JPS6388806A - Highly dispersible magnetic iron powder and manufacture thereof - Google Patents

Highly dispersible magnetic iron powder and manufacture thereof

Info

Publication number
JPS6388806A
JPS6388806A JP61233286A JP23328686A JPS6388806A JP S6388806 A JPS6388806 A JP S6388806A JP 61233286 A JP61233286 A JP 61233286A JP 23328686 A JP23328686 A JP 23328686A JP S6388806 A JPS6388806 A JP S6388806A
Authority
JP
Japan
Prior art keywords
iron
magnetic
powder
gas
iron powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61233286A
Other languages
Japanese (ja)
Inventor
Toshinori Ishibashi
石橋 俊則
Masanobu Hiramatsu
平松 雅伸
Mitsuo Tanaka
光夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP61233286A priority Critical patent/JPS6388806A/en
Publication of JPS6388806A publication Critical patent/JPS6388806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture magnetic paints having high dispersion by attaching a basic gaseous component physically or chemically onto the surfaces of ferromagnetic metallic powder consisting of iron or mainly comprising iron. CONSTITUTION:A basic gas diluted with a non-oxidizing gas is brought into contact with ferromagnetic metallic powder composed of iron or mainly comprising iron. Ammonia, methylamine, pyridine, etc., can be used as the basic gas and nitrogen, helium, argon, etc., as the non-oxidizing gas. 0.05-2.0mueq/m<2> is sufficient as the quantity of the basic gas adhering on the surfaces of magnetic powder. The magnetic iron powder has extremely excellent dispersion, few holes and uniform particle size distribution, and the surfaces of the magnetic iron powder can display chemically superior interaction with a bonding agent and additives when mixing paints.

Description

【発明の詳細な説明】 本発明は、金属鉄を主体とする強磁性粉末とその製造方
法に関する。更に詳しくは、本発明は、高分散性の磁性
塗料の製造を可能ならしめる鉄もしくは鉄を主体とする
強磁性粉末とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ferromagnetic powder mainly composed of metallic iron and a method for producing the same. More specifically, the present invention relates to iron or iron-based ferromagnetic powder that makes it possible to manufacture a highly dispersible magnetic paint, and a method for manufacturing the same.

高分散性の磁性塗料の製造を可能ならしめる鉄もしくは
鉄を主体とする強磁性粉末は、物理的形態としては粒子
同士が焼結してないこと、粒子に空孔が少なく焼きしま
っていること、粒子の粒度分布が均斉であり、形崩れ等
による微粉が少ないこと等が備わっていなければならな
い。また、化学的相互作用の点からは、磁性塗料を調合
する際に用いられる結合剤や種々の添加剤と磁性粒子の
表面が化学的に良好な相互作用が発現せねばならない。
The physical form of iron or iron-based ferromagnetic powder that makes it possible to manufacture highly dispersible magnetic paints is that the particles are not sintered together, and the particles are baked with few holes. , the particle size distribution must be uniform, and there must be little fine powder due to deformation, etc. In addition, from the viewpoint of chemical interaction, the surface of the magnetic particles must exhibit good chemical interaction with the binder and various additives used in preparing the magnetic paint.

化学的に良好な相互作用が発現しない甚だしいケースで
は、磁性粉の表面化学種が磁性塗料として用いる結合剤
をゲル化することがある。
In severe cases where good chemical interactions are not developed, the surface species of the magnetic powder can gel the binder used as the magnetic paint.

また、磁性粉を有機溶剤に長時間浸漬しておくと有機溶
剤が変質することがある。例えば、メチルエチルケトン
の三量化反応が例示される。
Furthermore, if magnetic powder is immersed in an organic solvent for a long time, the organic solvent may change in quality. For example, the trimerization reaction of methyl ethyl ketone is exemplified.

以上記したように、高分散性の磁性塗料の製造を可能な
らしめる鉄もしくは鉄を特徴とする特許性粉末は良好な
物理的形態と磁性塗料を調合する際に用いられる結合剤
や種々の添加剤と良好な化学的相互作用をもたらすよう
な表面性状を併せ持たねばならない。
As mentioned above, iron or a proprietary powder characterized by iron, which makes it possible to produce highly dispersible magnetic paints, has a good physical form and binders and various additives used when formulating magnetic paints. It must also have surface properties that provide good chemical interaction with the agent.

次に、鉄もしくは鉄を主体とする強磁性粉末の製造H法
にっと、一般に行なわれている方法を例示する。
Next, a commonly used method for producing iron or iron-based ferromagnetic powder will be exemplified.

