JPS6389052A - Switching power circuit - Google Patents

Switching power circuit

Info

Publication number
JPS6389052A
JPS6389052A JP23416286A JP23416286A JPS6389052A JP S6389052 A JPS6389052 A JP S6389052A JP 23416286 A JP23416286 A JP 23416286A JP 23416286 A JP23416286 A JP 23416286A JP S6389052 A JPS6389052 A JP S6389052A
Authority
JP
Japan
Prior art keywords
winding
power supply
capacitor
tertiary
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23416286A
Other languages
Japanese (ja)
Other versions
JPH07118916B2 (en
Inventor
Isami Norikoshi
勇美 乗越
Hiroshi Takeshita
紘 竹下
Harunobu Hiki
比企 春信
Shigeo Watanabe
渡辺 茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Densetsu Co Ltd
Original Assignee
Densetsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Densetsu Co Ltd filed Critical Densetsu Co Ltd
Priority to JP61234162A priority Critical patent/JPH07118916B2/en
Publication of JPS6389052A publication Critical patent/JPS6389052A/en
Publication of JPH07118916B2 publication Critical patent/JPH07118916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce loss by discharging a capacitor through the tertiary winding of a main transformer on turn-ON and returning energy stored in the capacitor to an input. CONSTITUTION:A tertiary winding 22 having approximately the same number of turns as a primary winding 3 is fitted to a main transformer 2. The winding- start side of the tertiary winding 22 is bonded with the winding-end side of the primary winding 3, and the winding-end side is combined with the negative side of a DC power 1 through a capacitor 20 while being coupled with a drain in an FET 4 through a rectifier 21 in the opposite direction. The capacitor 20 is discharged through the tertiary winding 22 on the turn-ON of the FET 4, and energy stored on the charging of the capacitor 20 is returned to an input. The currents flow through the primary winding 3 and the FET 4 from the tertiary winding 3 at the same time as the return, and energy returned to the input once is output through a secondary winding 5.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はホワードまたはフライバック式のスイッチング
電源回路に係り、特に開閉素子に付加されるスナバ−に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a forward or flyback type switching power supply circuit, and particularly to a snubber added to a switching element.

「従来の技術」 一般に、第9図に示すように、直流電源(1)の両端間
に、主変圧器(2)の1次巻線(3)と開閉素子(4)
の直列回路を結合し、前記主変圧器(2)の2次巻線(
5)に、整流器(6)とが波回路(7)を結合し、出力
端子(8) (!])に得られた出力電圧を検出増幅回
路(10)、アイソレータ(11)を介して前記開閉素
子(4)に加えて時比率を制御するようにしたいわゆる
ホワードまたはフライバック式スイッチング電源回路が
ある。この電源回路において、従来、スイッチング電源
回路のターンオフ時の開閉素子(4)のスパイク電圧お
よびこれに基因する出力電圧のノイズ電圧を低減するた
めに、開閉素子(4)と並列にダイオード(12)、抵
抗(13)およびコンデンサ(14)をもって構成され
るスナバ−装置が多用されていた。
"Prior Art" Generally, as shown in Fig. 9, a primary winding (3) of a main transformer (2) and a switching element (4) are connected between both ends of a DC power supply (1).
The series circuit of the main transformer (2) is connected to the secondary winding (
5), the rectifier (6) and the wave circuit (7) are connected, and the output voltage obtained at the output terminal (8) (!) is detected and transmitted through the amplification circuit (10) and the isolator (11). There is a so-called forward or flyback type switching power supply circuit which controls the duty ratio in addition to the switching element (4). In this power supply circuit, conventionally, a diode (12) is connected in parallel with the switching element (4) in order to reduce the spike voltage of the switching element (4) at turn-off of the switching power supply circuit and the noise voltage of the output voltage caused by this. , a snubber device consisting of a resistor (13) and a capacitor (14) was often used.

