JPS6388566A - Production of toner for electrophotography - Google Patents

Production of toner for electrophotography

Info

Publication number
JPS6388566A
JPS6388566A JP61234990A JP23499086A JPS6388566A JP S6388566 A JPS6388566 A JP S6388566A JP 61234990 A JP61234990 A JP 61234990A JP 23499086 A JP23499086 A JP 23499086A JP S6388566 A JPS6388566 A JP S6388566A
Authority
JP
Japan
Prior art keywords
toner
resin particles
thermoplastic resin
particles
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61234990A
Other languages
Japanese (ja)
Inventor
Tsuneo Handa
恒雄 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61234990A priority Critical patent/JPS6388566A/en
Publication of JPS6388566A publication Critical patent/JPS6388566A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To permit development by a simultaneous method and transfer to plain paper by a corona transfer method by passing thermoplastic resin particles through a narrow spacing and rapidly cooling the same right after the passage therethrough to stick insulating resin particles partially to the surface of the thermoplastic resin particles, thereby producing a flat toner. CONSTITUTION:An image forming body 6 laminated with a photoconductive layer 3, a transparent conductor layer 4 and transparent base layer 5 in this order is subjected to image exposing 8 at the time of moving in the direction of an arrow 7. A toner layer 11 is brought into contact with the body 6 in an exposing part by a magnetic brush formed by using a magnet roller 9 and a sleeve 10 and a bias voltage is kept impressed to the sleeve 10. Electric charge is, therefore, injected into the toner in contact with the body 6 through the electric current path formed by the contact of the conductive parts in the direction 12 of the electrical conductivity by the conductive parts 1 possessed by the respective toner particles with each other. The quantity of the electric charge is different in the exposed part and the unexposed part and a difference is eventually generated in the electrostatic attraction power of the toner to the surface of the photoconductive layer, by which the image is formed. The property to permit the selective use of the insulating characteristic and the electrical conductivity is thereby realized as the toner of the simultaneous method.

Description

【発明の詳細な説明】 〔渚築上の利用分野〕 本発明は電子写真で使用されるトナーに関する。[Detailed description of the invention] [Fields of use on the beach] The present invention relates to toners used in electrophotography.

〔従来の技術〕[Conventional technology]

従来、を子写真で使用されるトナーとしてけ。 Traditionally, the toner used in child photography is used as a toner.

2成分磁気ブラシ現像法やフロートvL啄効実現像法に
おける絶縁性非磁性トナー、ジャンピング現像法に於け
る絶縁性磁性トナー、エレクトロファックスに於ける導
電性磁性トナーなどが知られている。
Insulating non-magnetic toners used in two-component magnetic brush development and float VL effect imaging methods, insulating magnetic toners used in jumping development, and conductive magnetic toners used in electrofax machines are known.

また、最近、ブクセスの大幅な簡略化の可能性を秘める
、露光と現像を同時に行なって画像を形成する方法(以
下同時法とよぶ)h;、各所で倹肘され、例えば特開昭
58−153957に提案されている。この方法におい
ては、バイアス電圧を印加し比導電性磁性トナーのブラ
シで、露光中の光導電体の表面を擦過する方法ht最適
な現像法と考えられてかり、光導電体/+S絶縁体とし
て作用する時(歩露光部)と、導電体として作用する時
(露光部)とで、バイアス電圧により光導電体表面に接
触しているトナーへ注入される電荷@ b”大きく異な
り、その電荷量の差が光導電体表面への静電l′Lt着
量の差となって現像h;可能となっている。
In addition, recently, a method of forming an image by simultaneously performing exposure and development (hereinafter referred to as the "simultaneous method"), which has the potential of greatly simplifying image processing, has been studied in various places. 153957. In this method, a bias voltage is applied and a brush of specific conductive magnetic toner is used to rub the surface of the photoconductor during exposure. The charge injected into the toner in contact with the photoconductor surface due to the bias voltage differs greatly between when it acts as a conductor (in the exposed area) and when it acts as a conductor (in the exposed area), and the amount of charge varies greatly. The difference in the amount of electrostatic charge l'Lt deposited on the photoconductor surface makes development possible.

[発明hs解決し、ようとする問題麿〕[7かし、同時
法で用いるトナーは、その導電性のために、トナーの電
荷が短い緩和時間で中和されでし士い残留電荷を失って
紙への静W寸着力を失5ので1周知のコロナ転写法では
トナーの紙への転写^;十分(・でなされないという欠
点な有していt。
[Problem that the invention attempts to solve] [7] However, due to its conductivity, the toner used in the simultaneous method can neutralize its charge in a short relaxation time and lose its residual charge. The well-known corona transfer method has the drawback that the toner cannot be transferred sufficiently to the paper.