磁性鉄粉は、一般に、針状のオキシ水酸化鉄を加熱還元
する方法によって製造される。針状のオキシ水酸化鉄と
してはα、β、γの変態が知られており、製造方法も各
々の変態種に対応して異なるが、磁気記録用磁性鉄粉の
出発原料としてはα−F e OOHが双晶や樹脂成品
が少なく、針状比が1()曲後と大きいために優れてい
る。更に詳しくは、第一鉄塩水溶液とアルカリ水溶液と
を反応させて得られたFe(OH)2を含むpH11以
上の懸濁液に酸素含有ガスを通気するアルカリ側でのα
−1・’ eo 0 H合成法が特に優れており、専ら
、アルカリ側で合成したα−F″eoOHが磁性鉄粉の
出発原料として使用されている。また、上記懸濁液にN
i、Co、Mn、Cr5Zn、AI、Sl、Ca。
Magnetic iron powder is generally produced by a method of thermally reducing acicular iron oxyhydroxide. Acicular iron oxyhydroxide is known to have α, β, and γ transformations, and the manufacturing method differs depending on each transformation type, but α-F is the starting material for magnetic iron powder for magnetic recording. e OOH is excellent because it has few twins and resin components and has a large acicular ratio of 1() after bending. More specifically, α on the alkali side in which oxygen-containing gas is passed through a suspension containing Fe(OH)2 and having a pH of 11 or more obtained by reacting a ferrous salt aqueous solution and an alkaline aqueous solution.
-1・'eo 0 H synthesis method is particularly excellent, and α-F″eoOH synthesized exclusively on the alkaline side is used as the starting material for magnetic iron powder.
i, Co, Mn, Cr5Zn, AI, Sl, Ca.

Ti、Cu、Mg5Bi、Sn等の水酸化物を併存させ
て、これら金属成分を共沈したα−F eo OHを合
成し、これを出発原料として使用することも多い。
It is often the case that α-F eo OH is synthesized by co-precipitating these metal components in the presence of hydroxides such as Ti, Cu, Mg5Bi, Sn, etc., and used as a starting material.

針状のα−FeOOHを加熱還元して金属鉄を主体とし
た磁性鉄粉を得る方法としては、まずa−FeOOHを
空気等の非還元性の雰囲気下で加熱脱水させて酸化鉄に
した後、該酸化鉄を水素等の還元性雰囲気で加熱還元す
る方法や酸化鉄にする工程を省略してα−FeOOHを
直接に水素等の還元性雰囲気で加熱還元する方法が知ら
れている。
To obtain magnetic iron powder mainly composed of metallic iron by thermally reducing acicular α-FeOOH, first, a-FeOOH is heated and dehydrated in a non-reducing atmosphere such as air to form iron oxide. There are known methods in which the iron oxide is thermally reduced in a reducing atmosphere such as hydrogen, and a method in which the step of converting into iron oxide is omitted and α-FeOOH is directly thermally reduced in a reducing atmosphere such as hydrogen.

上記の加熱脱水もしくは加熱還元の際に針状粒子どうし
が焼結もしくは針状粒子が崩壊して、最終的に得られる
金属鉄を主体とした磁性鉄粉はその磁気特性が者しく低
下する傾向にある。
During the above-mentioned thermal dehydration or thermal reduction, the acicular particles sinter or collapse, and the magnetic properties of the finally obtained magnetic iron powder, mainly composed of metallic iron, tend to deteriorate significantly. It is in.

従って、加熱脱水もしくは加熱還元の前にオキシ水酸化
鉄もしくは酸化鉄の表面に焼結防止効果のある化合物を
被着させることが広く行なわれている。
Therefore, it is widely practiced to coat the surface of iron oxyhydroxide or iron oxide with a compound having a sintering prevention effect before thermal dehydration or thermal reduction.

被着様としては、Si、AI、P、8%Cr、Zn1C
a、Ti、Zr等の水酸化物、酸化物、硝酸塩、炭酸塩
等の化合物が単独もしくは組合せて使用される。また、
被着の際には磁気特性や加熱還元特性を調整するI]的
で、N1、Co、 Cu、 AI?等の化合物が前記焼
結防止成分と併用されることがある。
The adhesion type is Si, AI, P, 8%Cr, Zn1C.
Compounds such as hydroxides, oxides, nitrates, and carbonates of a, Ti, and Zr may be used alone or in combination. Also,
During deposition, magnetic properties and thermal reduction properties are adjusted. N1, Co, Cu, AI? Compounds such as the above may be used in combination with the sintering prevention component.

