318 A JPH0489318 A JP H0489318A JP 20387790 A JP20387790 A JP 20387790A JP 20387790 A JP20387790 A JP 20387790A JP H0489318 A JPH0489318 A JP H0489318A
Authority
JP
Japan
Prior art keywords
titania
butoxide
ammonia
water
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20387790A
Other languages
Japanese (ja)
Inventor
Yojiro Kon
洋次郎 今
Kunihiko Nakamura
邦彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP20387790A priority Critical patent/JPH0489318A/en
Publication of JPH0489318A publication Critical patent/JPH0489318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To stably obtain high-purity monodispersion spherical titania particles of desired particle size by hydrolyzing titanium tetra-n-butoxide in an alcohol solvent in the presence of ammonia catalyst. CONSTITUTION:To 1mol of titanium tetra-n-butoxide, 2-15mol of water, 0.05-2mol of ammonia catalyst, 1-20l of an alcohol solvent selected from ethanol, propanol and n-butanol are added to effect the hydrolysis. Thus, monodispersion spherical titania particles of 0.1-5mum particle size are obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、球状チタニアの製造方法に関し、詳しくは化
粧品、塗料等の顔料、触媒、吸着剤、光半導体、更には
還元雰囲気焼成で異色化することにより液晶のスペーサ
ー材として好適な球状チタニアの製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing spherical titania, and more specifically, it is used to produce pigments for cosmetics, paints, etc., catalysts, adsorbents, optical semiconductors, and furthermore, to produce unique colors by firing in a reducing atmosphere. This invention relates to a method for producing spherical titania suitable as a spacer material for liquid crystals.

〔従来の技術〕[Conventional technology]

従来、球状チタニアの製造方法として、チタンアルコキ
シドを蒸発せしめ、気相状態下で熱分解して微粒子状チ
タニアを製造する方法(特開昭60−186.418号
公報)、チタンテトラエトキ°シト又はチタンテトライ
ソプロポキシドのアルコール溶液を加水分解することに
よりサブミクロンの球状チタニアを製造する方法[Co
munications of theAmerica
n Ceramic 5ociety、C−199,(
1982)]、チタンテトラエトキシドのエタノール溶
液に分散剤としてヒドロキシプロピルセルロースを添加
した後、加水分解することによりサブミクロンの球状チ
タニアを製造する方法[Journal of Ame
ricanCeramic  5ocirty  Bu
lliten、65.(12)、 1574. (19
76)]等が知られている。
Conventionally, methods for producing spherical titania include a method in which titanium alkoxide is evaporated and thermally decomposed in a gas phase to produce fine particulate titania (Japanese Unexamined Patent Application Publication No. 186-186-188), titanium tetraethoxylate or A method for producing submicron spherical titania by hydrolyzing an alcohol solution of titanium tetraisopropoxide [Co
communications of theAmerica
n Ceramic 5ociety, C-199, (
1982)], a method for producing submicron spherical titania by adding hydroxypropylcellulose as a dispersant to an ethanol solution of titanium tetraethoxide and then hydrolyzing it [Journal of Ame
ricanCeramic 5ocirty Bu
lliten, 65. (12), 1574. (19
76)] etc. are known.

しかしながら、これらの製造方法では、粒径制御範囲が
狭く、0.1〜1.m程度の球状チタニアしかできず、
化粧品顔料として用いた場合、毛穴、皮溝に入るという
問題点がある。また、チタンテトラエトキシド、チタン
テトライソプロポキシドは加水分解反応速度が速く、大
気中の水分等に対して不安定であり、ドライボックス中
で取り扱わなければならない等、生産工程上のハンドリ
ングが難しいという問題点がある。
However, these manufacturing methods have a narrow particle size control range of 0.1 to 1. Only spherical titania of about m size can be produced,
When used as a cosmetic pigment, there is a problem that it gets into the pores and skin grooves. In addition, titanium tetraethoxide and titanium tetraisopropoxide have a fast hydrolysis reaction rate, are unstable against atmospheric moisture, etc., and are difficult to handle during the production process, such as having to be handled in a dry box. There is a problem.