本発明の目的は、囚1時法に卦いて現イ?/、″−可絆
でかつJIjす転写法で普通紙への転写り一行なえるト
ナーを提供寸会ことLτある。
The purpose of the present invention is to improve the current prisoner's law. /,'' - We provide toner that can be transferred onto plain paper using a flexible transfer method.

〔問題声を解決−Fるための手段〕[Solving problems - means to solve problems]

本発明のトリm=一の製造方法は、導電性熱可塑性樹脂
の軟化点以上の温ffJK保持した耐熱性液体の中:て
分散され7を該執可望性樹脂粒子を十〇粒径より狭い隙
間を通し、膣隙間を通過した直後に該熱町塑性樹晰粒子
を急冷り、その後肢熱可〒性樹脂粒子光面に締緩性樹脂
粒子を部分的にI”を着させて偏平なト→〜−を製1h
することを特徴とする。
The manufacturing method of tri-m=1 of the present invention involves dispersing the resin particles in a heat-resistant liquid maintained at a temperature higher than the softening point of the conductive thermoplastic resin. Immediately after passing through the narrow gap and passing through the vaginal gap, the thermoplastic resin particles are rapidly cooled, and the light surface of the hindlimb thermoplastic resin particles is partially coated with a tightening/relaxing resin particle with an I'' shape to flatten it. 1 hour to make → ~-
It is characterized by

〔作用〕[Effect]

軟化点以上に力l′l熱することにより導電性熱可塑性
樹脂は容易に変形できるようになる。、まt、#4熱性
液体の中に分散されているために導電性熱可塑性樹脂粒
子同志が完全て分離されてシリ凝集することもない、、
耐熱性液体は更に熱伝播と粒石搬送に有効に働いている
。l−たb;って粒径よりも狭い隙間を粒子同志が凝集
する町なく各粒子/lSlS金形、で通過する。急冷に
よりこの変形状態?’−固定され偏平な粒子が得られる
。偏平であることにより生じろ異方性によって、粒子の
f−宇姿勢h”=規定されること、及び絶縁性粒子を或
特定の部分に付けることができる。このため同時法のト
ナーとし。
By heating the conductive thermoplastic resin to a temperature above its softening point, the conductive thermoplastic resin becomes easily deformable. , #4 Because the conductive thermoplastic resin particles are dispersed in the thermal liquid, they are completely separated and do not aggregate together.
The heat-resistant liquid also works effectively for heat propagation and grain transportation. Each particle/lSlS metal mold passes through a gap narrower than the particle size, where the particles agglomerate with each other. Is this deformed state due to rapid cooling? '-Fixed and flat particles are obtained. Due to the anisotropy caused by the flatness, the f-u posture of the particles is defined, and the insulating particles can be attached to a certain part.For this reason, the toner is used as a simultaneous method.

て、絶縁性と導電性の使い分け1′1;できる性質を実
現できるため極めて有用となる。
Therefore, it is extremely useful because it can realize properties that allow for proper use of insulation and conductivity.