加熱還元した鉄または鉄を主体とする強磁性粉末は酸素
分圧を調整した酸化性ガスで表面を酸化して酸化安定性
を賦与したのち製品とする。表面の酸化は気相で行なう
方法やトルエン等の有機溶剤中に鉄または鉄を主体とす
る強磁性粉末を浸漬したものに酸化性ガスを通気する方
法等が知られている。
The surface of heat-reduced iron or ferromagnetic powder mainly composed of iron is oxidized with an oxidizing gas with adjusted oxygen partial pressure to give it oxidative stability, and then it is made into a product. Methods for oxidizing the surface in a gas phase and methods in which iron or ferromagnetic powder mainly composed of iron is dipped in an organic solvent such as toluene and oxidizing gas is passed therethrough are known.

従来技術において高分散性の磁性塗料の製造を可能なら
しめる鉄もしくは鉄を主体とする強磁性粉末を得るため
の製造上のポイントは、(,1)粒度均斉で樹脂状晶7
17−の針状のオキシ水酸化鉄の製造、 ■ 加熱脱水や加熱還元過程での粒子−の焼結や形崩れ
を回避する目的の被着成分の添加、■ 焼結や形崩れを
起さない加熱脱水、加熱還元条件での処理、 の3点であり、これから判るように、高分散性磁性粉の
製法という観点では、もっばら物理的形態が良好な磁性
鉄粉の製造に力点がおかれている。
In order to obtain iron or iron-based ferromagnetic powder that makes it possible to manufacture highly dispersible magnetic paints using conventional technology, the key points in production are (1) particle size uniformity and resinous crystal 7
17- Production of needle-shaped iron oxyhydroxide, ■ Addition of adhesion components for the purpose of avoiding sintering and deformation of particles during heat dehydration and heat reduction processes, ■ Addition of adhesion components to prevent sintering and deformation. As you can see, from the perspective of producing highly dispersible magnetic powder, most emphasis is placed on producing magnetic iron powder with good physical form. It's dark.

先に述べた化学的側面の調整は上記■で被着する成分様
及び量でほぼ沃土るため、良好な物理的形態及び良好な
磁気特性を保てる範囲内で被着する成分様及び量を調整
しているのが現状であるが、物理的性状の維持と化学的
性状のwR整という全く異なる二つの特性を被着成分様
及び量だけで両方とも満足させることには限界があり、
従来の磁性粉は磁性塗料製造の際の分散性が不十分であ
るのが現状である。
The adjustment of the chemical aspects mentioned above is similar to the type and amount of the deposited components in the above item (①), so the type and amount of the deposited components are adjusted within a range that maintains good physical form and good magnetic properties. However, there is a limit to the ability to satisfy both of the two completely different characteristics of maintaining physical properties and adjusting the wR of chemical properties by simply changing the type and amount of the adhered components.
At present, conventional magnetic powders have insufficient dispersibility during the production of magnetic paints.

本発明者は高分散性をもたらす鉄もしくは鉄を主体とす
る強磁性金属粉末とその製造方法を検討する過程で磁性
粉末表面の化学的性状を磁性粉末の磁気特性や物理的形
態を変動させることなく独立に好ましい方向に14整す
る方法を見出し、本発明を完成した。
In the process of studying iron or iron-based ferromagnetic metal powder that provides high dispersibility and a method for producing the same, the present inventor discovered that the chemical properties of the magnetic powder surface could be changed to change the magnetic properties and physical form of the magnetic powder. The present invention was completed by discovering a method for independently aligning 14 directions in a preferable direction.

斯くして、本発明によれば、鉄もしくは鉄を主成分とす
る強磁性金属粉末の表面に塩基性気体成分が物理的もし
くは化学的に付着した磁性鉄粉、並びに、非酸化性ガス
で希釈された塩基性気体を鉄または鉄を主成分とする強
磁性金属粉末に接触させることを特徴とする鉄または鉄
を主成分とする強磁性金属粉末の製造方法が提供される
Thus, according to the present invention, magnetic iron powder has a basic gas component physically or chemically attached to the surface of iron or ferromagnetic metal powder containing iron as a main component, and magnetic iron powder is diluted with a non-oxidizing gas. Provided is a method for producing iron or a ferromagnetic metal powder containing iron as a main component, which comprises bringing a basic gas obtained by the above process into contact with iron or a ferromagnetic metal powder containing iron as a main component.

本発明において、塩基性気体としでは、アンモニア、メ
チルアミン、ンメチルアミン、トリメチルアミン、エチ
ルアミン、ロープロピルアミン、190−プロピルアミ
ン、n−ブチルアミン、S−ブチルアミン、1−ブチル
アミン、アニリン、ピリジン等がイ1効である。これら
に塩基性ガスを希釈する非酸化性がスとしては、窒素、
ヘリウム、アルゴン等が使用でトる。
In the present invention, as basic gases, ammonia, methylamine, methylamine, trimethylamine, ethylamine, lopropylamine, 190-propylamine, n-butylamine, S-butylamine, 1-butylamine, aniline, pyridine, etc. are effective. It is. Examples of non-oxidizing gases that dilute basic gases include nitrogen,
Helium, argon, etc. can be used.

