JPS6388390A - Flexible fluid transport pipe - Google Patents
Flexible fluid transport pipeInfo
- Publication number
- JPS6388390A JPS6388390A JP23082886A JP23082886A JPS6388390A JP S6388390 A JPS6388390 A JP S6388390A JP 23082886 A JP23082886 A JP 23082886A JP 23082886 A JP23082886 A JP 23082886A JP S6388390 A JPS6388390 A JP S6388390A
- Authority
- JP
- Japan
- Prior art keywords
- plastic
- gas
- transport pipe
- fluid transport
- plastic inner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 title claims description 19
- 229920003023 plastic Polymers 0.000 claims description 48
- 239000004033 plastic Substances 0.000 claims description 48
- 239000000463 material Substances 0.000 claims description 15
- 230000003014 reinforcing effect Effects 0.000 claims description 12
- 230000035699 permeability Effects 0.000 claims description 9
- 239000007789 gas Substances 0.000 description 44
- 239000010410 layer Substances 0.000 description 27
- 230000000694 effects Effects 0.000 description 9
- 239000002184 metal Substances 0.000 description 6
- 239000012466 permeate Substances 0.000 description 5
- 229920000571 Nylon 11 Polymers 0.000 description 4
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000005033 polyvinylidene chloride Substances 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229920002292 Nylon 6 Polymers 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は天然ガスやガスを含む原油等の流体を輸送する
可撓性流体輸送管に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flexible fluid transport pipe for transporting fluids such as natural gas and crude oil containing gas.
天然ガスやガスを含む原油等の流体を輸送する可撓性輸
送管としては、プラスチック内管の上に管内圧力や管軸
線方向の張力に耐えるように金属又はFRP材で出来た
補強層を設け、その上の最外層として外傷や補強層の腐
食防止等のためのプラスチック外被(シース)を被覆し
たものが使用されている。For flexible transport pipes that transport fluids such as natural gas and gas-containing crude oil, a reinforcing layer made of metal or FRP material is provided on the plastic inner pipe to withstand internal pressure and tension in the pipe axis direction. As the outermost layer thereon, a plastic sheath is used to prevent damage and corrosion of the reinforcing layer.
一般に、プラスチック材はガスを完全に遮蔽することが
できず、ガスはプラスチック内を拡散し、透過していく
。圧力、温度が高くなるほど、ガス透過量が大きくなる
傾向がある。Generally, plastic materials cannot completely shield gases, and gases diffuse and permeate through the plastic. The higher the pressure and temperature, the greater the amount of gas permeation tends to be.
従って、前記可撓性流体輸送管の場合にも、流体輸送中
に、流体中の酸素、硫化水素等のガス成分がプラスチッ
ク内管を透過してプラスチック内管とプラスチック外被
の間の空間に透過ガスとして蓄積される。Therefore, even in the case of the flexible fluid transport pipe, gas components such as oxygen and hydrogen sulfide in the fluid permeate through the plastic inner pipe and enter the space between the plastic inner pipe and the plastic jacket during fluid transport. Accumulated as permeate gas.
このガス透過量は微量であるが、長期間の間に透過圧力
がプラスチック内管の内圧に比例したある一定の高圧力
となると、この圧力でプラスチック外被が破壊すること
になる。Although the amount of gas permeation is small, if the permeation pressure reaches a certain high pressure proportional to the internal pressure of the plastic inner tube over a long period of time, the plastic outer jacket will be destroyed by this pressure.
これを防止するためプラスチック外被に局所的に肉厚の
薄い部分を設け、上記透過ガスのプラスチック外被外へ
の放出を促進させるものがあるが、この薄肉部分が破壊
して輸送管の機械的強度が低下したり補強層が金属補強
層の場合、浸入した海水等により腐食して輸送管の耐用
年数を低下させる欠点があった。In order to prevent this, some thin walled parts are locally provided in the plastic sheath to promote the release of the above-mentioned permeable gas outside the plastic sheath. However, if the reinforcing layer is a metal reinforcing layer, it may corrode due to infiltrated seawater, reducing the service life of the transport pipe.