〔実施例〕〔Example〕

第1図に本発明により!8!潰された電子写真用トナー
の一例を示す。第1図(σ)に外観図を、第1図(b)
にその断面図を示す。このように本発明のトナーは偏平
なディスク形状を呈しており、ディスク端部に導11!
部1が露出しておりその他の部分は絶縁部2により覆わ
れている。第2図に本発明のトナーによる画像形成の様
子を示す。光導電体層3、透明導電体層4、透明支持体
層5の順に積層されてなる画像形成体6け矢印7の方向
へ移動する際像露光8を受ける。マゲネヴトローラー9
とスリーブ10を用いて形狡さ九る周知の田気ブラシj
でよりトナー層111d−g元部にかいて画像形成体6
と接している。スリーブ10にはバイアス電圧12h;
印加されている定め、画像形成体感に接[−でいるトナ
ーには、各トナーが有している導電部1!・でよる導電
性の方向12の導電部同志の接触(すなわちディスクの
端部同志の接触)Kより形成される電流路を通して電荷
が注入される。露光部と未露元部では注入電荷量h′−
異なり、その結果光導電体層の表面へのトナーの静電は
着力に差を生じ画像形成め;行なわれる。第5図に本発
明のトナーによる静電転写の様子を示す。画像形成体6
け矢印16の方向て移動している。トナー画像h;形成
された画像形成体6の表面に転写屑紙1311I−重ね
られ、転写用紙13の裏側からコロナ転写器14によっ
てトナーの電荷(画像形成時に注入され几電荷)と遊事
性のイオンが注入される。このときi1i′i像形成体
6上のトナー15け安定な姿勢をとる几めに倒れている
。その結果、絶縁部2と転写用紙15六;接触すること
になる。1.た^;りで転写用紙15から見てトナーは
帯電したP!縁体の如(援舞5ので、転写用紙との間に
静電力が転写力とL7て働趣、トナー転写hS達嘘され
る。
According to the present invention in Figure 1! 8! An example of crushed electrophotographic toner is shown. Figure 1 (σ) shows the external view, Figure 1 (b)
shows its cross-sectional view. As described above, the toner of the present invention has a flat disk shape, and the toner 11!
Part 1 is exposed and the other parts are covered with insulating part 2. FIG. 2 shows how an image is formed using the toner of the present invention. An image forming body 6 formed by laminating a photoconductor layer 3, a transparent conductor layer 4, and a transparent support layer 5 in this order receives image exposure 8 as it moves in the direction of an arrow 7. Magenevtroller 9
The well-known brush j which is shaped using the sleeve 10 and
The image forming body 6 is then drawn on the base of the toner layers 111d-g.
It is in contact with A bias voltage of 12h is applied to the sleeve 10;
The toner that is in contact with the image forming experience has a conductive portion 1 that each toner has! A charge is injected through the current path formed by the contact K between the conductive parts in the conductive direction 12 (i.e. the contact between the ends of the disk). The amount of charge injected in the exposed area and the unexposed area is h'-
As a result, the electrostatic adhesion of toner to the surface of the photoconductor layer results in a difference in adhesion and image formation. FIG. 5 shows the state of electrostatic transfer using the toner of the present invention. Image forming body 6
It is moving in the direction of arrow 16. Toner image h: A transfer waste paper 1311I is superimposed on the surface of the image forming body 6 on which the image has been formed, and a corona transfer device 14 transfers toner charge (injected during image formation) and idle charge from the back side of the transfer paper 13. Ions are implanted. At this time, the toner particles 15 on the i1i'i image forming body 6 are falling down in a stable position. As a result, the insulating portion 2 and the transfer paper 156 come into contact. 1. When viewed from the transfer paper 15, the toner is charged P! As the edge body is similar to the one shown in FIG.

次に本発明のトナーの製造方法を詳しく述べていく。Next, the method for manufacturing the toner of the present invention will be described in detail.

まず、熱可塑性樹脂1着色材、導を率調整材、磁性材を
所定量混線機にて混合・分散する。このと弾熱可塑性樹
脂としては公知のスチレン樹脂。
First, a predetermined amount of a thermoplastic resin, a coloring material, a conductive rate adjusting material, and a magnetic material are mixed and dispersed using a mixer. This styrene resin is a well-known elastic thermoplastic resin.

あるいけその重合体、ポリエステル、ポリエチレン、ポ
リプロピレン、アクリル樹脂、ポリ酢酸ビニル、ポリウ
レタン、ポリアミド、エポキシ樹@。
Some polymers, polyester, polyethylene, polypropylene, acrylic resin, polyvinyl acetate, polyurethane, polyamide, epoxy resin @.

ポリ塩化ビニル、ポリビニルブチラール、ボリアマイト
、ロジン、変性ロジン、テルペン樹脂、フェノール樹脂
、脂肪族または脂肪族炭化水素樹脂。
Polyvinyl chloride, polyvinyl butyral, boriamite, rosin, modified rosin, terpene resins, phenolic resins, aliphatic or aliphatic hydrocarbon resins.

芳香族系石油樹脂、塩素化パラフィンなどb;滋独ある
いけ混合して使用できる。着色材としてはカーボンブラ
lり、ニグロシンなどが使用できる。
Aromatic petroleum resin, chlorinated paraffin, etc.b; Can be used in combination. As the coloring material, carbon black, nigrosine, etc. can be used.