塩基性ガスの鉄または鉄を主体とする強磁性金属粉末表
面における付着量は塩基性気体の非酸化性がスに上る希
釈濃度、該希釈ガスと磁性粉末の接触温度及び時間、更
には、該希釈ガスに接触させた磁性粉末を引き続いて非
酸化性ガスのみで接触させる温度及び時間、で自由にコ
ントロールIi丁能であり、用いる塩基性気体の種類に
より適宜条件を選ぶことができる。磁性粉末の表面にお
ける塩基性ガスの付着量は、多ければ良いというもので
はなく、磁性鉄粉表面の塩基性ガスで処理曲後の酸性度
の変化で評価した塩基性ガスの付litとして0.05
〜2.0μsq/m2とすることで十分である。
The amount of basic gas deposited on the surface of iron or ferromagnetic metal powder mainly composed of iron is determined by the dilution concentration at which the non-oxidizing property of the basic gas reaches a high level, the contact temperature and time between the diluted gas and the magnetic powder, and furthermore, The temperature and time at which the magnetic powder that has been brought into contact with the diluent gas is subsequently brought into contact with only the non-oxidizing gas can be freely controlled, and the conditions can be selected as appropriate depending on the type of basic gas used. The amount of basic gas adhering to the surface of the magnetic powder is not necessarily as large as it is good, but the amount of adhesion of basic gas evaluated by the change in acidity after treatment with basic gas on the surface of the magnetic iron powder is 0. 05
~2.0 μsq/m2 is sufficient.

塩基性ガスの付着量は、実施例に示すように、磁性粉表
面の酸性基の分析より定量的に把握することがで外る。
As shown in Examples, the amount of attached basic gas can be quantitatively determined by analyzing the acidic groups on the surface of the magnetic powder.

極く微量の塩基性ガスの付着が磁性粉の分散性を着しく
向上する理由は明らかではないが、塩基性ガスの吸着は
強酸性のサイトから選択的におこることが触媒の分野で
知られており、強すぎる酸性基が分散性に悪影響をして
おり、これを塩基性ガスで選択的にマスキングする結果
とも考えられる。塩基性ガスの磁性粉表面への付着量を
少なくするには塩基性ガス/非酸化性がスの塩基性ガス
=7− 濃度をドげること及び磁性粉と該混合ガスの接触温度を
−にげること、更には該混合ガスの接触後に非酸化性ガ
スだけを磁性粉末に通気する際に、処理温度を上げるこ
との手段の一つ又は二つ以上の組合せを利用すればよい
It is not clear why the adhesion of a very small amount of basic gas significantly improves the dispersibility of magnetic powder, but it is known in the field of catalysts that adsorption of basic gas occurs selectively from strongly acidic sites. It is thought that too strong acidic groups have an adverse effect on dispersibility, and that this is the result of selective masking with basic gas. In order to reduce the amount of basic gas adhering to the surface of the magnetic powder, it is necessary to reduce the concentration of basic gas/non-oxidizing basic gas = 7- and to reduce the contact temperature between the magnetic powder and the mixed gas. One or a combination of two or more of the following methods may be used: increasing the treatment temperature, and further increasing the processing temperature when passing only the non-oxidizing gas through the magnetic powder after contact with the mixed gas.

好ましい塩基性気体による処理は、非酸化性がスで希釈
された塩基性気体を鉄または鉄を主成分とする強磁性金
属粉末に0〜200℃の温度下で接触させたのち非酸化
性ガスを0〜500℃の温度で接触させることによって
達成させる。ここで、非酸化性ガスによる塩基性気体の
希釈の程度としては0.01〜5%程度が好ましい。
A preferable treatment with a basic gas is to bring the basic gas diluted with a non-oxidizing gas into contact with iron or a ferromagnetic metal powder containing iron as a main component at a temperature of 0 to 200°C, and then to the non-oxidizing gas. This is achieved by contacting at a temperature of 0 to 500°C. Here, the degree of dilution of the basic gas with the non-oxidizing gas is preferably about 0.01 to 5%.

本発明の磁性鉄粉は、分散性が極めて良好であり、磁性
鉄粉をテープ化したりして実際の用途に用いるに際して
極めて価値のある特性を有するものである。
The magnetic iron powder of the present invention has extremely good dispersibility, and has extremely valuable properties when used in actual applications such as making magnetic iron powder into a tape.