「発明が解決しようとする問題点」 この第9図のスイッチング電源回路では、開閉素子(4
)のターンオフ時(第10図のt、−t4)には効果的
にソース・ドレン間電圧(v9)のスパイク電圧は抑制
されるが、開閉素子(4)のターンオン時(第10図の
t1〜tz)のコンデンサ(14)の放電は抵抗(13
)を通じて行われるので、これは損失を構成する。第1
0図(b) (C)はコンデンサ(14)の充放電流(
Ic)と電圧(Vc)の特性である。またこの放電電流
(Ir)は開閉素子(4)にも通ずるので第10図(a
)のt工〜t2間のように、ソース・ドレン間電圧(V
q)と電流(Iq)とは重なりを発生し、これもまた損
失となるという問題があった。ちなみに、t、〜t4間
の電流Icは開閉素子(4)のドレン・ソース間に有す
るキャパシタンスへの充電電流であって損失を形成しな
い。
"Problems to be Solved by the Invention" In the switching power supply circuit shown in Fig. 9, the switching elements (4
) is turned off (t, -t4 in Figure 10), the spike voltage of the source-drain voltage (v9) is effectively suppressed, but when the switching element (4) is turned on (t1 in Figure 10) ~tz) The discharge of the capacitor (14) is caused by the resistance (13
), this constitutes a loss. 1st
Figure 0 (b) (C) shows the charging and discharging current of the capacitor (14) (
Ic) and voltage (Vc) characteristics. This discharge current (Ir) also passes through the switching element (4), so it is shown in Fig. 10 (a).
), the source-drain voltage (V
There is a problem in that the current (Iq) and the current (Iq) overlap, which also results in loss. Incidentally, the current Ic between t and t4 is a charging current to the capacitance between the drain and source of the switching element (4), and does not cause any loss.

[問題点を解決するための手段」 本発明は以上2つの損失を略零に近く低減しようとする
もので、電源側に主変圧器の]次巻線と開閉素子とを直
列に結合し、前記主変圧器の2次巻線に整流器とろ波回
路を設け、得られた出力電圧を検出増幅して前記開閉素
子の時比率を制御するようにしたスイッチング電源回路
において、前記主変圧時の1次巻線と略同一巻回数を有
する3次巻線を設け、この3次巻線の巻始め側を1次巻
線の巻始め側に結合し、3次巻線の巻終り側と電源側の
正または負の一端との間にコンデンサを結合し、これら
3次巻線とコンデンサとの接合点と。
[Means for Solving the Problems] The present invention aims to reduce the above two losses to almost zero, by connecting the secondary winding of the main transformer and the switching element in series on the power supply side, In the switching power supply circuit, a rectifier and a filter circuit are provided in the secondary winding of the main transformer, and the obtained output voltage is detected and amplified to control the duty ratio of the switching element. A tertiary winding having approximately the same number of turns as the primary winding is provided, the winding start side of this tertiary winding is connected to the winding start side of the primary winding, and the winding end side of the tertiary winding is connected to the power supply side. A capacitor is coupled between the positive or negative end of the tertiary winding and the junction of the capacitor.

1次巻線と開閉素子との結合点との間に整流器を結合し
てなるものである。
A rectifier is connected between the connection point between the primary winding and the switching element.

「作用」 開閉素子のターン・オフ時の動作は第9図の従来例と全
く同様である。
"Operation" The operation of the switching element when it is turned off is exactly the same as that of the conventional example shown in FIG.

ターン・オン時におけるコンデンサの放電は3次巻線を
通じて行なわわ、コンデンサに蓄積されていたエネルギ
は入力に返還され損失を形成しない。また返還されると
同時に、この′7ti流は3次巻線から】次巻線、開閉
素子へと流れ、−旦入力に返還されたエネルギが2次巻
線を通じて出力される。
Discharging of the capacitor at turn-on takes place through the tertiary winding, and the energy stored in the capacitor is returned to the input and does not form a loss. At the same time as being returned, this '7ti current flows from the tertiary winding to the next winding and the switching element, and the energy that was once returned to the input is outputted through the secondary winding.

「実施例」 以下、本発明の実施例を図面に基づき説明する。"Example" Embodiments of the present invention will be described below based on the drawings.

第9図と同一部分は同一符号とする。The same parts as in FIG. 9 are given the same reference numerals.

第1実施例を示す第1図において、直流電源(1)の両
端に、主変圧器(2)の1次巻線(3)と開閉素子とし
てのMO8型FE’r(4)との直列回路を結合する。
In FIG. 1 showing the first embodiment, a primary winding (3) of a main transformer (2) and an MO8 type FE'r (4) as a switching element are connected in series at both ends of a DC power supply (1). Combine circuits.

