JPS6388438A - Mosfet chemical electrode - Google Patents
Mosfet chemical electrodeInfo
- Publication number
- JPS6388438A JPS6388438A JP61234101A JP23410186A JPS6388438A JP S6388438 A JPS6388438 A JP S6388438A JP 61234101 A JP61234101 A JP 61234101A JP 23410186 A JP23410186 A JP 23410186A JP S6388438 A JPS6388438 A JP S6388438A
- Authority
- JP
- Japan
- Prior art keywords
- film
- gate
- metal
- gate metal
- gold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000126 substance Substances 0.000 title claims description 22
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 55
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 27
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052737 gold Inorganic materials 0.000 claims abstract description 23
- 239000010931 gold Substances 0.000 claims abstract description 23
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 16
- 239000011651 chromium Substances 0.000 claims abstract description 16
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 15
- 239000010936 titanium Substances 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000009413 insulation Methods 0.000 claims abstract description 3
- 230000001681 protective effect Effects 0.000 claims description 9
- 229920002050 silicone resin Polymers 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 54
- 239000002184 metal Substances 0.000 abstract description 54
- 239000013626 chemical specie Substances 0.000 abstract description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 7
- 229920005989 resin Polymers 0.000 abstract description 7
- 239000011347 resin Substances 0.000 abstract description 7
- 229910052710 silicon Inorganic materials 0.000 abstract description 7
- 239000010703 silicon Substances 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 5
- 239000000758 substrate Substances 0.000 abstract description 5
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 abstract description 3
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 239000012466 permeate Substances 0.000 abstract description 2
- 238000000059 patterning Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 58
- 150000002500 ions Chemical class 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- GTKRFUAGOKINCA-UHFFFAOYSA-M chlorosilver;silver Chemical compound [Ag].[Ag]Cl GTKRFUAGOKINCA-UHFFFAOYSA-M 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
この発明はMOSFET化学電極に関する。さらに詳し
くは各種イオンやイオン変化を伴う化学物質の測定にを
用な白金・金をゲート金属とするMOSFET化学電極
に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a MOSFET chemical electrode. More specifically, the present invention relates to a MOSFET chemical electrode using platinum/gold as a gate metal, which is used for measuring various ions and chemical substances that undergo ion changes.
(ロ)従来の技術
最近、MOS型FET (電界効果型トランジスタ)素
子のゲート絶縁膜上に、直接または窒化ケイ素(Sis
N4)膜を介して金、白金等からなるゲート金属を密着
形成させ?=MOSFET化学電極が提案されており、
小形化、計量化およびS/N比の改善の点で種々のイオ
ンセンサとして用途が期待されており、さらに酵素等の
生体溶媒を固定化して組合わせることにより各種基質の
探知センサとしての用途も期待されている。(b) Conventional technology Recently, silicon nitride (Sis
N4) Form a gate metal made of gold, platinum, etc. in close contact with each other through a film? = A MOSFET chemical electrode has been proposed,
It is expected to be used as a variety of ion sensors due to its miniaturization, quantization, and improved S/N ratio, and can also be used as a detection sensor for various substrates by immobilizing and combining biological solvents such as enzymes. It is expected.
かかるFET化学電極は、通常、ゲート絶縁膜上に直接
会または白金等のゲート金属を密着形成してもよいが、
水溶液中で使用する場合このゲート金属が剥がれやすい
ことからクロムまたはチタン等の金属膜を介して金また
は白金等のゲート金属を密着形成したものが知られてい
る。Such a FET chemical electrode may be formed by directly forming a gate metal such as platinum or the like on a gate insulating film, but
Since this gate metal tends to peel off when used in an aqueous solution, devices in which a gate metal such as gold or platinum is closely formed through a metal film such as chromium or titanium are known.
