JPS638906B2 - - Google Patents

Info

Publication number
JPS638906B2
JPS638906B2 JP544082A JP544082A JPS638906B2 JP S638906 B2 JPS638906 B2 JP S638906B2 JP 544082 A JP544082 A JP 544082A JP 544082 A JP544082 A JP 544082A JP S638906 B2 JPS638906 B2 JP S638906B2
Authority
JP
Japan
Prior art keywords
molding
thermosetting resin
fiber
polyolefin
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP544082A
Other languages
Japanese (ja)
Other versions
JPS58124647A (en
Inventor
Shuya Tsuji
Kazuhiko Kunishima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP544082A priority Critical patent/JPS58124647A/en
Publication of JPS58124647A publication Critical patent/JPS58124647A/en
Publication of JPS638906B2 publication Critical patent/JPS638906B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は繊維強化熱硬化性樹脂層とポリオレフ
イン層から成る層間接着強度の優れた複合材料に
関するものである。 不飽和ポリエステル樹脂、ビニルエステル樹
脂、エポキシ樹脂等と強化繊維から成形された繊
維強化熱硬化性樹脂材料は、軽量で機械的強度が
優れているので水タンク等の各種工業関連製品、
住宅関連製品等に巾広く利用されている。しかし
これらの製品は機械的強度は十分であるが、アル
カリ性物質、溶剤、80℃以上の熱水等に対する耐
薬品性、耐熱水性が不足しており、これらの用途
に使用することは困難であつた。 この様な欠点を改良するため、従来より耐薬品
性、耐熱水性に優れたポリプロピレン、ポリエチ
レン等のポリオレフインを接液層とし、裏面に繊
維強化熱硬化性樹脂層を配した複合材料が提案さ
れ、実施されている。しかし、ポリオレフインと
繊維強化熱硬化性樹脂とは接着性が悪く、これを
改善するためにポリオレフイン層に対して種々の
工夫が成されてきた。例えばコロナ放電、電子線
照射等の表面処理、あるいは薬液によるエツチン
グ処理等の方法が提案されているが、それでもな
お接着性が不足しており実用上問題がある。また
物理的に接着性能を向上させる方法として、ガラ
ス繊維織物、有機繊維等を熱ロールで一部含浸さ
せたポリオレフインシートを、繊維強化熱硬化性
樹脂で補強して複合材料を得る方法が提案され実
用化されている。しかしこの方法では、繊維材料
が一部含浸されたポリオレフインシートを熱圧成
形によつてパイプ、アングル、箱形の様な変化の
大きい形状に予備成形することが困難であるた
め、変化の大きい形状の予備成形物を得るにはポ
リオレフインシートの溶接が必要である。従つ
て、作業者の溶接技術の巧拙による品質のバラツ
キや溶接部への応力の集中が起り易く、生産効率
も悪いという欠点がある。 発明者等は、かかる欠点を解決するため鋭意研
究を続けた結果、ポリオレフイン層に特徴をもた
せることにより、繊維強化熱硬化性樹脂層とポリ
オレフイン層よりなる層間接着強度の優れた複合
材料が得られることを見出し本発明を完成するに
至つた。 すなわち本発明は繊維強化熱硬化性樹脂層とポ
リオレフイン層よりなる複合材料において、該ポ
リオレフイン層が(A)ポリプロピレンと(B)ポリプロ
ピレン共重合体、その他のオレフイン系重合体お
よび充填剤からなる群から選ばれた少なくとも一
種との混合物からなることを特徴とする層間接着
強度の優れた複合材料を提供する。 本発明で用いられるポリプロピレンおよびポリ
プロピレン共重合体とはすでに周知のプロピレン
系重合体であり、かかるポリプロピレンはプロピ
レンの単独重合体を言い、一方ポリプロピレン共
重合体はプロピレンを主成分とするエチレン、ブ
テン、ペンテン等のオレフイン類との共重合体を
言う。また、その他のオレフイン系重合体とは、
上記のポリプロピレンおよびポリプロピレン共重
合体を除く、すでに周知のオレフイン系重合体を
言い、例えば低密度、中密度および高密度ポリエ
チレン、エチレン―ブテン共重合体、エチレン―
ペンテン共重合体、ポリブテン等である。更に充
填剤とはすでに周知のプラスチツク用充填剤を言
い、例えばタルク、クレー、炭酸カルシウム、水
酸化アルミニウム、シリカ等があり、好ましくは
タルク、炭酸カルシウムが用いられる。 本発明の複合材料を構成するポリオレフイン層
に於ける(A)ポリプロピレンと(B)ポリプロピレン共
重合体、その他のオレフイン系重合体および充填
剤との各混合割合は、通常の場合ポリプロピレン
100重量部に対してそれぞれ0〜30重量部、0〜
40重量部および0〜100重量部であり、好ましく
は5〜20重量部、5〜30重量部および20〜80重量
部である。上記ポリプロピレン共重合体およびそ
の他のオレフイン系重合体の混合割合が少ない場
合には接着性、予備成形性および複合成形性が低
く、多い場合には接着性および耐ストレスクラツ
キング性が低くなる。また充填剤が少ない場合に
は著しく接着性が低く、多い場合にはシート成形
性および耐衝撃性が低くなり、好ましくない。 本発明の複合材料を構成する繊維強化熱硬化性
樹脂層は主に強化繊維および熱硬化性樹脂からな
り、強化繊維としては例えばガラス繊維、炭素繊
維等があり、熱硬化性樹脂としては例えば不飽和
ポリエステル樹脂、ビニルエステル樹脂、エポキ
シ樹脂等がある。また熱硬化性樹脂層にはすでに
周知の充填剤、低収縮化剤、顔料、離型剤、硬化
剤、その他の添加剤を混合してもよい。尚、繊維
強化熱硬化性樹脂層を積層する際には強化繊維と
熱硬化性樹脂をその場で混合して使用してもよい
し、SMC(シート・モールデイング・コンパウン
ド)あるいはBMC(バルク・モールデイング・コ
ンパウンド)のように強化繊維と熱硬化性樹脂と
のコンパウンドがあらかじめ混合された成形材料
を使用してもよい。 本発明の層間接着強度の優れた複合材料は、繊
維強化熱硬化性樹脂層を構成する材料とポリオレ
フイン層を構成する材料(ポリオレフイン材料と
略す。)を重ね合せて加熱加圧することによつて
容易に得られる。この場合必要に応じて、押出成
形、真空成形、圧空成形、射出成形、中空成形等
の通常行なわれる熱可塑性樹脂成形法によつて予
備成形されたポリオレフイン材料を使用すること
が好ましい。例えば箱形形状の複合材料は、ポリ
オレフイン材料によるシートを真空成形等の熱圧
成形によつて箱形に予備成形し、得られた箱形成
形品を熱硬化性樹脂成形用金型にセツトし、その
上にSMC等の繊維強化熱硬化性樹脂コンパウン
ドを配し、加熱加圧をする複合成形によつて得ら
れる。通常の場合、加熱温度および成形圧力は
110〜160℃、1〜150Kg/cm2であり、好ましくは