導電率調整材としてはカーボンブラック、金属粉−金属
繊維などを使用する。磁性材としては公知のマグネタイ
ト、ヘマタイト、フエモイトなどの化合物1.モろいは
鉄、コバルト、ニッケルなどの金属もるいけ合金が使用
で−る、この混練物は電気的には電荷注入がで舘る桿度
に導m率が高くなろヨウに導a*X整材t;混入されて
いる。
Carbon black, metal powder-metal fiber, etc. are used as the conductivity adjusting material. Compounds such as magnetite, hematite, and fuemoite are known as magnetic materials.1. The mole used is an alloy of metals such as iron, cobalt, and nickel.This kneaded material has a high conductivity so that electrical charge can be injected. X lumber t: Mixed.

次に粗粉砕、そしてジェヴト気流粉砕機により微粉砕を
行なっ次後分級を行なって粒径の揃った導電性微粉体を
得る(第4図(σ))。次だこの導電性微粉体を耐熱性
の液体、例えばシリコン系液体私るいはふっ素糸液体に
分散させる。この後、耐熱性液体の液温を導電性微粉体
の軟化点以上に上げろ。この時点で導電性微粉体は流動
性を示し角^;とれ丸くなる(第4図(b))。次にこ
の液体を導電性微粉体の粒径より狭い隙間を通しその直
後に導電性微粉体の軟化点以下となるように急冷する。
Next, it is coarsely pulverized, then finely pulverized using a Gevt airflow pulverizer, and then classified to obtain conductive fine powder with uniform particle size (FIG. 4 (σ)). Next, the conductive fine powder is dispersed in a heat-resistant liquid, such as a silicone-based liquid or a fluorine-based liquid. After this, raise the temperature of the heat-resistant liquid to above the softening point of the conductive fine powder. At this point, the conductive fine powder exhibits fluidity and becomes rounded (FIG. 4(b)). Next, this liquid is passed through a gap narrower than the particle size of the conductive fine powder and immediately thereafter rapidly cooled to below the softening point of the conductive fine powder.

こうすると導電性微粉体は球状になっt後、偏平に潰さ
れその潰され定形状のままに粒子形状が固定されディス
ク形状となる(第4図(C))。この冷却を確実(で行
なう為には隙間を冷却された双方ロールで構成すればよ
い。この後、耐熱性液体から導電性微粉体を取り出す。
In this way, the conductive fine powder becomes spherical and then flattened and flattened, and the particle shape is fixed in its regular shape and becomes a disk shape (FIG. 4(C)). In order to perform this cooling reliably, the gap may be constructed with both cooled rolls. After this, the conductive fine powder is taken out from the heat-resistant liquid.

ディスク形状になった導電性微粉体と絶縁性微粉粒子1
7(粒径約1 irm)を混合してボールミルにh・け
導電性微粉体の周りに絶縁性微粒子17を付着させる(
第1図的)。
Disc-shaped conductive fine powder and insulating fine powder particles 1
7 (particle size approximately 1 irm) and attach insulating fine particles 17 around the conductive fine powder in a ball mill (
Figure 1).

この後、熱気流中ばおいて、絶縁性微粒子を溶融させて
絶縁性微粒子17と導電性樹脂表面の付着強度を増−1
−(第4図(e))。次に絶縁性微粒子のけ着した導電
性微粉体をボールミル中に卦いて互bK衝突させる。こ
の処理fより導電性微粉体のディスク形状の端部の絶縁
性微粒子が剥離I−、ディスク端部は導電性樹脂が露出
する。ディスク端部が他粒子と強くかつ頻度高く衝突す
るため必ずこのようになる。こうして本発明のトナー7
1″−できた(第4図(ハ)。
After that, the insulating fine particles are melted in a hot air stream to increase the adhesion strength between the insulating fine particles 17 and the conductive resin surface.
- (Figure 4(e)). Next, the conductive fine powder on which the insulating fine particles have been deposited is placed in a ball mill and made to collide with each other. As a result of this process f, the insulating fine particles at the disk-shaped end of the conductive fine powder are peeled off I-, and the conductive resin is exposed at the disk end. This always happens because the edge of the disk collides strongly and frequently with other particles. Thus, the toner 7 of the present invention
1″-Done (Figure 4 (c)).

次に本発明の製造例を一つ示す、 アクリル100重量部、マグネタイト50重@g、導電
性カーボンブラック10重f部を混合し、スクリュウ押
し出し機で混練した後粉砕・分級し9〜13μm径の粉
体を得る。着色材はカーボンブラックとかねているため
この例では特て加えていない。この樹脂の比抵抗け2x
10’、Qe側であった。
Next, one production example of the present invention is shown. 100 parts by weight of acrylic, 50 parts by weight of magnetite, and 10 parts by weight of conductive carbon black were mixed, kneaded in a screw extruder, and then crushed and classified to have a diameter of 9 to 13 μm. powder is obtained. Since the colorant also serves as carbon black, it is not added in this example. The specific resistance of this resin is 2x
10', on the Qe side.