(ハ)発明が解決しようとする問題点
しかしながら、上記のごときM OS F E T化学
電極では、ゲート金属を構成する金または白金等の金属
膜はその応答性および上記密着性の点から薄膜状に形成
されるが、上記金属膜のゲート絶縁膜への密着性を増す
目的で形成された下地層のクロムまたはチタンの金属膜
からこれらのイオンが金または白金等の薄膜を通過して
漏洩し、電極としての安定な動作が得られにくいという
問題点が ・ある。(c) Problems to be Solved by the Invention However, in the above MOS FET chemical electrode, the metal film such as gold or platinum constituting the gate metal is thin film-like from the viewpoint of its responsiveness and the above-mentioned adhesion. However, these ions leak through the thin film of gold or platinum from the underlying chromium or titanium metal film, which is formed to increase the adhesion of the metal film to the gate insulating film.・There is a problem that it is difficult to obtain stable operation as an electrode.
この発明はかかる状況に鑑み為され1こものであり、こ
とに電極として安定に動作する金または白金をゲート金
属とするMOSFET化学電極を提供しようとするもの
である。The present invention has been made in view of the above circumstances, and is particularly intended to provide a MOSFET chemical electrode using gold or platinum as a gate metal, which operates stably as an electrode.
(ニ)問題点を解決するための手段
かくしてこの発明によれば、ドレイン領域とソース領域
の間にチャンネル領域を設定してなる半導体素子上に絶
縁膜を被覆しかつ少なくともチャンネル領域を被覆する
絶縁膜部位上にクロムまたはチタン膜を介して金または
白金膜を密着形成してなるMOSFET素子からなり、
少なくとも上記チャンネル領域上に位置する金または白
金膜部位またはその一部を除いて該金または白金膜が絶
縁性および耐水性を有する保護膜で被覆保護されてなる
MOSFET化学電極が提供される。(d) Means for Solving the Problems Thus, according to the present invention, an insulating film is coated on a semiconductor element having a channel region between a drain region and a source region, and an insulating film is provided to cover at least the channel region. It consists of a MOSFET element in which a gold or platinum film is closely formed on a film part through a chromium or titanium film, and the gold or platinum film part, excluding at least the gold or platinum film part located on the channel region or a part thereof, is A MOSFET chemical electrode is provided in which the membrane is protected by being coated with a protective film having insulation and water resistance.
この発明の化学電極は、ゲート絶縁膜上のゲート金属を
該金属の少なくとも一部が露出するように絶縁性および
耐水性を有する保護膜で被覆保護してゲート金属構成成
分の溶出を防止しうるように構成したことを特徴とする
。In the chemical electrode of the present invention, the gate metal on the gate insulating film is coated and protected with an insulating and water-resistant protective film so that at least a portion of the metal is exposed, thereby preventing elution of gate metal components. It is characterized by being configured as follows.
上記化学電極に用いるMOSFET素子は、通常、半導
体基板の一部にドレイン領域、ソース領域およびゲート
絶縁膜で設定されるチャンネル領域を育し他部にこれら
ドレインおよびソース領域の端子が設定され、上記ゲー
ト絶縁膜上にゲート金属が設定されたものが適している
。上記ゲート絶縁膜上に形成されるゲート金属は、クロ
ムもしくはチタン金属膜および金もしくは白金膜との2
層からなりかつゲート絶縁膜と金もしくは白金膜の間に
クロムもしくはチタン金属膜が金もしくは白金膜により
被覆されるように形成されたものが好ましい。上記ゲー
ト金属はゲート絶縁膜上の少なくともチャンネル領域に
対応する部位に密着形成される。上記クロムまたはチタ
ン金属膜はゲート絶縁膜への金または白金膜の接着性を
増強するための接着用下地層として用いられるものであ
り従ってその形成膜厚は該下地層として機能しうる最低
の膜厚に調整されることが好ましく、通常数100人程
度に形成される。この膜上に形成される金または白金膜
は、ゲート金属を構成しかつ測定雰囲気中の化学種と接
触感応する部分であり従ってその形成膜厚は下地層のク
ロムまたはチタン金属膜を充分に被覆しかつ応答性の点
から通常数1000人〜Iμmに設定される。なお上記
下地層はクロムおよびチタンの混合層であってもよくク
ロムおよびチタンの2扇で構成されていてもよい。−方
ゲート金属は金と白金との混合層であってもよくまた金
と白金との2層で構成されたものであってもよい。The MOSFET element used for the above chemical electrode usually has a drain region, a source region, and a channel region defined by a gate insulating film in one part of the semiconductor substrate, and terminals for these drain and source regions are set in another part. A structure in which a gate metal is set on a gate insulating film is suitable. The gate metal formed on the gate insulating film is composed of a chromium or titanium metal film and a gold or platinum film.