130〜145℃、20〜80Kg/cm2である。またポリオレ
フイン層の厚さは、複合成形性と耐薬品性および
耐熱水性のバランスを考慮した場合、予備成形後
において通常は0.3〜5.0mmの範囲であり、好まし
くは1.0〜2.5mmの範囲である。 この様にして得られた複合材料は、接液側とし
てポリオレフイン層を配することにより耐薬品
性、耐熱水性に優れ、しかも繊維強化熱硬化性樹
脂が層間接着性よく裏打ちされているため機械的
強度にも優れている。そして容易に板、箱、パイ
プ、アングル等の各種形状が得られるので、さら
にウレタンホーム、レジンコンクリート等を併用
して断熱性、剛性等を併せもつた各種成形物に応
用することが可能となる。 以下に実施例を示して本発明を更に詳細に説明
する。尚、実施例中の部および%はすべて重量基
準である。 実施例1〜11および比較例1〜3 MMD(マツチドメタルダイ)成形用凹型金型
(300mm×300mm×3.5mm)内に、ポリオレフイン材
料を押出成形して得られた厚さ1.0mmのシートを
配し、その上にコンテイニアスガラスマツトM―
8609(450g/m2、旭フアイバーグラス株式会社製)
3枚と、不飽和ポリエステル樹脂ポリライトPM
―141(大日本インキ化学工業株式会社製)100部、
炭酸カルシウムNS―100(日東粉化株式会社製)
100部、ステアリン酸亜鉛3部、t―ブチルパー
ベンゾエート1.5部よりなる不飽和ポリエステル
コンパウンドとを、ガラス繊維含有率が30%にな
る割合で積層し、成形温度130℃、成形圧力20Kg/
cm2の条件でMMD法による複合成形を行い、厚さ
3.5mmの板状の複合材料を得た。次いでJIS―K―
6850に基づき接着剥離強度および引張剪断接着強
度を測定した。 表―1にポリオレフイン材料の組成、接着剥離
強度および引張剪断接着強度を示す。
The present invention relates to a composite material with excellent interlayer bonding strength consisting of a fiber-reinforced thermosetting resin layer and a polyolefin layer. Fiber-reinforced thermosetting resin materials made from unsaturated polyester resin, vinyl ester resin, epoxy resin, etc. and reinforcing fibers are lightweight and have excellent mechanical strength, so they can be used in various industrial products such as water tanks, etc.
It is widely used in housing-related products. However, although these products have sufficient mechanical strength, they lack chemical resistance and hot water resistance against alkaline substances, solvents, and hot water of 80°C or higher, making it difficult to use them for these purposes. Ta. In order to improve these drawbacks, a composite material has been proposed in which a polyolefin such as polypropylene or polyethylene, which has excellent chemical resistance and hot water resistance, is used as the wetted layer and a fiber-reinforced thermosetting resin layer is arranged on the back side. It has been implemented. However, polyolefin and fiber-reinforced thermosetting resin have poor adhesion, and various efforts have been made to improve the adhesiveness of the polyolefin layer. For example, methods such as surface treatments such as corona discharge and electron beam irradiation, and etching treatments using chemicals have been proposed, but these methods still lack adhesiveness and are problematic in practice. In addition, as a method to physically improve adhesive performance, a method has been proposed in which a polyolefin sheet partially impregnated with glass fiber fabric, organic fiber, etc. using a hot roll is reinforced with fiber-reinforced thermosetting resin to obtain a composite material. It has been put into practical use. However, with this method, it is difficult to preform a polyolefin sheet partially impregnated with a fiber material into shapes that vary widely, such as pipes, angles, and boxes, by thermoforming. Welding of polyolefin sheets is necessary to obtain a preform. Therefore, there are disadvantages in that quality variations are likely to occur due to the skill of the welding technique of the worker, stress is likely to be concentrated in the welded area, and production efficiency is also poor. As a result of intensive research aimed at resolving these drawbacks, the inventors have found that by imparting characteristics to the