また、前記主変圧器(2)の2次巻線(5)には、整流
器(6)、転流器(z3)、コイル(24)とコンデン
サ(25)による平滑が波回路(7)を介して出力端子
(8) (9)に結合されている。この出力端子(8)
 (!11)には検出増幅回路(10)、アイソレータ
(11)を介して前記F E T (4)のゲートに結
合されている。
In addition, the secondary winding (5) of the main transformer (2) is equipped with a smoothing wave circuit (7) consisting of a rectifier (6), a commutator (z3), a coil (24), and a capacitor (25). via the output terminals (8) and (9). This output terminal (8)
(!11) is coupled to the gate of the FET (4) via a detection amplifier circuit (10) and an isolator (11).

以上のように構成されたいわゆるホワードまたはフライ
バック式のスイッチング電源回路において、本発明では
、前記主変圧器(2)に、1次巻線(3)と略同一巻回
数の3次巻線(z2)を設け、この33次巻線(22)
の巻始め側を1次巻線(3)の巻始め側に結合し、巻終
り側はコンデンサ(20)を介して直dL電源(1)の
負側に結合するとともに逆向きの整流器(21)を介し
てF E T (4)のドレンに結合してなるものであ
る。
In the so-called forward or flyback type switching power supply circuit configured as described above, in the present invention, the main transformer (2) is provided with a tertiary winding (3) having approximately the same number of turns as the primary winding (3). z2) and this 33rd winding (22)
The winding start side of the primary winding (3) is connected to the winding start side of the primary winding (3), and the winding end side is connected to the negative side of the direct dL power supply (1) via a capacitor (20) and a reverse rectifier (21). ) to the drain of FET (4).

以上のような回路構成においてF E T (4)のタ
ーンオフ時の動作は第9図の従来例と全く同様である。
In the circuit configuration as described above, the operation at turn-off of FET (4) is exactly the same as that of the conventional example shown in FIG.

しかし、ターンオン時の放電は3次巻線(22)を通じ
て行われ、コンデンサ(20)の充電時に蓄えられてい
たエネルギはこの時入力に返還され損失を形成しない。
However, the discharge at turn-on occurs through the tertiary winding (22), and the energy stored during charging of the capacitor (20) is returned to the input at this time and does not form a loss.

また、返還されると同時にこの時の電流(Ic)は3次
巻線(22)−+1次巻線(3)−+FET(4)間を
流れる。この1次巻線(:3)に流れることは−旦入力
に返還されたエネルギが1次巻線(3)→2次巻線(5
)を通じて出力されることを意味する。
Moreover, at the same time as being returned, the current (Ic) at this time flows between the tertiary winding (22)-+primary winding (3)-+FET (4). What happens is that the energy that is returned to the input flows through the primary winding (3) → the secondary winding (5).
).

そして、3次巻線(22)と1次巻線(3)内のり−ケ
ージインダクタンスにより、この電流(Ie)の立」二
りおよびピーク値は第2図(c)のように抑制されるの
で、第2図(a)に示した電圧(v9)と電流(Iq)
のように、それぞれが重なり合うことはなく従って、こ
こでも損失の発生は僅少である。
The rise and peak values of this current (Ie) are suppressed by the cage inductance in the tertiary winding (22) and the primary winding (3) as shown in Figure 2 (c). , the voltage (v9) and current (Iq) shown in Fig. 2(a)
As shown in FIG.

第1図において、コンデンサ(20)の他端は電源(1
)の負側に結合したが、点線で示すように正側に結合し
ても同様の作用効果を有する。
In Figure 1, the other end of the capacitor (20) is connected to the power supply (1
) is bonded to the negative side of ), but the same effect can be obtained even if it is bonded to the positive side as shown by the dotted line.