また、硫酸チタニルと尿素を用い、均−沈澱法を利用し
てチタニアを製造する方法〔日本セラミック協会年会予
稿集、 190(1989)E等も知られているが、生
成したチタニア粒子の純度が悪いという問題点がある。
In addition, a method for producing titania using titanyl sulfate and urea using a homogeneous precipitation method [Proceedings of the Annual Meeting of the Ceramic Society of Japan, 190 (1989) E, etc.] is also known, but the purity of the produced titania particles is There is a problem that it is bad.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そこで、本発明者らは、上記問題点を解決するために鋭
意研究を重ねた結果、チタンテトラ−n−ブトキシドを
エタノール、■−プロパノール又はブタノール溶媒中で
アンモニアの存在下に加水分解することにより、所望の
粒径の高純度の単分散状チタニアを安定的に製造するこ
とができることを見出し、本発明を完成するに至った。
Therefore, as a result of extensive research in order to solve the above problems, the present inventors found that titanium tetra-n-butoxide was hydrolyzed in ethanol, -propanol or butanol solvent in the presence of ammonia. They discovered that it is possible to stably produce highly pure monodispersed titania with a desired particle size, and have completed the present invention.

従って、本発明の目的は、0.1〜5趨の範囲の任意の
粒径の高純度単分散球状チタニア粒子を安定的に製造す
る方法を提供することにある。
Therefore, an object of the present invention is to provide a method for stably producing high purity monodisperse spherical titania particles having an arbitrary particle size in the range of 0.1 to 5.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は、チタンテトラ−n−ブトキシドを
アルコール溶媒中でアンモニア触媒の存在下に加水分解
することを特徴とする球状チタニアの製造方法である。
That is, the present invention is a method for producing spherical titania characterized by hydrolyzing titanium tetra-n-butoxide in an alcohol solvent in the presence of an ammonia catalyst.

以下、本発明の球状チタニアの製造方法について具体的
に説明する。
Hereinafter, the method for producing spherical titania of the present invention will be specifically explained.

チタニア原料として使用できるチタンアルコキシドは、
反応速度の制御のし易さ、及び湿気に対する安定性の高
さ等の点でチタンテトラ−n−ブトキシドを用いる。
Titanium alkoxides that can be used as titania raw materials are:
Titanium tetra-n-butoxide is used because it is easy to control the reaction rate and has high stability against moisture.

本発明において、加水分解に使用する水はチタンテトラ
−n−ブトキシド1モルに対して2モル以上好ましくは
2〜15モルの範囲である。この範囲より少ないと加水
分解反応が完全に進行しない。
In the present invention, the amount of water used for hydrolysis is 2 mol or more, preferably 2 to 15 mol, per 1 mol of titanium tetra-n-butoxide. If the amount is less than this range, the hydrolysis reaction will not proceed completely.

また、この範囲より多いと反応が急激に起こり、凝集体
が生成し易くなるため、水の添加を非常にゆっくりと行
わねばならなくなり、工業的に不利となるので好ましく
ない。
Furthermore, if the amount exceeds this range, the reaction occurs rapidly and aggregates are likely to be formed, making it necessary to add water very slowly, which is undesirable from an industrial standpoint.