It is preferable that the gate insulating film is formed of a layer, and that a chromium or titanium metal film is formed between the gate insulating film and the gold or platinum film and covered with the gold or platinum film. The gate metal is formed in close contact with at least a portion of the gate insulating film corresponding to the channel region. The above-mentioned chromium or titanium metal film is used as an adhesive base layer to enhance the adhesion of the gold or platinum film to the gate insulating film, and therefore its formed film thickness is the minimum thickness that can function as the base layer. It is preferable to adjust the thickness, and the number of layers is usually about 100. The gold or platinum film formed on this film constitutes the gate metal and is the part that is sensitive to chemical species in the measurement atmosphere, so the thickness of the formed film is sufficient to cover the underlying chromium or titanium metal film. In addition, from the viewpoint of responsiveness, it is usually set to several thousand to Iμm. Note that the base layer may be a mixed layer of chromium and titanium, or may be composed of two layers of chromium and titanium. The gate metal may be a mixed layer of gold and platinum, or may be composed of two layers of gold and platinum.
上記ゲート金属上には保護膜が形成される。該保護膜は
、測定雰囲気中の化学種がゲート金属中に浸透して上記
下地層を溶出することを防止する目的で被膜形成される
。該保護膜の材質としては絶縁性および測定対象溶液中
における耐水性を有するものが選択され、ゴム系樹脂が
適しており例えばシリコン樹脂が好ましいが、上記ゴム
系樹脂に限定されるものでもなく上記性質を有するもの
であればよくエポキシ樹脂等であってもよい。A protective film is formed on the gate metal. The protective film is formed for the purpose of preventing chemical species in the measurement atmosphere from penetrating into the gate metal and eluting the underlayer. The material for the protective film is selected from a material that has insulating properties and water resistance in the solution to be measured, and rubber-based resins are suitable, for example silicone resins are preferred, but the material is not limited to the above-mentioned rubber-based resins. Any material having the properties may be used, and epoxy resin or the like may be used.
該保護膜は前記ゲート金属のチャンネル領域対応部位の
少なくとも一部を露出して該ゲート金属を被覆しうるよ
う形成される。上記露出される少なくとも一部とは、測
定雰囲気中の化学種と接触してFET化学電極として充
分の応答性が得られる最低限の面積をいう。上記保護膜
は測定雰囲気中での耐久性の点から0 、5mm以上の
膜厚を有するように形成される。The protective film is formed so as to expose at least a portion of the gate metal corresponding to the channel region and cover the gate metal. The above-mentioned exposed at least part refers to the minimum area that can come into contact with chemical species in the measurement atmosphere and provide sufficient responsiveness as a FET chemical electrode. The protective film is formed to have a thickness of 0.5 mm or more from the viewpoint of durability in the measurement atmosphere.
この発明において前記ゲート金属の形成は、蒸着法、ス
パッタリング等当該分野で公知の方法から適宜選択され
た方法により作製される。クロムまたはチタン金属膜か
らなる下地層を金または白金膜により被覆形成する方法
としては例えば、まず上記下地層を前記チャンネル領域
対応部位が充分に含まれる領域を露出するマスクを用い
て蒸着形成し、ついで該蒸着形成された下地層を充分に
含む領域を露出するマスクを用いてスパッタリングによ
り金または白金膜を形成する等が挙げられる。In the present invention, the gate metal is formed by a method appropriately selected from methods known in the art, such as vapor deposition and sputtering. An example of a method for coating an underlayer consisting of a chromium or titanium metal film with a gold or platinum film is to first form the underlayer by vapor deposition using a mask that exposes a region sufficiently containing the channel region corresponding portion; Next, a gold or platinum film may be formed by sputtering using a mask that exposes a region sufficiently containing the deposited base layer.