K滝剖−し 針状比がほば15で比表面積が81m2/gのA1を!
、’ e i 00原子に対して3原子共沈成分として
含有したα−Fe 00 )1の表面にF’e100 
原子!=対してSi1.8原子、Nil原子及びCa 
O、1)jrt子に相当する量の被着を行なった。
A1 with a needle ratio of 15 and a specific surface area of 81 m2/g!
, F'e100 on the surface of α-Fe 00
atom! = 1.8 Si atoms, Nil atoms and Ca
O, 1) Deposition was performed in an amount equivalent to the JRT child.

α−F” eo OHの3%水性スフリーのpHを1(
)に調整したものに3号水ガラスの全量を添加し、引ト
統いて硝2酸ニッケルの全量を、1NのNaOHでスラ
リーのpHを10に保つように#整しつつ添加し、引き
続いて1NのHN 03でp I−1を8に調整した。
The pH of 3% aqueous souffle of α-F”eo OH was adjusted to 1 (
), add the entire amount of No. 3 water glass, then add the entire amount of nickel nitrate while adjusting the pH of the slurry to 10 with 1N NaOH, and then The p I-1 was adjusted to 8 with 1N HN 03.

次に、硝酸カルシウム水溶液を添加し、水洗し、濾過し
て被着粉を得た。
Next, an aqueous calcium nitrate solution was added, washed with water, and filtered to obtain a deposited powder.

被着粉を700℃に設定した電気炉に入れ、4時間処理
して加熱脱水させてヘマタイトとし、次いでH2気流中
380℃で4時間処理して鉄を主体とした強磁性金属粉
末とした。
The adhered powder was placed in an electric furnace set at 700° C. and treated for 4 hours to be heated and dehydrated to form hematite, and then treated in an H2 stream at 380° C. for 4 hours to form a ferromagnetic metal powder mainly composed of iron.

次に、該強磁性金属粉末をN2流通゛ドで室温まで冷却
し、02分圧を0.1%に調整した空気/ N 2の混
合ガスを通気して該強磁性金属粉末の表面に酸化被膜を
形成した(酸化被膜を形成した該磁性鉄粉を、以下にお
いて磁性鉄粉Aと称する)。
Next, the ferromagnetic metal powder is cooled to room temperature in a N2 flow mode, and a mixed gas of air/N2 whose partial pressure is adjusted to 0.1% is passed through to oxidize the surface of the ferromagnetic metal powder. A film was formed (the magnetic iron powder on which the oxide film was formed is hereinafter referred to as magnetic iron powder A).

磁性鉄粉Aの磁気特性を10K(leの磁界をかけて測
定したところ、 Hc      1550    0eσ9     
 1 28    eIIlu/gσr/σs    
  O151 であり、また、比表面積は53m2/gで、透過型組r
−顕微鏡による観察では焼結や粒子崩壊のない良好な物
理的形状であることが認められた。
When the magnetic properties of magnetic iron powder A were measured by applying a magnetic field of 10K (le), Hc 1550 0eσ9
1 28 eIIlu/gσr/σs
O151, the specific surface area is 53 m2/g, and the transmission type set r
- Microscopic observation revealed good physical shape with no sintering or particle collapse.

磁性鉄粉Aに、窒素で11000ppに希釈したアンモ
ニアガスを、磁性鉄粉Aの1kgあたり混合〃スを5 
N m”/ Hの割合で供給し、100℃で1時間接触
させたのち窒素ガスに切り替え、窒素の流通下に系を2
50℃に昇温してこの温度で1時間処理し、室温まで冷
却した(該処理粉を、以下において磁性鉄粉Bと称する
)。
Mix ammonia gas diluted to 11,000 pp with nitrogen to magnetic iron powder A, and mix 5 gas per 1 kg of magnetic iron powder A.
After contacting at 100°C for 1 hour, the system was switched to nitrogen gas and the system was heated for 2 hours under nitrogen flow.
The temperature was raised to 50° C., treated at this temperature for 1 hour, and cooled to room temperature (the treated powder is hereinafter referred to as magnetic iron powder B).

磁性鉄粉Bの磁気特性を磁性鉄粉Aと同一条件で測定し
たところ、 Hc    1.550  0e 1、26   eIau/ g σr/σs     O,51 であり(即ち磁性鉄粉Aと殆んど同じ値であり)、比表
面積は53m27gで、透過型電子顕微鏡による観察で
は磁性鉄粉Aと全く同じイメージであり、物理的形態に
変化は認められなかった。
When the magnetic properties of magnetic iron powder B were measured under the same conditions as magnetic iron powder A, Hc 1.550 0e 1,26 eIau/g σr/σs O,51 (i.e., almost the same as magnetic iron powder A). The specific surface area was 53 m27 g, and when observed with a transmission electron microscope, it had exactly the same image as magnetic iron powder A, and no change was observed in the physical form.