第1実施例では、1個の開閉素子(4)を用した場合を
示したが、第3図および第4図に示すように2個の開閉
素子(4a)(4b)を用いたカスケード型のホワード
型であってもよい。すなわち、第3図は第1のF E 
T (4a)のドレン・ソース間にコンデンサ(20a
)と整流器(21a)の直列回路を結合し、これらの接
続点と電源(1)の負側との間に第1の3次巻線(22
a)を結合し、また、第2のF−E T (4b)のド
レン・ソース間にコンデンサ(20b)と整流器(21
、b)の直列回路を結合し、これらの接続点と電源(1
)の正側との間に第2の3次巻線(22b)を結合した
ものである。また、第4図は第1と第2のFET (4
a) (4b)のドレン・ソース間にそれぞれコンデン
サ(20a) (20b)と整流器(21a) (21
b)の直列回路を結合し、これらの接続点間に3次巻線
(22)を挿入したものである。
In the first embodiment, a case was shown in which one switching element (4) was used, but as shown in FIGS. 3 and 4, a cascade type using two switching elements (4a) (4b) It may be of the forward type. That is, FIG. 3 shows the first F E
A capacitor (20a) is connected between the drain and source of T (4a).
) and the rectifier (21a), and connect the first tertiary winding (22a) between these connection points and the negative side of the power supply (1).
a), and also connect a capacitor (20b) and a rectifier (21) between the drain and source of the second FET (4b).
, b), and connect these connection points to the power supply (1
), and a second tertiary winding (22b) is connected between the positive side of the coil and the positive side of the coil. Moreover, FIG. 4 shows the first and second FET (4
a) Connect capacitors (20a) (20b) and rectifiers (21a) (21) between the drain and source of (4b), respectively.
The series circuits of b) are connected and a tertiary winding (22) is inserted between these connection points.

第5図は、本発明の他の実施例を示すもので、この例で
は、第1図の回路構成において3次巻線(22)とコン
デンサ(20)との間にインダクタンス(26)を挿入
したものである。このインダクタンス(26)の挿入に
より、F E T (4)のターン・オン時に、コンデ
ンサ(20)の23次巻線(22)へ通ずる放電電流I
n、は第2図(b)の点線で示すように緩やかなものと
なり、これに伴い、FET(4)の通過電流1qの立上
りや放電電圧(Vc)の立下りも(a)(c)の点線に
示すように緩やかになり、全体の効率を向上させ、ノイ
ズ抑制に効果的である。
FIG. 5 shows another embodiment of the present invention. In this example, an inductance (26) is inserted between the tertiary winding (22) and the capacitor (20) in the circuit configuration of FIG. This is what I did. By inserting this inductance (26), when FET (4) is turned on, the discharge current I flowing to the 23rd winding (22) of the capacitor (20)
n becomes gradual as shown by the dotted line in Fig. 2 (b), and accordingly, the rise of the passing current 1q of FET (4) and the fall of the discharge voltage (Vc) also become (a) (c) As shown by the dotted line, it becomes gentler, improving the overall efficiency and being effective in suppressing noise.

第6図は、本発明の他の実施例を示すもので、この例で
は、2次巻線(5)に、インダクタンスの大きな磁気増
幅器(27)を挿入したものに本発明を適用したもので
、従来は第7図の実線特性のようにターンオフ時のスパ
イク電圧で苦慮していたが、本発明を適用することによ
り、点線特性のような電流(Iq’)と電圧(Vq’)
の特性となり、スパイク電圧は大巾に抑制される。
FIG. 6 shows another embodiment of the present invention, in which the present invention is applied to a secondary winding (5) in which a magnetic amplifier (27) with large inductance is inserted. , conventionally, the spike voltage at turn-off as shown in the solid line characteristics in Fig. 7 was a problem, but by applying the present invention, the current (Iq') and voltage (Vq') as shown in the dotted line characteristics can be reduced.
The spike voltage is greatly suppressed.

第8図は、本発明の他の実施例を示すもので、この例で
は、主変圧器(2)の2次巻線をもたず、F E T 
(4)のドレン・ソース間から出力を得るいわゆるブー
スター型であり、この回路でも同様の作用効果を得るこ
とができる。なお、コンデンサ(20)は実線状態だけ
でなく、点線状態に結合してもよい。
FIG. 8 shows another embodiment of the invention, in which the main transformer (2) does not have a secondary winding, and the F E T
(4) This is a so-called booster type circuit that obtains an output from between the drain and source, and similar effects can be obtained with this circuit. Note that the capacitor (20) may be coupled not only in the solid line state but also in the dotted line state.