ところで、チタニアの等電位点はpH7付近であり、酸
又はアルカリの添加によりpHを7より大きくするか、
又は小さくすることによりセータ電位を大きくすること
ができる。本発明においては、ゼータ電位を大きくして
粒子間の凝集を防ぎ、安定なゾルを形成すると共に、加
水分解及び縮合反応を速めるためにアンモニアを添加す
る。反応触媒として用いられるアンモニアは、チタンテ
トラ−n−ブトキシド1モルに対して、0.05〜2モ
ル、好ましくは0.1〜2モルの範囲であり、このとき
のおよそのpHは9〜12である。アンモニアの添加量
がこの範囲より少ないとゼータ電位を十分に大きくでき
ず、粒子間の凝集を防ぐ十分な効果が得られない。また
、この範囲より多いと反応が急激に起こり、凝集体が生
成し易くなる。
By the way, the equipotential point of titania is around pH 7, and the pH can be made higher than 7 by adding acid or alkali, or
Alternatively, the theta potential can be increased by decreasing it. In the present invention, ammonia is added to increase the zeta potential to prevent agglomeration between particles and form a stable sol, and to speed up hydrolysis and condensation reactions. The amount of ammonia used as a reaction catalyst is in the range of 0.05 to 2 mol, preferably 0.1 to 2 mol, per 1 mol of titanium tetra-n-butoxide, and the approximate pH at this time is 9 to 12. It is. If the amount of ammonia added is less than this range, the zeta potential cannot be sufficiently increased, and a sufficient effect of preventing aggregation between particles cannot be obtained. Moreover, if the amount exceeds this range, the reaction will occur rapidly and aggregates will be likely to be formed.

また、チタンテトラ−n−ブトキシド以外のチタンテト
ラアルコキシドを用いた場合、アンモニアを添加すると
加水分解及び縮合反応が速くなりすぎて粒子が球形に成
長しないという問題があるため、ゼータ電位を大きくし
て粒子間の凝集を防ぐという手法が使えない。
In addition, when titanium tetraalkoxide other than titanium tetra-n-butoxide is used, there is a problem that when ammonia is added, the hydrolysis and condensation reactions become too fast and the particles do not grow into spherical shapes, so the zeta potential is increased. Methods to prevent agglomeration between particles cannot be used.

なお、アンモニアは、アンモニウムガスであっても水溶
液としても用いてもよいが、水溶液として用いた場合は
、水溶液中に含まれる水は上記加水分解用の水として扱
われる。
Note that ammonia may be used as ammonium gas or as an aqueous solution, but when used as an aqueous solution, the water contained in the aqueous solution is treated as the water for the above-mentioned hydrolysis.

また、本発明において使用できるアルコール溶媒は、エ
タノール、1−プロパノール及びn−ブタノールである
。これら以外の溶媒、例えばメタノールを用いると、チ
タンメトキシドが析出してしまい、n−ペンチルアルコ
ール等炭素数5以上の第1アルコールを用いると、水と
の相溶性が極端に悪く、添加する水の量が制約を受ける
ので好ましくない。また、5ee−ブタノール等の第2
アルコールを用いると加水分解速度が速くなり、チタニ
ア粒子の凝集物が生成し易くなる。
Further, alcohol solvents that can be used in the present invention are ethanol, 1-propanol, and n-butanol. If a solvent other than these, such as methanol, is used, titanium methoxide will precipitate, and if a primary alcohol with a carbon number of 5 or more, such as n-pentyl alcohol, is used, the compatibility with water will be extremely poor, and the water added will result in the precipitation of titanium methoxide. This is not preferable because the amount of In addition, secondary compounds such as 5ee-butanol
When alcohol is used, the rate of hydrolysis becomes faster and aggregates of titania particles are more likely to be formed.

アルコール溶媒の使用量は、チタンテトラ−nブトキシ
ド1モルに対して1〜201.好ましくは3〜12fで
ある。アルコール溶媒の使用量が11に満たない場合は
凝集粒子が生成し易く、また、201を越えると粒子の
生成速度が遅くなり、実用性に乏しくなる。
The amount of alcohol solvent used is 1 to 201.0% per mole of titanium tetra-n-butoxide. Preferably it is 3 to 12 f. If the amount of alcohol solvent used is less than 11, aggregated particles are likely to be produced, and if it exceeds 201, the rate of particle production becomes slow, making it impractical.

本発明の加水分解反応は、チタンテトラ−n−ブトキシ
ドのアルコール溶液に水を添加することにより行うこと
ができ、反応が完結した後、濾過、乾燥して単分散球状
チタニア粒子を得ることができる。
The hydrolysis reaction of the present invention can be carried out by adding water to an alcoholic solution of titanium tetra-n-butoxide, and after the reaction is completed, it can be filtered and dried to obtain monodisperse spherical titania particles. .