またプラスチック外被をプラスチック内管よりもガス透
過性の良い材料例えばシリコンゴム等で構成することも
考えられるが、これらの材料は成形性、耐摩耗性、機械
的特性が十分でなく品質の良い輸送管を得ることができ
なかった。It is also possible to construct the plastic outer jacket with a material that has better gas permeability than the plastic inner tube, such as silicone rubber, but these materials do not have sufficient moldability, wear resistance, or mechanical properties, and are of poor quality. Couldn't get a transport tube.
更に、金属テープによるガス遮蔽層を設けるものもある
が、輸送管が繰り返し曲げを受ける環境で用いられる場
合、この金属テープが疲労破断し、ガス遮蔽効果が低下
することがあり信頼性が乏しかった。Furthermore, some products have a gas shielding layer made of metal tape, but when used in an environment where the transport pipe is repeatedly bent, this metal tape can break due to fatigue, reducing the gas shielding effect and resulting in poor reliability. .
本発明は上記の欠点を除去し、ガス透過を抑えてプラス
チック外被の破壊を防止するようにした可撓性流体輸送
管を提供するもので、プラスチック内管の上に補強層を
設け、その上にプラスチック外被を被覆してなる可撓性
流体輸送管において、前記プラスチック内管と前記補強
層との間又は前記プラスチック内管の管壁中に、気体透
過係数がプラスチック内管を構成する材料のそれの1/
10以下であるプラスチック材料よりなるガス遮蔽層を
介在させたことを特徴とするものである。The present invention eliminates the above-mentioned drawbacks and provides a flexible fluid transport pipe that suppresses gas permeation and prevents the plastic jacket from breaking. In a flexible fluid transport pipe having a plastic outer covering thereon, the gas permeability coefficient constitutes the plastic inner pipe between the plastic inner pipe and the reinforcing layer or in the pipe wall of the plastic inner pipe. 1/of the material
It is characterized in that a gas shielding layer made of a plastic material having a molecular weight of 10 or less is interposed therebetween.
本発明の構成によれば、流体輸送中に流体中のガス成分
がプラスチック内管を透過する量を低減させたものであ
るから、プラスチック外被の破壊を防止することができ
るほか、ガスを透過させて放出させる機構のものよりも
輸送管の気密、液密性が高くなり、プラスチック外被の
損傷、海水等の浸入がおきにくく、機械的強度を保持す
ることができる。また有害ガスの放出がなく周囲環境を
良好に保つことができ、更に輸送管の繰り返し曲げにも
強く長期間の使用に耐えるものである。According to the configuration of the present invention, since the amount of gas components in the fluid that permeate through the plastic inner tube during fluid transportation is reduced, it is possible to prevent the plastic outer jacket from being destroyed and also to prevent gas from permeating. The air-tightness and liquid-tightness of the transport pipe are higher than those with a mechanism in which the pipe is released by releasing the pipe, and the plastic jacket is less likely to be damaged or infiltrated by seawater, and mechanical strength can be maintained. In addition, it does not emit harmful gases and can maintain a good surrounding environment, and is resistant to repeated bending of the transport pipe and can withstand long-term use.
次に本発明の実施例を図面により詳細に説明すると、第
1図は本考案に係る可撓性流体輸送管10の一実施例を
示すもので、この輸送管10は、例えばナイロン11又
はナイロン12よりなるプラスチック内管12の上に、
管内圧に耐えるようにするために金属条を短ピツチで巻
付けた円周方向補強条層14Aと管軸線方向の張力に耐
えるようにするために金属条を長ピツチで巻付けた軸力
補強条層14Bとよりなる補強層14を設け、その上に
ポリエチレンやナイロン等よりなるプラスチック外被1
6を被覆した構造を備えている。Next, an embodiment of the present invention will be explained in detail with reference to the drawings. Fig. 1 shows an embodiment of a flexible fluid transport pipe 10 according to the present invention, and this transport pipe 10 is made of, for example, nylon 11 or nylon. On the plastic inner tube 12 consisting of 12,
A circumferential reinforcing layer 14A made of metal strips wound at short pitches to withstand internal pressure, and an axial reinforcement layer 14A made of metal strips wrapped at long pitches to withstand tension in the tube axis direction. A reinforcing layer 14 made of striations 14B is provided, and a plastic outer sheath 1 made of polyethylene, nylon, etc. is provided thereon.
It has a structure covered with 6.