polyolefin layer, a composite material consisting of a fiber-reinforced thermosetting resin layer and a polyolefin layer with excellent interlayer adhesive strength can be obtained. This discovery led to the completion of the present invention. That is, the present invention provides a composite material comprising a fiber-reinforced thermosetting resin layer and a polyolefin layer, wherein the polyolefin layer is composed of (A) polypropylene, (B) a polypropylene copolymer, another olefin polymer, and a filler. To provide a composite material with excellent interlayer adhesive strength, characterized by being made of a mixture with at least one selected one. The polypropylene and polypropylene copolymer used in the present invention are already well-known propylene-based polymers, and the polypropylene refers to a homopolymer of propylene, while the polypropylene copolymer refers to ethylene, butene, etc. whose main component is propylene. A copolymer with olefins such as pentene. In addition, other olefin polymers include
Refers to already well-known olefinic polymers, excluding the polypropylene and polypropylene copolymers mentioned above, such as low-density, medium-density and high-density polyethylene, ethylene-butene copolymers, ethylene-butene copolymers, etc.
These include pentene copolymers and polybutenes. Further, the filler refers to a well-known filler for plastics, such as talc, clay, calcium carbonate, aluminum hydroxide, silica, etc., with talc and calcium carbonate being preferably used. In the polyolefin layer constituting the composite material of the present invention, the mixing ratios of (A) polypropylene, (B) polypropylene copolymer, other olefin polymers, and fillers are usually
0 to 30 parts by weight, 0 to 100 parts by weight, respectively
40 parts by weight and 0 to 100 parts by weight, preferably 5 to 20 parts by weight, 5 to 30 parts by weight and 20 to 80 parts by weight. If the mixing ratio of the above-mentioned polypropylene copolymer and other olefin polymer is small, the adhesion, preformability and composite moldability will be low, and if it is large, the adhesion and stress cracking resistance will be low. Furthermore, if the amount of filler is small, the adhesiveness will be extremely low, and if the amount is large, the sheet formability and impact resistance will be low, which is not preferable. The fiber-reinforced thermosetting resin layer constituting the composite material of the present invention mainly consists of reinforcing fibers and thermosetting resin. Examples of the reinforcing fibers include glass fibers and carbon fibers, and examples of the thermosetting resin include non-carbon fibers. There are saturated polyester resins, vinyl ester resins, epoxy resins, etc. Further, well-known fillers, low-shrinkage agents, pigments, mold release agents, curing agents, and other additives may be mixed into the thermosetting resin layer. When laminating the fiber-reinforced thermosetting resin layer, the reinforcing fibers and thermosetting resin may be mixed on the spot, or SMC (sheet molding compound) or BMC (bulk molding compound) may be used. A molding material in which a compound of reinforcing fibers and a thermosetting resin is mixed in advance, such as a molding compound (molding compound), may also be used. The composite material with excellent interlayer adhesion strength of the present invention can be easily produced by superimposing the material constituting the fiber-reinforced thermosetting resin layer and the material constituting the polyolefin layer (abbreviated as polyolefin material) and heating and pressurizing them. can be obtained. In this case, it is preferable to use a polyolefin material preformed by a commonly used thermoplastic resin molding method such as extrusion molding, vacuum molding, pressure molding, injection molding, or blow molding, if necessary. For example, a box-shaped composite material is produced by preforming a sheet of polyolefin material into a box shape by hot pressure forming such as vacuum forming, and setting the obtained box-shaped product into a mold for molding a thermosetting resin. It is obtained by composite molding, in which a fiber-reinforced thermosetting resin compound such as SMC is placed on top of it and heated and pressed. In normal cases, the heating temperature and molding pressure are
110-160℃, 1-150Kg/ cm2 , preferably
130-145℃, 20-80Kg/ cm2 . In addition, the thickness of the polyolefin layer after preforming is usually in the range of 0.3 to 5.0 mm, preferably in the range of 1.0 to 2.5 mm, considering the balance between composite moldability, chemical resistance, and hot water resistance. . The composite material obtained in this way has excellent chemical resistance and hot water resistance due to the polyolefin layer placed on the liquid contact side, and is also mechanically resistant because it is backed with a fiber-reinforced thermosetting resin with good interlayer adhesion. It also has excellent strength. Since various shapes such as plates, boxes, pipes, and angles can be easily obtained, it can also be used in combination with urethane foam, resin concrete, etc. to create various molded products that have both heat insulation and rigidity. . The present invention will be explained in more detail by showing Examples below. In addition, all parts and percentages in the examples are based on weight. Examples 1 to 11 and Comparative Examples 1 to 3 1.0 mm thick sheet obtained by extrusion molding a polyolefin material into a concave mold (300 mm x 300 mm x 3.5 mm) for MMD (Matted Metal Die) molding. on top of which a continuous glass matte M-
8609 (450g/m 2 , manufactured by Asahi Fiberglass Co., Ltd.)
3 sheets and unsaturated polyester resin Polylite PM
-141 (manufactured by Dainippon Ink and Chemicals Co., Ltd.) 100 copies,
Calcium carbonate NS-100 (manufactured by Nitto Funka Co., Ltd.)
100 parts of zinc stearate, and an unsaturated polyester compound consisting of 3 parts of zinc stearate and 1.5 parts of t-butyl perbenzoate were laminated at a ratio of glass fiber content of 30%, molding temperature was 130℃, molding pressure was 20kg/
Composite molding was performed using the MMD method under the conditions of cm2 , and the thickness
A 3.5 mm plate-shaped composite material was obtained. Next, JIS-K-
Adhesive peel strength and tensile shear adhesive strength were measured based on 6850. Table 1 shows the composition, adhesive peel strength, and tensile shear adhesive strength of the polyolefin material.