これを耐熱性300℃のシリコンオイル中に分散すせシ
リコンオイルの液温を230〜250℃とする。
This is dispersed in silicone oil having a heat resistance of 300°C, and the liquid temperature of the silicone oil is set to 230 to 250°C.

この段階でアクリル’J@ 詣の軟化点を越えている九
めに粉体の樹脂は流動性を示してかり粒子表面の角がと
れてh乙。この状態の導電性樹脂粒子をシI)コンオイ
ルととも(隙間を5μmとした双ロールの間を通す。双
ロールは十分に冷やされており。
At this stage, the softening point of the acrylic resin has been exceeded, and the powder resin exhibits fluidity and the corners of the particle surface are smoothed out. The conductive resin particles in this state were passed between twin rolls with silicone oil (with a gap of 5 μm). The twin rolls were sufficiently cooled.

双ロールを通っている間に軟化点以下まで冷却されろ。While passing through twin rolls, it is cooled to below the softening point.

この工程でディスク状の粒子が得ちれる、ディスク径は
10〜18μmで厚みは5μ常である。
In this process, disk-shaped particles are obtained, the disk diameter is 10 to 18 μm and the thickness is usually 5 μm.

この粒子と1μm径のアクリル樹脂を同重量ずつまぜボ
ールミルにて3蒔間処理lまた。こうして絶縁性のアク
リル樹脂をげ着させた導電性粒子の表面を溶かすため(
て500°Cの熱気流中にて短時間処理を行なう。この
後処理粒子をボールミルにて2時間処理なl、てトナー
が完成する。
These particles and an acrylic resin with a diameter of 1 μm were mixed in equal weights and treated in a ball mill for 3 millimeters. In order to melt the surface of the conductive particles coated with insulating acrylic resin (
The sample is then treated for a short time in a hot air stream at 500°C. The post-treated particles are processed in a ball mill for 2 hours to complete a toner.

このトナーを使って同時法を試みたところ転写効率65
〜80チの優れ* M h”−相対湿度70〜40%番
で対して得られto一方従来の比抵抗2 X 10’Ω
φ1の導電性トナーで同時法を試みた結果転写効率20
〜55壬が相対湿[70〜40壬て対して得られたにす
ぎなかった。
When I tried the simultaneous method using this toner, the transfer efficiency was 65.
~80 cm*M h” - obtained at 70-40% relative humidity compared to conventional resistivity 2 x 10'Ω
The transfer efficiency was 20 as a result of trying the simultaneous method with φ1 conductive toner.
Only .about.55 .mu.m of relative humidity [70-40 .mu.m] was obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べて欠だように本発明によるトナーの製造方法は
同時法に適し斤トナーを得ること/1?−で鍍る。した
六;って本発明のトナーを使用することによって従来に
ない小型低価格の電子写真方式のプリンターが実現でと
、万人がその高速性と高印字品質を利用できるようにな
りその意義は極めて大きいものh;ある。
As mentioned above, the toner production method according to the present invention is suitable for the simultaneous method to obtain toner in a large amount./1? -Spell it with -. The significance of this is that by using the toner of the present invention, an unprecedentedly compact and low-cost electrophotographic printer will be realized, and everyone will be able to take advantage of its high speed and high print quality. There are extremely large ones.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明により製造されたトナーの外観図
。 第1図(b)は本発明により製造さハたトナーの断面図
。 第2図は本発明VC:97u造され念トナー?使用した
同時法に↓る画像形成プロセスを示す図。 第5図は本発明により製造されたトナーを使用しfr、
場合の静111!転写プロセスを示す図。 のトナーとなる樹脂粒子の状況を説明する図。 1・・・・・・導電部 2・・・・・・絶縁部 3・・・・・・光導電体層 4・・・・・・透明導電体層 5・・・・・・透明支持体 6・・・・・・1ilii像形成体 7・・・・・・画像形成体の移動方向 8・・・・・・1譚光 ?・・・・・・マグネットローラー 10・・・・・・スリーブ 11・・・・・・トナーR曖 12・・・・・・バイアス電圧 13・・・・・・転写用紙 14・・・・・・コロナ転写器 15・・・・・・トナー 16・・・・・・画像形成体の移動方向17・・・・・
・転写用紙の移動方向 18・・・・・・絶縁性微粒子 以  上 出願人 セイコーエプソン株式会社 2、退部1P 第1図 ル 第2図 第3図 (α)     (い 第4図 (C) 、コー (f)
FIG. 1(a) is an external view of a toner manufactured according to the present invention. FIG. 1(b) is a cross-sectional view of a toner produced according to the present invention. Figure 2 shows the inventive VC: 97u made toner? Diagram showing the image formation process according to the simultaneous method used. FIG. 5 shows the use of toner produced according to the present invention.
Case no Shizuka 111! Diagram showing the transcription process. FIG. 3 is a diagram illustrating the state of resin particles that become toner. 1...Conductive part 2...Insulating part 3...Photoconductor layer 4...Transparent conductor layer 5...Transparent support 6...1illii Image forming body 7... Moving direction of the image forming body 8...1 Tan light? ......Magnetic roller 10...Sleeve 11...Toner R vague 12...Bias voltage 13...Transfer paper 14...・Corona transfer device 15...Toner 16...Movement direction of image forming body 17...
・Transfer paper movement direction 18... Insulating fine particles or more Applicant Seiko Epson Corporation 2, retired 1P Figure 1 Figure 2 Figure 3 (α) (Figure 4 (C) , Co (f)