チタニアの粒子径は加水分解反応の条件を適宜選択する
ことにより制御することができる。例えば、水の濃度を
低くすると粒径を大きくすることができ、濃度を高くす
れば粒径を小さくすることができる。また、アンモニア
の濃度を低くすると粒径を大きくすることができ、濃度
を高くすれば粒径を小さくすることができる。更に、水
又はアルコールで希釈した水の滴下速度を小さくすると
粒径を大きくすることができ、滴下速度を大きく、又は
、−括添加すると粒径を小さくすることができる。
The particle size of titania can be controlled by appropriately selecting the conditions for the hydrolysis reaction. For example, decreasing the concentration of water can increase the particle size, and increasing the concentration can decrease the particle size. Further, if the concentration of ammonia is lowered, the particle size can be increased, and if the concentration is increased, the particle size can be decreased. Further, the particle size can be increased by decreasing the dropping rate of water or water diluted with alcohol, and the particle size can be decreased by increasing the dropping rate or adding at once.

前述したように、生成するチタニア粒子のゼータ電位を
大きくして、粒子間の凝集を防ぐためには、アンモニア
の添加量は多い方が好ましい。したがって、大きなチタ
ニア粒子を製造するためには、アンモニア濃度は高く保
ち、水の濃度及び滴下速度で制御することが好ましい。
As described above, in order to increase the zeta potential of the titania particles to be produced and prevent agglomeration between particles, it is preferable to add a large amount of ammonia. Therefore, in order to produce large titania particles, it is preferable to keep the ammonia concentration high and control it by controlling the water concentration and dropping rate.

〔実施例〕〔Example〕

以下、実施例及び比較例に基づいて、本発明を更に詳し
く説明する。
Hereinafter, the present invention will be explained in more detail based on Examples and Comparative Examples.

実施例1〜5 チタンテトラ−n−ブトキシド1モルに対して、アルコ
ールを第1表に示す割合で反応容器に仕込み、そこに水
とアンモニアとアルコールを第1表に示す割合で混合し
たものを添加した後、静置して沈澱したチタニア粒子を
得た。
Examples 1 to 5 For 1 mole of titanium tetra-n-butoxide, alcohol was charged into a reaction vessel in the proportions shown in Table 1, and water, ammonia, and alcohol were mixed therein in the proportions shown in Table 1. After the addition, the titania particles were left to stand and precipitated.

得られた球状チタニア粒子を走査型電子顕微鏡(SEM
)で観察したところ、各粒子はほぼ真球であった。平均
粒子径を第1表に示す。
The obtained spherical titania particles were subjected to a scanning electron microscope (SEM).
), each particle was almost perfectly spherical. The average particle diameter is shown in Table 1.

比較例1 チタンテトライソプロポキシド1モルに対して、イソプ
ロパノールを100モルの割合で反応容器に仕込み、そ
こに水とアンモニアとイソプロパノールを混合したもの
を10モル/hの速度で添加した後静置して沈澱したチ
タニア粒子を濾過、乾燥した後、SEMで観察したとこ
ろ、サブミクロンのチタニア粒子の凝集物であった。
Comparative Example 1 Isopropanol was charged into a reaction vessel at a ratio of 100 mol to 1 mol of titanium tetraisopropoxide, and a mixture of water, ammonia, and isopropanol was added thereto at a rate of 10 mol/h, and then left to stand. The precipitated titania particles were filtered and dried, and then observed with a SEM, which revealed that they were aggregates of submicron titania particles.

比較例2 チタンテトラ−n−ブトキシド1モルに対して、5ec
−ブタノールを85モルの割合で反応容器に仕込み、そ
こに水3モルとアンモニア0.4モルと5ec−ブタノ
ール15モルを混合したものを一括添加し、沈澱したチ
タニア粒子を濾過、乾燥した後、SEMで観察したとこ
ろミサブミクロンのチタニア粒子の凝集物であった。
Comparative Example 2 5ec for 1 mole of titanium tetra-n-butoxide
- Butanol was charged in a reaction container at a ratio of 85 moles, a mixture of 3 moles of water, 0.4 moles of ammonia, and 15 moles of 5ec-butanol was added thereto at once, and the precipitated titania particles were filtered and dried. When observed with SEM, it was found to be an aggregate of submicron titania particles.