上記ゲート金属を被覆保護する保護膜の形成は一相当す
る樹脂溶液を塗布する方法が、前記のごとく意図する露
出部分を簡便に形成する点で好ましい。For forming the protective film that covers and protects the gate metal, a method of applying a corresponding resin solution is preferable since the intended exposed portion can be easily formed as described above.
(ホ)作用
この発明によれば、ゲート絶縁膜上にクロムまたはチタ
ンからなる金属層を介して金または白金膜が密着形成さ
れてゲート金属が構成され、さらにこのゲート金属が少
なくともチャンネル領域対応部位の一部を露出する以外
は絶縁性および耐水性の樹脂膜で被覆されており測定対
象溶液中で化学種はゲート金属の上記露出部のみに接触
し他の部位には接触しないので、金または白金膜を浸透
してクロムまたはチタン金属層に到達する化学種の量が
極力押さえられる。(E) Function According to the present invention, a gold or platinum film is formed in close contact with the gate insulating film through a metal layer made of chromium or titanium to constitute the gate metal, and furthermore, this gate metal is formed at least in a portion corresponding to the channel region. The exposed part of the gate metal is covered with an insulating and water-resistant resin film, and the chemical species in the solution to be measured come into contact only with the exposed part of the gate metal and not with other parts. The amount of chemical species that penetrate the platinum film and reach the chromium or titanium metal layer is minimized.
以下実施例によりこの発明の詳細な説明するが、これに
よりこの発明は限定されるものではない。The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereby.
(へ)実施例
P型シリコンウェハ基板(5X 3 X 0.3n+*
)にフォトリングラフィ、ドーピング、マスキング等の
手法を適宜行って第1図に示すようにドレイン領域(2
)、ソース領域(3)で設定されるチャンネル領域(4
)を基板上の一部に有するようにバターニングを行った
。(f) Example P-type silicon wafer substrate (5X 3 X 0.3n+*
), photolithography, doping, masking, etc. are applied to the drain region (2
), the channel area (4) set in the source area (3)
) was patterned on a part of the substrate.
次いで上記パターニングされたシリコンウェハのドレイ
ン端子設定部(21)およびソース端子設定部(31)
を除いてシリコンウェハ全面に1150℃で0゜5時間
乾燥状態下で熱酸化を行って厚さ2000人の酸化H(
S iOz)を形成させ、次いでCVD法〔シラン15
d/分、アンモニア212/分、水素2.5Q/分の混
合ガス使用〕により、厚さ1000人のシリコン窒化膜
(S isN 4)を積層してMOSFET素子(1)
を得た。Next, the drain terminal setting part (21) and the source terminal setting part (31) of the patterned silicon wafer are
Thermal oxidation was carried out on the entire surface of the silicon wafer except for
SiOz) was formed, and then CVD method [silane 15
d/min, ammonia 212/min, and hydrogen 2.5Q/min] to form a MOSFET element (1) by laminating a silicon nitride film (S isN 4) with a thickness of 1000 nm.
I got it.
上記得られ1こMOSFET素子(1)の5ift/5
isNa絶縁膜上に、チャンネル領域(4)を中心とし
て該領域を充分含みうるようゲート部(5)を設定し、
該ゲートN(5)を中心として2φの穴が開いている金
属マスクを介して金属クロム(6)を200人の膜厚で
蒸着形成し、次いで同様に2,5φの穴が開いている金
属マスクを介して白金(7)をスパッタリングにより3
000人の膜厚に形成して上記クロム金属膜を完全に被
覆してゲート金属を形成した(第2図にこの状態の部分
平面図を示す)。5ift/5 of the above obtained 1 MOSFET element (1)
A gate portion (5) is set on the isNa insulating film so as to sufficiently cover the channel region (4),
Metal chromium (6) is evaporated to a thickness of 200 mm through a metal mask having a 2φ hole with the gate N(5) in the center, and then a metal mask having a 2.5φ hole in the same manner is formed. 3 by sputtering platinum (7) through a mask.
The chromium metal film was formed to a thickness of 1,000 mm to completely cover the chromium metal film to form a gate metal (FIG. 2 shows a partial plan view of this state).
上記のごとく得られたゲート金属上に、シリコン樹脂(
KE45.信越化学(株)製)(8)を用いてまずゲー
ト金属形成部周辺、ことにゲート絶縁膜との境界部上を
すべて塗布して次いで徐々に中心部の方に塗布して、最
終的に前記チャンネル領域に対応する部分のみゲート金
属が露出するように塗布した。その後30℃で24時間
乾燥して膜厚0.5mm程度のシリコン樹脂被膜を形成
しく第3図にこの状懸の部分平面図を示す)この発明の
MOSFRT什学;極を得た7なお、上g己ンリコンウ
エハの側面には上記シリコン樹脂で、また背面にはアル
ミナ薄板の貼着によりそれぞれ絶縁した。Silicone resin (
KE45. (manufactured by Shin-Etsu Chemical Co., Ltd.) (8), first apply the entire area around the gate metal formation area, especially on the boundary with the gate insulating film, then gradually apply toward the center, and finally The coating was applied so that the gate metal was exposed only in the portion corresponding to the channel region. After that, it is dried at 30° C. for 24 hours to form a silicone resin film with a thickness of about 0.5 mm. A partial plan view of this state is shown in FIG. 3. The side surfaces of the silicon wafer were insulated with the silicone resin described above, and the back surface was insulated with an alumina thin plate.
このようにして得られた化学電極の静特性を次のように
して調べた。すなわち該電極と銀−塩化銀電極とを用い
、pH6,1l18のリン酸緩衝液中に該化学電極のゲ
ート金属部および銀−塩化銀電極を浸漬し、化学電極の
ドレイン−ソース間に0.5Vおよび4vの電圧(vD
s)を印加した時の銀−塩化銀電極の電圧(V cS)
変動による化学電極のドレイン電流(Vl )の変動を
測定した結果、第4図に示す性が得られた。この結果か
らこの発明の化学電極は水溶液中で安定に動作すること
が分かる。また上記水溶液中に100日間連続して浸漬
した後、上記と同様に静特性を測定した結果安定し□た
動作が確認されかつゲート金属の剥離も観察されなかっ
た。The static properties of the chemical electrode thus obtained were investigated as follows. That is, using the electrode and a silver-silver chloride electrode, the gate metal part of the chemical electrode and the silver-silver chloride electrode are immersed in a phosphate buffer solution with a pH of 6.118, and a 0.0. 5V and 4V voltage (vD
Voltage of silver-silver chloride electrode (V cS) when applying s)
As a result of measuring the variation in the drain current (Vl) of the chemical electrode due to the variation, the properties shown in FIG. 4 were obtained. This result shows that the chemical electrode of the present invention operates stably in an aqueous solution. Further, after being continuously immersed in the above aqueous solution for 100 days, static characteristics were measured in the same manner as above, and stable operation was confirmed, and no peeling of the gate metal was observed.
(ト)発明の効果
この発明によれば、ゲート金属が化学種に感応する露出
面を除いて絶縁性および耐水性を有する樹脂膜で被覆さ
れておりゲート金属を浸透する化字種が極力押さえられ
るのでクロムまたはチタン金属層の溶出が生じがたく長
期にわたって安定にOt、 Hto を等の化学種に感
応して動作するMOSFET化学電極が得られる。また
この化学電極のゲート金属露出面に酵素を固定化して安
定な酵素電極を作製することも可能である。(G) Effects of the Invention According to this invention, the gate metal is coated with an insulating and water-resistant resin film except for the exposed surface that is sensitive to chemical species, so that the curdling species that permeate the gate metal are suppressed as much as possible. Therefore, it is possible to obtain a MOSFET chemical electrode that is resistant to elution of the chromium or titanium metal layer and operates stably over a long period of time in response to chemical species such as Ot and Hto. It is also possible to fabricate a stable enzyme electrode by immobilizing an enzyme on the exposed gate metal surface of this chemical electrode.
第1図はこの発明の一例の化学電極に用いるMOSFE
T素子用基板の平面構成図、第2図はMOSFET素子
のゲート金属形成部の部分平面図、第3図はシリコン樹
脂被膜したMOSFETの第2図相当図、第4図はこの
発明の化学電極の緩衝溶液中での静特性を示すグラフ図
である。
(1)−−−・−・M OS F E T素子、(2)
・・・・・・ドレイン領域、(3)・・・・・・ソース
領域、り4)・・・−・・チャンネル領域、(5)・・
・・・・ゲート部、(6)・・・・・・クロム金属膜、
(7)・・・・・・白金膜、(8)・・・・・・シリ
コン樹111291゜III 図
第2図Figure 1 shows a MOSFE used in a chemical electrode as an example of this invention.
FIG. 2 is a partial plan view of the gate metal forming part of the MOSFET element; FIG. 3 is a diagram corresponding to FIG. 2 of a MOSFET coated with silicone resin; and FIG. 4 is a chemical electrode of the present invention. FIG. 2 is a graph showing the static characteristics of the sample in a buffer solution. (1) ---・-・MOS FET element, (2)
...Drain region, (3) ...Source region, 4) ...Channel region, (5) ...
...Gate part, (6) ...Chromium metal film,
(7)...Platinum film, (8)...Silicon tree 111291゜III Figure 2
Claims (1)
設定してなる半導体素子上に絶縁膜を被覆しかつ少なく
ともチャンネル領域を被覆する絶縁膜部位上にクロムま
たはチタン膜を介して金または白金膜を密着形成してな
るMOSFET素子からなり、 少なくとも上記チャンネル領域上に位置する金または白
金膜部位またはその一部を除いて該金または白金膜が絶
縁性および耐水性を有する保護膜で被覆保護されてなる
MOSFET化学電極。 2、上記絶縁性および耐水性を有する保護膜がシリコン
樹脂である特許請求の範囲第1項記載のMOSFET化
学電極。[Claims] 1. An insulating film is coated on a semiconductor element having a channel region between a drain region and a source region, and a chromium or titanium film is interposed on at least a portion of the insulating film that covers the channel region. A MOSFET device consisting of a MOSFET element in which a gold or platinum film is closely formed on the channel region, and the gold or platinum film has insulating properties and water resistance except for at least the part of the gold or platinum film located on the channel region or a part thereof. A MOSFET chemical electrode protected by a membrane. 2. The MOSFET chemical electrode according to claim 1, wherein the protective film having insulation and water resistance is made of silicone resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61234101A JPS6388438A (en) | 1986-09-30 | 1986-09-30 | Mosfet chemical electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61234101A JPS6388438A (en) | 1986-09-30 | 1986-09-30 | Mosfet chemical electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6388438A true JPS6388438A (en) | 1988-04-19 |
Family
ID=16965641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61234101A Pending JPS6388438A (en) | 1986-09-30 | 1986-09-30 | Mosfet chemical electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6388438A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63210655A (en) * | 1987-02-26 | 1988-09-01 | Shindengen Electric Mfg Co Ltd | Semiconductor ion sensor |
WO2005022134A1 (en) * | 2003-08-29 | 2005-03-10 | Japan Science And Technology Agency | Field-effect transistor, single electron transistor, and sensor using same |
GB2406175A (en) * | 2003-09-19 | 2005-03-23 | Univ Cambridge Tech | Detection of molecular interactions using field effect transistors (FETs) |
JP2006224014A (en) * | 2005-02-18 | 2006-08-31 | Yokogawa Electric Corp | Micro-flowing passage device |
JP2009156827A (en) * | 2007-12-28 | 2009-07-16 | Univ Waseda | Field-effect transistor for semiconductor sensing, and semiconductor sensing device using it |
-
1986
- 1986-09-30 JP JP61234101A patent/JPS6388438A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63210655A (en) * | 1987-02-26 | 1988-09-01 | Shindengen Electric Mfg Co Ltd | Semiconductor ion sensor |
WO2005022134A1 (en) * | 2003-08-29 | 2005-03-10 | Japan Science And Technology Agency | Field-effect transistor, single electron transistor, and sensor using same |
US8502277B2 (en) | 2003-08-29 | 2013-08-06 | Japan Science And Technology Agency | Field-effect transistor, single-electron transistor and sensor using the same |
US8766326B2 (en) | 2003-08-29 | 2014-07-01 | Japan Science And Technology Agency | Field-effect transistor, single-electron transistor and sensor |
US8772099B2 (en) | 2003-08-29 | 2014-07-08 | Japan Science And Technology Agency | Method of use of a field-effect transistor, single-electron transistor and sensor |
US9506892B2 (en) | 2003-08-29 | 2016-11-29 | Japan Science And Technology Agency | Field-effect transistor, single-electron transistor and sensor using the same |
GB2406175A (en) * | 2003-09-19 | 2005-03-23 | Univ Cambridge Tech | Detection of molecular interactions using field effect transistors (FETs) |
GB2406175B (en) * | 2003-09-19 | 2006-05-17 | Univ Cambridge Tech | Detection of molecular interactions using a field effect transistor |
JP2006224014A (en) * | 2005-02-18 | 2006-08-31 | Yokogawa Electric Corp | Micro-flowing passage device |
JP2009156827A (en) * | 2007-12-28 | 2009-07-16 | Univ Waseda | Field-effect transistor for semiconductor sensing, and semiconductor sensing device using it |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070262358A1 (en) | Sensor and Method for the Production Thereof | |
KR900000578B1 (en) | Enzyme sensor | |
JPS6388438A (en) | Mosfet chemical electrode | |
US20070023286A1 (en) | Method of fabricating electrode assembly of sensor | |
JPH0374947B2 (en) | ||
JPS61218932A (en) | Ion high sensitivity electric field effect transistor and its manufacture | |
EP0211609A2 (en) | Chemically sensitive semiconductor devices and their production | |
JPH0426432B2 (en) | ||
JPH02296141A (en) | Functional element and fet sensor provided with functional element | |
JPH0518935A (en) | Diamond thin-film ion sensor | |
JPS62132160A (en) | Biosensor using separation gate type isfet | |
US10876986B2 (en) | Insulated sensors | |
JPS6312252B2 (en) | ||
Poghossian | Method of fabrication of ISFETs and CHEMFETs on an Si-SiO2-Si structure | |
JPS61153537A (en) | Semiconductor pressure sensor | |
JPH0210146A (en) | Humidity sensing element and its operating circuit | |
JP2706252B2 (en) | Extended gate FET ion sensor | |
JPS6111652A (en) | Field effect type semiconductor sensor | |
JPS63208751A (en) | Condensation sensor | |
JPS6366454A (en) | Enzyme sensor and manufacture thereof | |
JP2616117B2 (en) | Flat metal electrode for modified electrode | |
KR980006497A (en) | Humidity Sensing Field Effect Transistor and Manufacturing Method Thereof | |
JPS59182517A (en) | Semiconductor sensor | |
Tsukada et al. | Platinum-platinum oxide gate pH ISFET | |
JP2001004585A (en) | Semiconductor chemical sensor |