「発明の効果」 以−ヒにより従来の回路で発生した前述の2つの損失は
ほとんど零または極小となる。
``Effects of the Invention'' As a result, the two losses described above that occurred in the conventional circuit become almost zero or extremely small.

このことはまたコンデンサの容量を大きくしても損失を
増大するようなことがなく、ターンオフ時の電圧のスパ
イク電圧の抑制をより効果的に行うことを可能とする。
This also means that even if the capacitance of the capacitor is increased, the loss does not increase, and it is possible to more effectively suppress the voltage spike at turn-off.

またスイッチング周波数をスナバ回路の損失を顧慮する
ことなく増・大することも可能である。
It is also possible to increase the switching frequency without considering the loss of the snubber circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるスイッチング電源回路の第1実施
例を示す電気回路図、第2図は第1図の特性図、第3回
、第4図、第5図、第6図、第8図はそれぞれ本発明の
異なる実施例を示す電気回路図、第7図は第6図の回路
の特性図、第9図は従来の回路の特性図、第10図は第
9図の特性図である。 (1)・・・直流電源、(2)・・・主変圧器、(3)
・・・1次巻線、(4) (4a) (4b) ・・・
開閉素子、 (5)−2次巻線、(6) ・・・整流器
、(7)・・・ろ波回路、(8)(9)・・・・・・出
力端子、(10)・・・検出増幅回路、(11)・・・
アイソレータ、 (20)(20a) (20b) −
D ンデンサ、 (21)−・・整流器、(22)(2
2a) (22b) ・= 3次巻線、(26)−・・
インダクタンス、(2第  1  図 第  3  図 第  2  図 第  8  図 第  9  図 第  10   図
Fig. 1 is an electric circuit diagram showing a first embodiment of the switching power supply circuit according to the present invention, Fig. 2 is a characteristic diagram of Fig. 1, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 8 The figures are electrical circuit diagrams showing different embodiments of the present invention, Figure 7 is a characteristic diagram of the circuit in Figure 6, Figure 9 is a characteristic diagram of a conventional circuit, and Figure 10 is a characteristic diagram of the circuit in Figure 9. be. (1)...DC power supply, (2)...Main transformer, (3)
...Primary winding, (4) (4a) (4b) ...
Switching element, (5) - Secondary winding, (6) ... Rectifier, (7) ... Filter circuit, (8) (9) ... Output terminal, (10) ...・Detection amplifier circuit, (11)...
Isolator, (20) (20a) (20b) -
D capacitor, (21)--rectifier, (22) (2
2a) (22b) ・= Tertiary winding, (26) −・・
Inductance, (2 Fig. 1 Fig. 3 Fig. 2 Fig. 8 Fig. 9 Fig. 10)

Claims (5)