比較例3 チタンテトラ−n−ブトキシド1モルに対して、n−フ
タノール15モルを混合したものを、2モル/hの速度
で、反応容器中の水6モルとアンモニア0゜1モルとn
−ブタノール85モルに滴下し、沈澱したチタニア粒子
を濾過、乾燥した後、SEMで観察したところ、3趨程
度の球状粒子とサブミクロンのチタニア粒子の凝集物と
の混合物であった。
Comparative Example 3 A mixture of 15 moles of n-phthanol and 1 mole of titanium tetra-n-butoxide was mixed with 6 moles of water, 0.1 mole of ammonia, and 1 mole of ammonia in a reaction vessel at a rate of 2 moles/h.
- When the precipitated titania particles were added dropwise to 85 mol of butanol and filtered and dried, they were observed by SEM and were found to be a mixture of about 3 spherical particles and an aggregate of submicron titania particles.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、0.1〜5趨の範囲の任意の粒径を有
する高純度の単分散球状チタニアを安定的に製造するこ
とができ、このような高純度の単分散球状チタニア粒子
は化粧品、触媒、吸着剤、光半導体として特に有用であ
る。
According to the present invention, it is possible to stably produce high-purity monodisperse spherical titania having an arbitrary particle size in the range of 0.1 to 5, and such high-purity monodisperse spherical titania particles It is particularly useful in cosmetics, catalysts, adsorbents, and optical semiconductors.

特許出願人   新日鐵化学株式会社Patent applicant: Nippon Steel Chemical Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)チタンテトラ−n−ブトキシドをアルコール溶媒
中でアンモニア触媒の存在下に加水分解することを特徴
とする球状チタニアの製造方法。
(1) A method for producing spherical titania, which comprises hydrolyzing titanium tetra-n-butoxide in an alcohol solvent in the presence of an ammonia catalyst.
(2)加水分解反応のアルコール溶媒として、エタノー
ル、プロパノール又はn−ブタノールを用いることを特
徴とする請求項1記載の球状チタニアの製造方法。
(2) The method for producing spherical titania according to claim 1, characterized in that ethanol, propanol, or n-butanol is used as the alcohol solvent for the hydrolysis reaction.
(3)チタンテトラ−n−ブトキシドのアルコール溶液
に水を添加することを特徴とする請求項1記載の球状チ
タニアの製造方法。
(3) The method for producing spherical titania according to claim 1, characterized in that water is added to the alcohol solution of titanium tetra-n-butoxide.
JP20387790A 1990-08-02 1990-08-02 Production of spherical titania Pending JPH0489318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20387790A JPH0489318A (en) 1990-08-02 1990-08-02 Production of spherical titania

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20387790A JPH0489318A (en) 1990-08-02 1990-08-02 Production of spherical titania

Publications (1)

Publication Number Publication Date
JPH0489318A true JPH0489318A (en) 1992-03-23

Family

ID=16481197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20387790A Pending JPH0489318A (en) 1990-08-02 1990-08-02 Production of spherical titania

Country Status (1)

Country Link
JP (1) JPH0489318A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001472A (en) * 2007-06-25 2009-01-08 Seiko Epson Corp Functional material and its manufacturing process
US7601327B2 (en) 2004-11-23 2009-10-13 E.I. Du Pont De Nemours And Company Mesoporous oxide of hafnium
US7601326B2 (en) 2004-11-23 2009-10-13 E. I. Du Pont De Nemours And Company Mesoporous oxide of zirconium
US7858066B2 (en) 2007-05-08 2010-12-28 E.I. Du Pont De Nemours And Company Method of making titanium dioxide particles
US7988947B2 (en) 2004-11-23 2011-08-02 E. I. Du Pont De Nemours And Company Mesoporous oxide of titanium
US8377414B2 (en) 2004-11-23 2013-02-19 E I Du Pont De Nemours And Company Mesoporous amorphous oxide of titanium
JP2013530121A (en) * 2010-05-26 2013-07-25 インダストリ−ユニヴァーシティ コオペレーション ファウンデイション ソガン ユニヴァーシティ NOVEL MANUFACTURING METHOD OF TITANIUM DIOXIDE PARTICLES AND TITANIUM DIOXIDE PARTICLES BY THE