【表】【table】

【表】【table】

【表】 実施例 12 不飽和ポリエステル樹脂ポリライトPM―141
の代りにビニルエステル樹脂デイツクライトUE
―3505(大日本インキ化学工業株式会社製)を用
いる以外は実施例11と全く同様にして板状の複合
材料を得た。 接着剥離強度および引張剪断接着強度はそれぞ
れ0.45Kg/mmおよび42Kg/cm2であつた。 実施例 13 実施例11で用いたコンテイニアスガラスマツト
と不飽和ポリエステルコンパウンドの代りに210
mm×210mmのSMC成形材料デイツクマツト2440―
T(大日本インキ化学工業株式会社製)を用い、
成形温度140℃、成形圧力60Kg/cm2の条件で複合成
形した以外は実施例11と全く同様にして板状の複
合材料を得た。 接着剥離強度および引張剪断接着強度はそれぞ
れ0.41Kg/mmおよび36Kg/cm2であつた。
[Table] Example 12 Unsaturated polyester resin Polylite PM-141
Instead of vinyl ester resin Datecrite UE
A plate-shaped composite material was obtained in exactly the same manner as in Example 11, except that -3505 (manufactured by Dainippon Ink and Chemicals Co., Ltd.) was used. The adhesive peel strength and tensile shear adhesive strength were 0.45 Kg/mm and 42 Kg/ cm2 , respectively. Example 13 210 instead of the continuous glass mat and unsaturated polyester compound used in Example 11
mm x 210mm SMC molding material Datekumatsut 2440
Using T (manufactured by Dainippon Ink and Chemicals Co., Ltd.),
A plate-shaped composite material was obtained in exactly the same manner as in Example 11, except that composite molding was performed at a molding temperature of 140° C. and a molding pressure of 60 Kg/cm 2 . The adhesive peel strength and tensile shear adhesive strength were 0.41 Kg/mm and 36 Kg/ cm2 , respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維強化熱硬化性樹脂層とポリオレフイン層
よりなる複合材料において、該ポリオレフイン層
が(A)ポリプロピレンと(B)ポリプロピレン共重合
体、その他のオレフイン系重合体および充填剤か
らなる群から選ばれた少なくとも一種との混合物
からなることを特徴とする層間接着強度の優れた
複合材料。
1. A composite material consisting of a fiber-reinforced thermosetting resin layer and a polyolefin layer, in which the polyolefin layer is selected from the group consisting of (A) polypropylene, (B) polypropylene copolymer, other olefin polymers, and fillers. A composite material with excellent interlayer adhesion strength, characterized by being made of a mixture with at least one type of compound.
JP544082A 1982-01-19 1982-01-19 Composite material having excellent interlayer adhesive strength Granted JPS58124647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP544082A JPS58124647A (en) 1982-01-19 1982-01-19 Composite material having excellent interlayer adhesive strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP544082A JPS58124647A (en) 1982-01-19 1982-01-19 Composite material having excellent interlayer adhesive strength

Publications (2)

Publication Number Publication Date
JPS58124647A JPS58124647A (en) 1983-07-25
JPS638906B2 true JPS638906B2 (en) 1988-02-25

Family

ID=11611249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP544082A Granted JPS58124647A (en) 1982-01-19 1982-01-19 Composite material having excellent interlayer adhesive strength

Country Status (1)

Country Link
JP (1) JPS58124647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010020382A (en) * 1997-04-30 2001-03-15 비센트 비.인그라시아, 알크 엠 아헨 System for accessing and transferring information from a private computer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100058521A (en) * 2007-08-02 2010-06-03 다우 글로벌 테크놀로지스 인크. Thermoset dampener material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010020382A (en) * 1997-04-30 2001-03-15 비센트 비.인그라시아, 알크 엠 아헨 System for accessing and transferring information from a private computer

Also Published As

Publication number Publication date
JPS58124647A (en) 1983-07-25

Similar Documents

Publication Publication Date Title
US4788099A (en) Vibration-damping material with excellent workability
US5180628A (en) Shock-absorbing propylene polymer composite moldings
US3317363A (en) Corrugated product
US3413188A (en) Glass fiber-wood laminates and methods of producing such laminates
US20110162777A1 (en) Thermoplastic Compound Plate-Shaped Material, Method for Manufacturing and Articles Manufactured Using the Same
CN1328040C (en) Foam Polyolefin resin plate
US9422423B2 (en) Composite articles compression molded from recycled plastic
JPH01188536A (en) Adhesive foam
JP2019072859A (en) Laminated type exterior material
EP0873863A3 (en) Multilayered article, vessel and resin composition based on polyethylene
JPS638906B2 (en)
JPH0632343A (en) Barrier tray of polypropylene foam
JPS6242780B2 (en)
JPS5929409B2 (en) Method for manufacturing multilayer structures
JPH0148146B2 (en)
JPH0212834B2 (en)
JPH0347291B2 (en)
US3238077A (en) Process of bonding a polyolefin layer laminate which has been partially cured to a b-stage product
KR102532725B1 (en) Carbon-neutral eco-friendly foam sheet and articles obtained therefrom
US11680148B2 (en) Composite particles, composite particle cured product, composite particle in-mold molded article, laminate, composite, and method for producing composite particles
JPH06238799A (en) Laminated body
KR101836866B1 (en) Foam for concrete mold based on environment-friendly recycled material
JPH0347651B2 (en)
JPH0747630A (en) Production of skin integrated multilatyered molded product
JPH0669742B2 (en) Damping material with excellent workability