[磁性鉄粉表面の酸性度の測定1 磁性鉄粉表面の酸性度の測定は、真空乾燥した80メツ
シユパスの粒径の磁性鉄粉をN/、。の11−ブチルア
ミン−ベンゼン溶液に入れて振盪し、上澄液のローブチ
ルアミン濃度を測定することにより求めることが出来る
[Measurement of acidity on the surface of magnetic iron powder 1 The acidity on the surface of magnetic iron powder was measured by using vacuum-dried magnetic iron powder with a particle size of 80 mesh passes at N/. It can be determined by shaking the 11-butylamine-benzene solution and measuring the concentration of lobethylamine in the supernatant.

磁性鉄粉A及び磁性鉄粉Bの酸性度は各々3゜6μeq
/m2.3.1μeq/fi12であっk。
The acidity of magnetic iron powder A and magnetic iron powder B is 3°6 μeq each.
/m2.3.1μeq/fi12k.

磁性鉄粉13は塩基性ガスにより磁性鉄粉Aの表面酸性
基の一部分が被覆されていると考えられ、このときの塩
基性ガスの付着量は0.5μf! q / m 2であ
る。
It is thought that part of the surface acidic groups of the magnetic iron powder A is coated with the basic gas in the magnetic iron powder 13, and the amount of basic gas attached at this time is 0.5 μf! q/m2.

[シート物性の評価1 磁性鉄粉300部、VAGH(塩・酸ビ系重今体、UC
C社製商品名)45部、トルエン175部及びメチルイ
ソブチルケトン175部からなる混合物をボールミル中
で24時間攪拌分散した後、さらにタケネートL −1
007(ウレタンブレボリマー、弐[l薬品製商品名)
2部、トルエン15部及びメチルイソブチルケトン15
部をボールミル中に加え、1時間攪拌分散して磁性塗料
を調製する。
[Evaluation of sheet physical properties 1 300 parts of magnetic iron powder, VAGH (salt/vinyl acid heavy polymer, UC
After stirring and dispersing a mixture of 45 parts (trade name, manufactured by Company C), 175 parts of toluene, and 175 parts of methyl isobutyl ketone in a ball mill for 24 hours, a mixture of Takenate L-1
007 (urethane brevolimer, 2 [l Yakuhin product name)
2 parts, 15 parts of toluene and 15 parts of methyl isobutyl ketone.
1 part was added to a ball mill and stirred and dispersed for 1 hour to prepare a magnetic paint.

イ(トられた磁性塗料を、厚さ16μIのポリエステル
フィルムに乾燥厚が3μmとなる様に塗布し、磁界中で
金属粉末の配向を行なったのち乾燥し、次いで磁性層表
面をカレンダー処理により鏡面加工し、所定の幅に裁断
して検体を得る。
(b) The magnetic paint is applied to a polyester film with a thickness of 16 μI to a dry thickness of 3 μm, the metal powder is oriented in a magnetic field, and then dried. The surface of the magnetic layer is then calendered to a mirror-like finish. Process it and cut it to a predetermined width to obtain a specimen.

上記処方で磁性鉄粉A及び磁性鉄粉Bにつきシートを作
成して、該検体をVSMにて測定磁界10 K () 
eで測定した結果は、次表の通りであった。
A sheet was prepared for magnetic iron powder A and magnetic iron powder B using the above recipe, and the sample was measured with a VSM in a magnetic field of 10 K ().
The results measured by e were as shown in the following table.

」1表から、塩基性ガスにより磁性粉表面の酸性基の一
部が被覆されている磁性鉄粉は高分散性をもたらすこと
が明らかである。
From Table 1, it is clear that magnetic iron powder in which part of the acidic groups on the surface of the magnetic powder is coated with basic gas provides high dispersibility.

X1jしL 針状比かはほぼ15で比表面積が771112/gのN
iをFel 00原子に対して1原子共沈成分として含
有したQ−FeOOHの表面にFe1OO原子に対して
Al 4.5原子、Sil、O原子及びCab。
X1j and L The needle ratio is approximately 15 and the specific surface area is 771112/g.
On the surface of Q-FeOOH containing i as a coprecipitated component of 1 atom to 00 Fe atoms, 4.5 Al atoms, Sil, O atoms, and Cab are present for each Fe1OO atom.

1原子に相当する量の被着を行なった。An amount corresponding to one atom was deposited.

α−FeOOHの3%水水性スラリーpHを10に調整
したものに3号水ガラス及びアルミン酸ソーダを添加し
、次いでINのHNO3でp I−1を8に調整した。
No. 3 water glass and sodium aluminate were added to a 3% aqueous slurry of α-FeOOH whose pH was adjusted to 10, and then the p I-1 was adjusted to 8 with IN HNO3.