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601327B2 (en) 2004-11-23 2009-10-13 E.I. Du Pont De Nemours And Company Mesoporous oxide of hafnium
US7601326B2 (en) 2004-11-23 2009-10-13 E. I. Du Pont De Nemours And Company Mesoporous oxide of zirconium
US7988947B2 (en) 2004-11-23 2011-08-02 E. I. Du Pont De Nemours And Company Mesoporous oxide of titanium
US8221655B2 (en) 2004-11-23 2012-07-17 E. I. Du Pont De Nemours And Company Mesoporous oxide of titanium
US8377414B2 (en) 2004-11-23 2013-02-19 E I Du Pont De Nemours And Company Mesoporous amorphous oxide of titanium
US7858066B2 (en) 2007-05-08 2010-12-28 E.I. Du Pont De Nemours And Company Method of making titanium dioxide particles
JP2009001472A (en) * 2007-06-25 2009-01-08 Seiko Epson Corp Functional material and its manufacturing process
JP2013530121A (en) * 2010-05-26 2013-07-25 インダストリ−ユニヴァーシティ コオペレーション ファウンデイション ソガン ユニヴァーシティ NOVEL MANUFACTURING METHOD OF TITANIUM DIOXIDE PARTICLES AND TITANIUM DIOXIDE PARTICLES BY THE

Similar Documents

Publication Publication Date Title
US5037579A (en) Hydrothermal process for producing zirconia sol
Ismagilov et al. Synthesis and stabilization of nano-sized titanium dioxide
AU596390B2 (en) High-dispersion sol or gel of monoclinic zirconia supermicrocrystals and production of the same
US7326399B2 (en) Titanium dioxide nanoparticles and nanoparticle suspensions and methods of making the same
US7763232B2 (en) Methods for production of titanium oxide particles, and particles and preparations produced thereby
JP4129564B2 (en) Method for producing weakly agglomerated nanoscalar particles
Park et al. Formation of monodisperse spherical TiO2 powders by thermal hydrolysis of Ti (SO4) 2
JPH0649571B2 (en) Silica with controlled porosity and method of making same
Hosseini Zori Synthesis of TiO 2 nanoparticles by microemulsion/heat treated method and photodegradation of methylene blue
WO2013021633A1 (en) Pigment for aqueous inks, aqueous ink composition containing same, and image and printed matter using same
Do Kim et al. Synthesis and characterization of titania-coated silica fine particles by semi-batch process
JP2012532826A (en) Method for producing titanium dioxide having nanometer dimensions and controlled shape
JP3584485B2 (en) Method for producing silica sol
JPH0489318A (en) Production of spherical titania
JPH085660B2 (en) Method for producing silica gel containing titanium oxide ultrafine particles dispersed therein
JP3546064B2 (en) Surface treatment method for titanium dioxide
JP2001151509A (en) Spherical titanium oxide fine particle
CN111470529A (en) Preparation method of strontium titanate nano material with adjustable morphology
EP0413824A1 (en) Production of spherical particulate titanium oxide
KR100564136B1 (en) Method for producing titanium oxide particle and method for producing titanium oxide thin layer using the same
CN110642290B (en) Titanium dioxide nano material, preparation method and application
JP2003095657A (en) Titanium oxide sol dispersed in organic solvent and method of manufacturing it
JPH06199569A (en) Production of zirconia and zirconia molding stabilized with yttria
JPH08333117A (en) Production of porous globular titanium oxide particle
RU2144505C1 (en) Method of preparing titanium dioxide