Claims (1)

【特許請求の範囲】[Claims] 導電性熱可塑性樹脂の軟化点以上の温度に保持した耐熱
性液体の中に分散された該熱可塑性樹脂粒子をその粒径
より狭い隙間を通し、該隙間を通過した直後に該熱可塑
性樹脂粒子を急冷し、その後該熱可塑性樹脂粒子表面に
絶縁性樹脂粒子を部分的に付着させて偏平なトナーを製
造することを特徴とする電子写真用トナーの製造方法。
The thermoplastic resin particles dispersed in a heat-resistant liquid maintained at a temperature equal to or higher than the softening point of the conductive thermoplastic resin are passed through a gap narrower than the particle size, and immediately after passing through the gap, the thermoplastic resin particles are A method for producing an electrophotographic toner, which comprises rapidly cooling the thermoplastic resin particles, and then partially adhering insulating resin particles to the surface of the thermoplastic resin particles to produce a flat toner.
JP61234990A 1986-10-02 1986-10-02 Production of toner for electrophotography Pending JPS6388566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61234990A JPS6388566A (en) 1986-10-02 1986-10-02 Production of toner for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61234990A JPS6388566A (en) 1986-10-02 1986-10-02 Production of toner for electrophotography

Publications (1)

Publication Number Publication Date
JPS6388566A true JPS6388566A (en) 1988-04-19

Family

ID=16979420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61234990A Pending JPS6388566A (en) 1986-10-02 1986-10-02 Production of toner for electrophotography

Country Status (1)

Country Link
JP (1) JPS6388566A (en)

Similar Documents

Publication Publication Date Title
US4540646A (en) Method of developing an electrostatic latent image
JP2612035B2 (en) Electrostatic magnetic carrier particles
US5395717A (en) Developer for developing latent electrostatic images and method of forming images by using the developer
US3124483A (en) Apparatus for transferring powder images and method therefor
JPS6388566A (en) Production of toner for electrophotography
US4426436A (en) Process for positive charge sharing toner compositions
JPS5929858B2 (en) Magnetic toner for electrophotography
JPS6342778B2 (en)
US4185916A (en) Composite developer particles and apparatus for using same
JP3073782B2 (en) Image forming method
JPS6366566A (en) One component toner
JPH0424705B2 (en)
US4430407A (en) Heat fusible single component toner having a polyamide binder
US4612272A (en) Pressure fixing a single component toner with polyamide-rosin
US4599292A (en) Method and device of developing an electrostatic latent image
JPS6311949A (en) Toner for xerography
JPS5938581B2 (en) Magnetic toner for electrophotography
JPH10288855A (en) Electrostatic charge image developing toner and image forming method by using the toner
JP2987529B2 (en) Image forming method
JPS6330861A (en) One component type toner
JPH0623868B2 (en) Reverse development method
JPS59220746A (en) Magnetic toner for developing electrostatic charge image
JP2000147830A (en) Production of toner for developing electrostatic charge image
JPH0478191A (en) Formation of wiring substrate, charged powder for forming wiring substrate and manufacture thereof
JPH11282213A (en) Carrier