次に、硝酸カルシウム水fB液を添加したのち水洗し、
濾過して被着粉を得た。
Next, after adding calcium nitrate water fB solution, wash with water,
A coated powder was obtained by filtration.

被着粉を700℃に設定した電気炉に入れ、4時間処理
して加熱脱水させてヘマタイトとし、次いでH2気流中
450℃で3時間処理して鉄を主体とした強磁性金属粉
末とした。
The adhered powder was placed in an electric furnace set at 700° C., treated for 4 hours, heated and dehydrated to form hematite, and then treated in an H2 stream at 450° C. for 3 hours to obtain a ferromagnetic metal powder mainly composed of iron.

次に、該強磁性金属粉末をN2流通下で室温まで冷却し
%02分圧を0.1%にill!整した空気/ N 2
の混合ガスを通気して該強磁性金属粉末の表面に酸化被
膜を形成した(酸化被膜を形成した該磁性鉄粉を、以下
において磁性鉄粉Cと称する)。
Next, the ferromagnetic metal powder is cooled to room temperature under N2 flow, and the partial pressure is reduced to 0.1%. Conditioned air/N2
An oxide film was formed on the surface of the ferromagnetic metal powder by passing a mixed gas of (the magnetic iron powder with the oxide film formed thereon is hereinafter referred to as magnetic iron powder C).

磁性鉄粉Cの磁気特性を10KOeの磁界をかけて測定
したところ、 !(c    1540  0e σs     121   evau/gσr/σs 
   0.50 であり、また、比表面積は58112/gで、透過型型
r−*微鏡による観察では焼結や粒子崩壊のない良好な
物理的形状であることが認められた。
When we measured the magnetic properties of magnetic iron powder C by applying a magnetic field of 10 KOe, we found that ! (c 1540 0e σs 121 evau/gσr/σs
0.50, and the specific surface area was 58112/g, and observation using a transmission type r-* microscope confirmed that the material had a good physical shape without sintering or particle collapse.

磁性鉄粉ci=窒素で500 ppmに希釈したメチル
アミンガスを磁性鉄粉Cの1kgあたり混合〃スを5N
o+’/Hの割合で供給し、200 ”Cで1時間接触
させたのち窒素〃スに切り替えて室温まで冷却した(該
処理粉を、以下において磁性鉄粉りと称する)。
Magnetic iron powder ci = Mix 5N of methylamine gas diluted with nitrogen to 500 ppm per 1 kg of magnetic iron powder C.
After contacting at 200''C for 1 hour, the mixture was switched to nitrogen gas and cooled to room temperature (this treated powder is hereinafter referred to as magnetic iron powder).

磁性鉄粉りの磁気特性を磁性鉄粉Cと同一条件で測定し
たところ、 He    1550  0e σs     122   emu/gσr/σs  
    0.50 であり(即ち磁性鉄粉Cと殆んど同じ値であり)、比表
面積は58m2/gで、透過型電子顕微鏡による観察で
は磁性鉄粉Cと全く同じイメージであり、物理的形態に
変化は認められなかった。
When the magnetic properties of magnetic iron powder were measured under the same conditions as magnetic iron powder C, it was found that He 1550 0e σs 122 emu/gσr/σs
0.50 (that is, almost the same value as magnetic iron powder C), the specific surface area is 58 m2/g, and when observed with a transmission electron microscope, it has exactly the same image as magnetic iron powder C, and its physical form No change was observed.

[磁性鉄粉表面の酸性度の測定] 実施例1に記した同一方法で測定した磁性粉の酸性度は
、磁性鉄粉C及び磁性鉄粉りで各々2゜2μeq/m2
及び1.9μeq/l112であった。
[Measurement of acidity of magnetic iron powder surface] The acidity of magnetic powder measured by the same method described in Example 1 was 2°2 μeq/m2 for magnetic iron powder C and magnetic iron powder, respectively.
and 1.9 μeq/l112.

従って、磁性鉄粉りは塩基性ガスにより磁性鉄粉Cの表
面酸性基の一部分が被覆されていると考えられ、塩基性
ガスの付着量は()、3μeq/m’である。
Therefore, it is considered that part of the surface acidic groups of the magnetic iron powder C is coated with the basic gas, and the amount of the basic gas attached is (), 3 μeq/m'.

また、実施例1と同様にしてシートを作成して磁気特性
を測定した結果は、次表の通りであった。
In addition, a sheet was prepared in the same manner as in Example 1 and its magnetic properties were measured, and the results are shown in the following table.

上表から、塩基性〃スにより磁性粉表面の酸性基の一部
が被覆されている磁性鉄粉は商号散性をもたらすことが
明らかである。
From the table above, it is clear that magnetic iron powder in which part of the acidic groups on the surface of the magnetic powder are covered with basic gas brings about trade name dispersion.

Claims (1)

【特許請求の範囲】 1、鉄または鉄を主成分とする強磁性金属粉末の表面に
塩基性気体成分が物理的もしくは化学的に付着した磁性
鉄粉。 2、非酸化性ガスで希釈された塩基性気体を鉄または鉄
を主成分とする強磁性金属粉末に接触させることを特徴
とする鉄または鉄を主成分とする強磁性金属粉末の製造
方法。 3、非酸化性ガスで希釈された塩基性気体を鉄または鉄
を主成分とする強磁性金属粉末に0〜200℃の温度下
で接触させたのち非酸化性ガスを0〜500℃の温度で
接触させることを特徴とする鉄または鉄を主成分とする
強磁性金属粉末の製造方法。
[Claims] 1. Magnetic iron powder in which a basic gas component is physically or chemically attached to the surface of iron or ferromagnetic metal powder containing iron as a main component. 2. A method for producing iron or a ferromagnetic metal powder containing iron as a main component, which comprises bringing a basic gas diluted with a non-oxidizing gas into contact with iron or a ferromagnetic metal powder containing iron as a main component. 3. A basic gas diluted with a non-oxidizing gas is brought into contact with iron or a ferromagnetic metal powder containing iron as a main component at a temperature of 0 to 200°C, and then the non-oxidizing gas is brought into contact at a temperature of 0 to 500°C. A method for producing iron or a ferromagnetic metal powder containing iron as a main component, characterized by contacting with iron or ferromagnetic metal powder containing iron as a main component.
JP61233286A 1986-10-02 1986-10-02 Highly dispersible magnetic iron powder and manufacture thereof Pending JPS6388806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61233286A JPS6388806A (en) 1986-10-02 1986-10-02 Highly dispersible magnetic iron powder and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61233286A JPS6388806A (en) 1986-10-02 1986-10-02 Highly dispersible magnetic iron powder and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6388806A true JPS6388806A (en) 1988-04-19

Family

ID=16952719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61233286A Pending JPS6388806A (en) 1986-10-02 1986-10-02 Highly dispersible magnetic iron powder and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6388806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447618B1 (en) * 1998-07-31 2002-09-10 Toda Kogyo Corporation Magnetic acicular alloy particles containing iron as a main component
US9810855B2 (en) 2014-11-26 2017-11-07 Corning Optical Communications LLC Fiber optic connectors and sub-assemblies with strength member retention

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447618B1 (en) * 1998-07-31 2002-09-10 Toda Kogyo Corporation Magnetic acicular alloy particles containing iron as a main component
US6682813B2 (en) 1998-07-31 2004-01-27 Toda Kogyo Corporation Magnetic acicular alloy particles containing iron as a main component
US9810855B2 (en) 2014-11-26 2017-11-07 Corning Optical Communications LLC Fiber optic connectors and sub-assemblies with strength member retention
US10261266B2 (en) 2014-11-26 2019-04-16 Corning Optical Communications, Llc Fiber optic connectors and sub-assemblies with strength member retention

Similar Documents

Publication Publication Date Title
JP6676493B2 (en) Method for producing iron-based oxide magnetic particle powder
GB1597680A (en) Manufacture of acicular ferromagnetic pigment particles
EP0615231B1 (en) Process for producing magnetic metal particles
JPS6388806A (en) Highly dispersible magnetic iron powder and manufacture thereof
EP0326165B1 (en) Iron carbide fine particles and a process for preparing the same
KR0169491B1 (en) Acicular ferromagnetic iron oxide particles and process for producing the same
JPH0755832B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JPH07335417A (en) Magnetic powder
JP5316522B2 (en) Magnetic particle powder
JPH0717385B2 (en) Method for producing composite ferrite magnetic powder
JPS59143004A (en) Production of magnetic alloy powder
JP2805162B2 (en) Method for producing metal magnetic powder for magnetic recording
JP2735885B2 (en) Method for producing metal magnetic powder for magnetic recording
US4469507A (en) Production process of ferromagnetic iron powder
JP2933397B2 (en) Method for producing ferromagnetic iron oxide powder for magnetic recording
JP3446960B2 (en) Method for producing magnetic metal powder for magnetic recording using α-iron oxyhydroxide
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPH0425687B2 (en)
JP2651795B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPS61229305A (en) Manufacture of magnetic metal powder
JPS61130407A (en) Production of metallic magnetic powder
JPH03257105A (en) Manufacture of magnetic metal powder
JPH03199301A (en) Magnetic metallic powder and production thereof and magnetic recording medium
JPH0696921A (en) Manufacture of iron oxide magnetic particle and manufacture of magnetic recording medium
JPH09251911A (en) Magnetic metal powder, magnetic recording medium, and manufacturing method of magnetic metal powder