【特許請求の範囲】[Claims] (1)電源側に主変圧器の1次巻線と開閉素子とを直列
に結合し、前記主変圧器の2次巻線に整流器とろ波回路
を設け、得られた出力電圧を検出増幅して前記開閉素子
の時比率を制御するようにしたスイッチング電源回路に
おいて、前記主変圧時の1次巻線と略同一巻回数を有す
る3次巻線を設け、この3次巻線の巻始め側を1次巻線
の巻始め側に結合し、3次巻線の巻終り側と電源側の正
または負の一端との間にコンデンサを結合し、これら3
次巻線とコンデンサの接合点と、1次巻線と開閉素子と
の結合点との間に整流器を結合してなることを特徴とす
るスイッチング電源回路。
(1) The primary winding of the main transformer and the switching element are coupled in series on the power supply side, a rectifier and a filter circuit are provided in the secondary winding of the main transformer, and the resulting output voltage is detected and amplified. In the switching power supply circuit, a tertiary winding having approximately the same number of turns as the primary winding at the time of main transformation is provided, and a winding start side of the tertiary winding is provided. is coupled to the winding start side of the primary winding, and a capacitor is coupled between the winding end side of the tertiary winding and one positive or negative end of the power supply side, and these three
A switching power supply circuit characterized in that a rectifier is coupled between a junction point between a secondary winding and a capacitor and a junction point between a primary winding and a switching element.
(2)開閉素子を2個用いたカスケード型電源であって
、それぞれの開閉素子毎に3次巻線を具備した特許請求
の範囲第1項記載のスイッチング電源回路。
(2) The switching power supply circuit according to claim 1, which is a cascade type power supply using two switching elements, and each switching element is provided with a tertiary winding.
(3)開閉素子を2個用いたカスケード型電源であって
、2個の開閉素子に対し1個の3次巻線を具備した特許
請求の範囲第1項記載のスイッチング電源回路。
(3) The switching power supply circuit according to claim 1, which is a cascade type power supply using two switching elements, and includes one tertiary winding for each of the two switching elements.
(4)3次巻線に直列にインダクタンスを挿入してなる
特許請求の範囲第1項記載のスイッチング電源回路。
(4) The switching power supply circuit according to claim 1, wherein an inductance is inserted in series with the tertiary winding.
(5)主変圧器の2次巻線に磁気増幅器を挿入してなる
特許請求の範囲第1項記載のスイッチング電源回路。
(5) The switching power supply circuit according to claim 1, which comprises a magnetic amplifier inserted into the secondary winding of the main transformer.
JP61234162A 1986-10-01 1986-10-01 Switching power supply circuit Expired - Fee Related JPH07118916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61234162A JPH07118916B2 (en) 1986-10-01 1986-10-01 Switching power supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61234162A JPH07118916B2 (en) 1986-10-01 1986-10-01 Switching power supply circuit

Publications (2)

Publication Number Publication Date
JPS6389052A true JPS6389052A (en) 1988-04-20
JPH07118916B2 JPH07118916B2 (en) 1995-12-18

Family

ID=16966630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61234162A Expired - Fee Related JPH07118916B2 (en) 1986-10-01 1986-10-01 Switching power supply circuit

Country Status (1)

Country Link
JP (1) JPH07118916B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02237466A (en) * 1989-03-09 1990-09-20 Fuji Elelctrochem Co Ltd Switching power source
JPH03178570A (en) * 1989-12-07 1991-08-02 Sanken Electric Co Ltd Switching power supply
JP2012034525A (en) * 2010-08-02 2012-02-16 Nippon Soken Inc Switching power supply device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091863A (en) * 1983-10-26 1985-05-23 Hitachi Ltd Switching regulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091863A (en) * 1983-10-26 1985-05-23 Hitachi Ltd Switching regulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02237466A (en) * 1989-03-09 1990-09-20 Fuji Elelctrochem Co Ltd Switching power source
JPH03178570A (en) * 1989-12-07 1991-08-02 Sanken Electric Co Ltd Switching power supply
JP2012034525A (en) * 2010-08-02 2012-02-16 Nippon Soken Inc Switching power supply device

Also Published As

Publication number Publication date
JPH07118916B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
KR100519440B1 (en) Phase staggered full-bridge converter with soft-pwm swiching
US10566909B2 (en) DC-DC converter and method for operating same
JP3199423B2 (en) Resonant type forward converter
US6191965B1 (en) Switching power supply
US4866586A (en) Shoot-through resistant DC/DC power converter
US5457379A (en) High efficiency switch mode regulator
JP3402361B2 (en) Switching power supply
US6477064B1 (en) High efficiency DC-DC power converter with turn-off snubber
US6487094B1 (en) High efficiency DC-DC power converter
JPH05328714A (en) Dc-dc converter
JPS6389052A (en) Switching power circuit
US4787020A (en) Full-wave output type forward converter
JP3055121B2 (en) Chopper type DC-DC converter
US20020000923A1 (en) Switching power supply circuit
JPS6151514B2 (en)
JPH0412665A (en) Switching power supply
US4641230A (en) Pulse absorption circuit for power source circuit
JP2000152624A (en) Transformer-insulated dc-to-dc converter
JPS61266069A (en) Switching power source
JP3522125B2 (en) Transformer isolated DC-DC converter
JPH0246116Y2 (en)
JPH0256037B2 (en)
JP3324774B2 (en) Power supply
JPH0357705B2 (en)
JPH07123349B2 (en) Snubber circuit of switching power supply

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees