JPS6388411A - Integrating sphere apparatus - Google Patents

Integrating sphere apparatus

Info

Publication number
JPS6388411A
JPS6388411A JP23406386A JP23406386A JPS6388411A JP S6388411 A JPS6388411 A JP S6388411A JP 23406386 A JP23406386 A JP 23406386A JP 23406386 A JP23406386 A JP 23406386A JP S6388411 A JPS6388411 A JP S6388411A
Authority
JP
Japan
Prior art keywords
light
sample
integrating sphere
sphere
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23406386A
Other languages
Japanese (ja)
Inventor
Yoshio Tsunasawa
綱沢 義夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP23406386A priority Critical patent/JPS6388411A/en
Publication of JPS6388411A publication Critical patent/JPS6388411A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/08Arrangements of light sources specially adapted for photometry standard sources, also using luminescent or radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J2001/0481Preset integrating sphere or cavity

Abstract

PURPOSE:To obtain a stability against changes in the light source or the like even with a single flux type as done with a double flux type, by dividing a part of light flux incident into an integrating sphere by a light flux splitting means such as stationary half-mirror to receive light with a silicon photocell. CONSTITUTION:A sample X is st in contact with a window provided at a position where an incident light flux of an integrating sphere I hits it directly, a light flux emitted from a spectroscope M is made to come into the sphere I and a part thereof is to fall into a silicon photocell 3. An output of the cell 3 is converted 4 into a control signal and inputted into a negative high voltage generation circuit 5, and output voltage of which 5 is applied to a diode of a photoelectric multiplier tube P to control the sensitivity of the tube P. Thus, as only one light flux is made come into the sphere I, the construction of an optical system is very simple, while light incident into the sphere I is divided 2 and monitored before the incidence thereof I thereby enabling automatic compensation for the changes in the light source 1. In addition, as the light flux being incident into the sphere I is single, restriction or the like of the geometric size of the sample X can be minimized with a larger freedom of the position of the sphere I.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は分光光度計等に用いるための積分球を用いた測
光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a photometric device using an integrating sphere for use in a spectrophotometer or the like.

口、従来の技術 シC料の透過率とか反射率を測定する場合、試料が光を
散乱させず、表面が平面であって、試料を透過または反
射した光は全部受光素子に入射し、受光素子の受光面上
の光束入射位置および入射光束の断面の形や光強度分布
が試料を動かしたり、試料を変えても変化しない場合は
試料透過または反射光を直接受光素子に入射させること
ができるが、表面が平面でない試料、光拡散性の試料、
等では試料を透過または反射した光束が広がるので、試
料透過光或は反射光を全部受光素子に入射させることが
できず、また試料を交換したとき等に受光素子上の入射
光束の位置や形等が変化するので、それらのことに基づ
く誤差の発生をなくすため、積分球を用いる必要がある
Conventional technology When measuring the transmittance or reflectance of a C material, the sample does not scatter light and has a flat surface, and all the light transmitted or reflected by the sample enters the light receiving element and is received by the sample. If the incident position of the light beam on the light-receiving surface of the element, the cross-sectional shape of the incident light beam, and the light intensity distribution do not change even when the sample is moved or the sample is changed, the light transmitted or reflected from the sample can be made to directly enter the light-receiving element. However, samples with non-flat surfaces, light-diffusing samples,
etc., the light beam transmitted or reflected by the sample spreads out, making it impossible to make all of the light transmitted or reflected from the sample enter the photodetector, and when replacing the sample, the position and shape of the incident light beam on the photodetector may change. etc. change, so it is necessary to use an integrating sphere to eliminate errors caused by these factors.

所で積分球測光装置は光エネルギーの損失が多いので、
通常光検出器として光電子増信管を用いるが、この場合
従来は第4図に示すような試料−対照側交照方式が用い
られていた。第4図で1が積分球で分光器Mからの出射
光速は回転ミラーBSで2光束S、Rに分割され、二つ
の方向から交互に積分球Iに入射せしめられ、積分球か
らの出射光を一つの光電子増倍管Pで受光する。分割さ
れた2光束のうちRは対照光束、Sは試料光束で、この
試料光束の光路内に試料Xが置かれる。
However, since the integrating sphere photometer has a lot of loss of light energy,
A photoelectron intensifier tube is usually used as a photodetector, and in this case, a sample-control side illumination method as shown in FIG. 4 has conventionally been used. In Fig. 4, 1 is an integrating sphere, and the speed of light emitted from the spectrometer M is split into two beams S and R by a rotating mirror BS, which are made to enter the integrating sphere I alternately from two directions, and the light beams emitted from the integrating sphere are is received by one photomultiplier tube P. Of the two divided beams, R is a reference beam, and S is a sample beam, and the sample X is placed in the optical path of this sample beam.

光電子増倍管Pの出力は対照光束に対するものと試料光
束に対するものとに弁別され、対照光に対する出力が一
定になるように光電子増倍管印加電圧が制御される。
The output of the photomultiplier tube P is differentiated into that for the reference light beam and that for the sample light beam, and the voltage applied to the photomultiplier tube is controlled so that the output for the reference light is constant.

ハ0発明が解決しようとする問題点 上述した従来の試料一対照例文型方式の積分球測光装置
は三光束型であるから単光束型の測光装置に比し光学系
の構成が複雑であり、また積分球に入射せしめられる三
光束の位置、および方向が決まっているので積分球を自
由に動かすことができず、反射率測定で試料への光入射
角を任意に変えて測定するとか、透過光測定でも、両面
が平行でなくて、透過光の方向が大きく変化するような
試料についての測定を行うのが大変困難で、適用できる
試料とか測定方法に対する制約が大きいと云う問題があ
る。
Problems to be Solved by the Invention The above-mentioned conventional integrating sphere photometer using the one-sample comparison example sentence type method is a three-beam type, so its optical system configuration is more complex than that of a single-beam type photometer. Furthermore, since the positions and directions of the three beams of light incident on the integrating sphere are fixed, the integrating sphere cannot be moved freely. Even in optical measurements, there is a problem in that it is very difficult to measure samples where both surfaces are not parallel and the direction of transmitted light changes significantly, and there are significant restrictions on the applicable samples and measurement methods.

本発明は単光束型でありなから三光束型と同等の光源変
動等に対する安定性を有し、単光束型であることによっ
て、適用できる試料形状、測定方法等に対する制約の少
ない積分球測光装置を提供しようとするものである。
Since the present invention is a single-beam type, it has the same stability against light source fluctuations as a three-beam type, and because it is a single-beam type, there are fewer restrictions on applicable sample shapes, measurement methods, etc. This is what we are trying to provide.

二0問題点解決のための手段 積分球へ入射する光束を静的な半透明鏡のような光束分
割手段によって一部を分割してシリコンホトセルで受光
し、その出力によって試料への入射光をモニタして、積
分球出射光を受光する光電子増倍管の印加電圧を制御す
るようにした。
20 Means for Solving Problems The light beam incident on the integrating sphere is split into parts by a light beam splitting means such as a static semi-transparent mirror, and the light is received by a silicon photocell, and the output is used to divide the light beam into the sample. The voltage applied to the photomultiplier tube, which receives the light emitted from the integrating sphere, is controlled by monitoring.

ホ0作用 従来の三光束型積分球測光装置は対照光をモニタするの
に、試料測定用の積分球を通して測定しているので、文
型方式を用いねばならず光学系の構成が複雑となったが
、本発明では、対照光は試料光測定用の積分球を通さず
、試料光測定用の光電子増倍管とは別の測光素子で測光
しているので文型方式とする必要がな(なり、光学系の
構成が簡単となり、構造的には単光束方式とほり同じで
あり、それでいて試料入射光のモニタが行われているの
で光源の変動等が補償されており、高精度の測定が可能
となる。
Ho0 effect Conventional three-beam integrating sphere photometers monitor the reference light by measuring it through an integrating sphere for sample measurement, which requires the use of the sentence method, which complicates the configuration of the optical system. However, in the present invention, the reference light does not pass through the integrating sphere for measuring the sample light, and is measured by a photometric element separate from the photomultiplier tube for measuring the sample light, so there is no need to use the sentence method. The configuration of the optical system is simplified, and the structure is almost the same as the single beam method.However, since the sample incident light is monitored, fluctuations in the light source are compensated for, and highly accurate measurements are possible. becomes.

へ、実施例 第1図に本発明の一実施例を示す。図は試料の拡散反射
率を測定する場合を示している。1は光源、Mは分光器
、■は積分球でPは積分球出射光を受光する光電子増倍
管である。試料Xは積分球Iの入射光束が直接当たる位
置に設けられた窓に接して置かれる。分光器Mの出射光
束が直接積分球■に入射するが、この入射光束の光路中
に半透明鏡2が挿入してあり、分光器出射光の一部がシ
リコンホトセル3に入射せしめられる。シリコンホトセ
ル3の出力は適当な入力出力変換回路4を通して負高圧
発生回路5の制御信号に変換され、負高圧発生回路5に
入力される。負高圧発生回路5の出力電圧が光電子増倍
管■)のダイノードに印加され、光電子増倍管Pの感度
が制御される。
Embodiment FIG. 1 shows an embodiment of the present invention. The figure shows the case of measuring the diffuse reflectance of a sample. 1 is a light source, M is a spectroscope, ■ is an integrating sphere, and P is a photomultiplier tube that receives light emitted from the integrating sphere. The sample X is placed in contact with a window provided at a position where the incident light beam of the integrating sphere I directly hits. The emitted light beam from the spectrometer M directly enters the integrating sphere (2), but a semi-transparent mirror 2 is inserted into the optical path of this incident light beam, and a part of the light emitted from the spectrometer is made to enter the silicon photocell 3. The output of the silicon photocell 3 is converted into a control signal for the negative high voltage generation circuit 5 through a suitable input/output conversion circuit 4, and is input to the negative high voltage generation circuit 5. The output voltage of the negative high voltage generating circuit 5 is applied to the dynode of the photomultiplier tube (2), and the sensitivity of the photomultiplier tube P is controlled.

光電子増倍管の印加電圧Vと感度(利得)Aとの関係を
A=f(V)とすると、シリコンホトセルの出力iの変
化に関係なく光電子増倍管Pの感度を一定に保つには、
印加電圧Vを V=f  (α/ i )・・・(1)の関係で決めれ
ばよい。入力−出力変換回路4として、入力出力の関係
が(1)式で与えられるような関数発生回路を用いれば
よく、このような関数発生回路として対数変換回路を近
似的に用い得る。
If the relationship between the applied voltage V and the sensitivity (gain) A of the photomultiplier tube is A = f (V), then the sensitivity of the photomultiplier tube P can be kept constant regardless of changes in the output i of the silicon photocell. teeth,
The applied voltage V may be determined by the relationship V=f (α/i) (1). As the input-output conversion circuit 4, a function generation circuit whose input-output relationship is given by equation (1) may be used, and a logarithmic conversion circuit can be approximately used as such a function generation circuit.

第1図の構成で、試料Xの分光拡散反射率を測定する手
順は次の通りである。まず図の試料Xの所に標準試料を
置き、分光器Mの出射光波長を亥えて光電子増倍管Pの
出力1o(λ)をメモリする。次に図のXの位置に被測
定試料Xを置き上と同様にして光電子増倍管Pの出力I
(λ)をメモで求められる。
The procedure for measuring the spectral diffuse reflectance of sample X using the configuration shown in FIG. 1 is as follows. First, a standard sample is placed in place of sample X in the figure, and the output 1o (λ) of the photomultiplier tube P is stored in memory along with the wavelength of the light emitted from the spectrometer M. Next, place the sample to be measured X at position X in the figure and do the same as above to output I
(λ) can be found using notes.

第2図は本発明の第2の実施例である。この実施例では
積分球Iには積分球入射光が直接当たる部分に試料を置
く窓W1を設けると共に、入射光が入射しない位置で光
検出器に関してWlと対称の位置に補償用窓W2を設け
である。W3は光出射用窓で光電子増倍管Pが置かれる
。その他の全体的構成は第1図の実施例と同じである。
FIG. 2 shows a second embodiment of the invention. In this embodiment, the integrating sphere I is provided with a window W1 for placing the sample on the part directly hit by the incident light on the integrating sphere, and a compensation window W2 is provided at a position where the incident light does not enter and is symmetrical to Wl with respect to the photodetector. It is. W3 is a window for light emission, and a photomultiplier tube P is placed therein. The rest of the overall configuration is the same as the embodiment shown in FIG.

この実施例で拡散反射率を測定する場合、反射率100
%ラインIo(λ)を測定するときは窓W1に標準白板
を置き、窓W2は被測定試料Xでふさいでおく。次に被
測定試料の反射光I(λ)を測定するときは、窓W1に
被測定試料Xを置き、補償用窓W2は標準白板でふさぐ
。第1図の実施例では積分球内面と試料間の多重反射に
よる誤差は除けないが、このようにすると、IO(λ)
測定時にも■(λ)測定時にも積分球内面は光学的に等
価に保たれているから、装置が単光束型であることによ
って、第1図の実施例の場合に生ずる誤差が除かれ、第
1図の実施例より高精度の測定ができる。
When measuring the diffuse reflectance in this example, the reflectance is 100
When measuring the % line Io (λ), a standard white board is placed in the window W1, and the window W2 is covered with the sample X to be measured. Next, when measuring the reflected light I(λ) of the sample to be measured, the sample to be measured X is placed in the window W1, and the compensation window W2 is covered with a standard white board. In the embodiment shown in Fig. 1, errors due to multiple reflections between the inner surface of the integrating sphere and the sample cannot be eliminated, but if this is done, IO(λ)
Since the inner surface of the integrating sphere is kept optically equivalent both during measurement and when (λ) is measured, the error that occurs in the embodiment shown in Fig. 1 is eliminated because the device is of a single beam type. More accurate measurements can be made than the embodiment shown in FIG.

第3図は本発明の第3の実施例を示す。この実施例は透
過率測定用の場合を示している。Xが試料で積分球Iの
光入射窓の前方に薗かれる。その使節1図の実施例と対
応する部分には同じ符号を付し、−々説明は省略する。
FIG. 3 shows a third embodiment of the invention. This example shows a case for transmittance measurement. X is the sample placed in front of the light entrance window of integrating sphere I. The same reference numerals are given to the parts corresponding to those in the embodiment shown in Figure 1 of the envoy, and their explanation will be omitted.

透過率測定用の試料は両面平行の平面板とは限られない
が、この実施例の場合、被測定試料Xがレンズのような
もので、試料を置かない100%透過率の測定の場合と
、試料Xを置いた場合とで、積分球内面に入射する光束
の断面の形状が異っても、そのことによる誤差は積分球
Iによって除かれる。試料がプリズム状のもの或は鏡面
反射測定のような場合で、試料への入射光と試料からの
出射光の方向が著しく異る場合でも、試料セット位置を
中心として積分球を回転移動できるようにしておくこと
で容易に測定することができる。また、試料から積分球
までの距離を変えられるようにしておくと、大型゛ の
試料でも容易に測定することができる。このようなこと
は従来の二光束文型方式の装置では対照光が積分球に入
射するようにしなれけばならないので、対照光の光路に
よって積分球の位置が拘束されて積分球の位置が固定さ
れて出来ないことである。
Although the sample for transmittance measurement is not limited to a flat plate with both sides parallel to each other, in this example, the sample to be measured Even if the shape of the cross section of the light beam incident on the inner surface of the integrating sphere differs depending on the case where the sample X is placed, the error due to this is removed by the integrating sphere I. Even when the sample is in the shape of a prism or specular reflection measurement, and the directions of the incident light and the light emitted from the sample are significantly different, the integrating sphere can be rotated around the sample set position. It can be easily measured by keeping it as . Furthermore, if the distance from the sample to the integrating sphere can be changed, even large samples can be easily measured. In the conventional two-beam type device, the contrast light must be incident on the integrating sphere, so the position of the integrating sphere is constrained by the optical path of the contrast light, and the position of the integrating sphere is fixed. This is something that cannot be done.

ト、効果 本発明積分球装置は上述したような構成で、積分球には
一つの光束を入射させるだけであるから、光学系の構成
は単光束型の装置と同程度の簡単さでありながら、積分
球に入射する光を積分球入射前に分割してモニタしてい
るので、三光束型と同じように光源の変動に対して自動
的に補償でき、積分球に入射させる光束が単一であるか
ら、積分球の位置の自由度が大きく、試料の形状大きさ
の制限、或は測定方法(例えば入射角を変えて反射率を
測定する等)の制約が少な(できる。
G. Effect The integrating sphere device of the present invention has the above-described configuration, and since only one beam of light is incident on the integrating sphere, the configuration of the optical system is as simple as that of a single beam type device. Since the light incident on the integrating sphere is divided and monitored before it enters the integrating sphere, it can automatically compensate for variations in the light source, just like the three-beam type, and the light beam incident on the integrating sphere is only a single beam. Therefore, there is a large degree of freedom in the position of the integrating sphere, and there are fewer restrictions on the shape and size of the sample or on the measurement method (for example, measuring the reflectance by changing the incident angle).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の平面図、第2図は本発明の
第2の実施例の要部平面図、第3図は本発明の第3実施
例の平面図、第4図は従来例の平面図である。 I・・・積分球、M・・・分光器、X・・・試料、1・
・・光源、2・・・半透明鏡、3・・・シリコンホトセ
ル、4・・・入力出力変換回路、5・・・負高圧発生回
路。 代理人  弁理士 縣  浩 介 s1図
Fig. 1 is a plan view of an embodiment of the present invention, Fig. 2 is a plan view of essential parts of a second embodiment of the invention, Fig. 3 is a plan view of a third embodiment of the invention, Fig. 4 is a plan view of a conventional example. I...integrating sphere, M...spectroscope, X...sample, 1.
...Light source, 2...Semi-transparent mirror, 3...Silicon photocell, 4...Input/output conversion circuit, 5...Negative high voltage generation circuit. Agent Patent Attorney Kosuke Agata s1 diagram

Claims (1)

【特許請求の範囲】[Claims] 積分球に入射する単一の光束を静的な光束分割手段によ
って分割し、分割された光束をモニタ用の測光素子に入
射させ、この測光素子の出力によって積分球出射光を受
光する光電子増倍管の印加電圧を制御するようにした積
分球装置。
Photoelectron multiplication that splits a single beam of light incident on the integrating sphere by a static beam splitting means, makes the split beam enter a photometric element for monitoring, and receives the light emitted from the integrating sphere using the output of this photometric element. An integrating sphere device that controls the voltage applied to the tube.
JP23406386A 1986-09-30 1986-09-30 Integrating sphere apparatus Pending JPS6388411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23406386A JPS6388411A (en) 1986-09-30 1986-09-30 Integrating sphere apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23406386A JPS6388411A (en) 1986-09-30 1986-09-30 Integrating sphere apparatus

Publications (1)

Publication Number Publication Date
JPS6388411A true JPS6388411A (en) 1988-04-19

Family

ID=16965005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23406386A Pending JPS6388411A (en) 1986-09-30 1986-09-30 Integrating sphere apparatus

Country Status (1)

Country Link
JP (1) JPS6388411A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276726U (en) * 1988-10-14 1990-06-12
JP2006023284A (en) * 2004-06-11 2006-01-26 Shimadzu Corp Detector for ultraviolet-visible-near infrared spectrophotometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276726U (en) * 1988-10-14 1990-06-12
JP2006023284A (en) * 2004-06-11 2006-01-26 Shimadzu Corp Detector for ultraviolet-visible-near infrared spectrophotometer
JP4622673B2 (en) * 2004-06-11 2011-02-02 株式会社島津製作所 UV Visible Near Infrared Spectrophotometer Detector

Similar Documents

Publication Publication Date Title
US5764352A (en) Process and apparatus for spectral reflectance and transmission measurements
JPS628729B2 (en)
US5035508A (en) Light absorption analyser
JPS6329210B2 (en)
JP2899651B2 (en) Light transmission type spectrometer
JPS6355020B2 (en)
JPH038686B2 (en)
US3606547A (en) Spectrophotometer
JPH0627706B2 (en) Reflectance measuring device
JPS639610B2 (en)
US3891853A (en) Energy compensated spectrofluorometer
US4484815A (en) Spectrophotometer
JPS6388411A (en) Integrating sphere apparatus
US2849912A (en) Optical arrangement for determining the ratio of two light fluxes
JPH0781840B2 (en) Optical film thickness measuring device
JPS61226619A (en) Spectrophotometer using integrating sphere
JPH11101739A (en) Ellipsometry apparatus
JPS60129645A (en) Gas concentration measuring apparatus
JPS63289426A (en) Fourier transform spectroanalyser
JPS6388430A (en) Absolute reflection factor measuring apparatus
JPS594258Y2 (en) double beam spectrophotometer
JPH03214040A (en) Light analyzing apparatus
JPS606752Y2 (en) spectrophotometer
KR890004718B1 (en) A spectrometry photometer
JPS6385414A (en) Multibeam photometry instrument