更に第1図に示す実施例のものでは、プラスチック内管
12と補強層14との間にガス遮蔽層18が介在されて
いる。換言すればプラスチック内管12の直上に該内管
12に接触するようにガス遮蔽層18が設けられている
。このガス遮蔽層18であるポリ塩化ビニリデン、ポリ
ビニルアルコール、ポリアクリロニトリル、ポリニスデ
ル等のプラスチック材料の押出し又はテープ巻き被覆層
よりなっている。Furthermore, in the embodiment shown in FIG. 1, a gas barrier layer 18 is interposed between the plastic inner tube 12 and the reinforcing layer 14. In other words, the gas shielding layer 18 is provided directly above and in contact with the plastic inner tube 12 . This gas shielding layer 18 is made of an extruded or tape-wrapped coating layer of a plastic material such as polyvinylidene chloride, polyvinyl alcohol, polyacrylonitrile, polynisdel, or the like.
上記各種材料の気体透過係数を示すと次の通りとなる。The gas permeability coefficients of the various materials mentioned above are as follows.
気体透過係数
(crl(STP)c+n/cnbsec・cmHg)
ナイロン12 0.06
ナイロン 6 0.010
ポリ塩化ビニリデン 0.0009
ポリビニルアルコール 0.00045ポリアクリロニ
トリル 0.00012上記気体透過係数は、20°C
の環境下において、10〜500μmの厚さのフィルム
の片面を真空に保ち、他面より窒素ガスで一定の圧力を
加え。Gas permeability coefficient (crl (STP) c+n/cnbsec・cmHg)
Nylon 12 0.06 Nylon 6 0.010 Polyvinylidene chloride 0.0009 Polyvinyl alcohol 0.00045 Polyacrylonitrile 0.00012 The above gas permeability coefficient is 20°C
Under this environment, one side of a film with a thickness of 10 to 500 μm was kept in vacuum, and a constant pressure was applied with nitrogen gas from the other side.
その差圧により真空側の圧力上昇をバラトロン圧力変換
器により検出して求めたものである。The difference in pressure was used to detect the pressure rise on the vacuum side using a Baratron pressure transducer.
第2図は本発明の他の実施例を示すものであり、この実
施例では、第1図に示すガス遮蔽層18をプラスチック
内管12の管壁中に介在したものであり、即ちプラスチ
ック内管12に中間層として埋設するようにしたもので
あり、その他の構成は第1図に示すものと同じである。FIG. 2 shows another embodiment of the present invention, in which the gas shielding layer 18 shown in FIG. It is designed to be buried in the pipe 12 as an intermediate layer, and the other structure is the same as that shown in FIG.
次に流体輸送管10の効果を確認するために次の実験を
行った。即ち1n厚さのナイロン11シート2枚の間に
0.5龍厚さのポリ塩化ビニリデンフィルムを介在した
三層構造のシートをサンプルとして用い、これを耐圧2
okg/crA用の断面目形7ランジでシート両面から
挾み、40℃の環境下で一方のフランジ内に窒素ガスボ
ンベより15kg/dの窒素ガスを印加し、他方のフラ
ンジに取付けた圧力計で、前記シートを透過してくるガ
スの圧力(ゲージ圧)を104分経過後測定したところ
、その検出圧力はo、o1kg/cffl以下で非常に
小さく(はぼ大気圧と同圧力)、ガス遮蔽効果が十分で
あった。Next, the following experiment was conducted to confirm the effect of the fluid transport pipe 10. That is, a sheet with a three-layer structure in which a polyvinylidene chloride film with a thickness of 0.5 mm was interposed between two sheets of nylon 11 with a thickness of 1 nm was used as a sample, and this was
The sheet was sandwiched from both sides with 7-flange cross-sectional flange for OKG/CRA, and 15 kg/d of nitrogen gas was applied from a nitrogen gas cylinder into one flange in an environment of 40°C, and the pressure gauge attached to the other flange was applied. When the pressure (gauge pressure) of the gas passing through the sheet was measured after 104 minutes, the detected pressure was very small, less than 1 kg/cffl (almost the same pressure as atmospheric pressure), indicating that the gas shielding The effect was sufficient.
〔比較例1〕
同7嵌の実験で、前記ナイロン11シートの間に介在さ
れるフィルムが0.5m厚さのナイロン6フィルムであ
る三層構造のシートについて透過するガスの圧力を測定
したところ0.31 kg/cT+fとなり、ガス遮蔽
効果が十分でなかった。[Comparative Example 1] In an experiment using the same 7 mats, the pressure of gas permeating through a sheet with a three-layer structure in which the film interposed between the nylon 11 sheets was a nylon 6 film with a thickness of 0.5 m was measured. It was 0.31 kg/cT+f, and the gas shielding effect was not sufficient.
〔比較例2〕
2肩富厚さのナイロン11シートの片面に幅2朋のスリ
ット6条を有する鋼板を押し当てて、上記実験例と同じ
測定条件で、透過するガスの圧力を測定したところ、0
.48 kg/iとなり、更にガス遮蔽効果が低下した
。[Comparative Example 2] A steel plate having 6 slits with a width of 2 mm was pressed against one side of a nylon 11 sheet with a thickness of 2 mm, and the pressure of the permeating gas was measured under the same measurement conditions as the above experimental example. ,0
.. It became 48 kg/i, and the gas shielding effect further decreased.
上記例から判るように、ガス遮蔽層18を、気体透過係
数がプラスチック内管12を構成する材料のそれの1/
10以下であるプラスチック材料(例えばポリ塩化ビニ
リデン)で構成することにより、十分なガス遮蔽効果が
得られるが、気体透過係数がプラスチック内管12を構
成する材料のそれの一より大きいプラスチック材料(例
えばナイロン6)で構成した場合には、十分なガス遮蔽
効果が得られないことが確認できた。As can be seen from the above example, the gas shielding layer 18 has a gas permeability coefficient that is 1/2 that of the material constituting the plastic inner tube 12.
A sufficient gas shielding effect can be obtained by constructing the plastic material with a gas permeability coefficient of 10 or less (for example, polyvinylidene chloride); It was confirmed that when constructed from nylon 6), a sufficient gas shielding effect could not be obtained.
本発明は以上説明したように、前記可撓性流体輸送管の
プラスチック内管と補強層との間又はプラスチック内管
の管壁中に、気体透過係数がプラスチック内管を構成す
る材料のそれの1/10以下であるプラスチック材料よ
りなるガス遮蔽層を介在させたので、流体輸送中に、流
体中のガス成分がプラスチック内管を透過する量が低減
され、従って、プラスチック内管とプラスチック外被の
間の空間に透過ガスとして所定圧力以上に蓄積されず、
プラスチック外被の破壊を防止することができる。As explained above, the present invention provides a structure in which the gas permeability coefficient is higher than that of the material constituting the plastic inner tube between the plastic inner tube and the reinforcing layer of the flexible fluid transport tube or in the tube wall of the plastic inner tube. Since the gas shielding layer is made of a plastic material that is 1/10 or less, the amount of gas components in the fluid that permeate through the plastic inner tube during fluid transport is reduced, and therefore the plastic inner tube and the plastic outer jacket are It does not accumulate above a certain pressure as permeated gas in the space between
Destruction of the plastic jacket can be prevented.
また前記透過ガスをプラスチック外被の外へ放出する構
造のものと比較し、プラスチック外被の損傷が少なく機
械強度を強くすることができ、気密、液密性が高いので
硫化水素等の有害ガスの放出による公害発生もない。In addition, compared to the structure in which the permeated gas is released outside the plastic jacket, the plastic jacket is less damaged and has stronger mechanical strength, and is highly airtight and liquid-tight, allowing harmful gases such as hydrogen sulfide to escape. There is no pollution caused by the release of
更にガス遮蔽層がプラスチック材で構成されるので、輸
送管に繰り返し曲げ力が作用しても破断することがな(
繰り返し曲げ力の多く作用する海洋における長期間安定
した使用ができ耐用年数がのびる効果がある。Furthermore, since the gas shielding layer is made of plastic material, it will not break even if repeated bending force is applied to the transport pipe (
It can be used stably for a long period of time in the ocean, where many repeated bending forces are applied, and has the effect of extending its service life.
第1図及び第2図は本発明の各々異なる実施例を示す側
面図である。
10・・・可撓性流体輸送管、12・・・プラスチック
内管、14・・・補強層、14A・・・円周方向補強条
層、14B・・・軸力補強条層、16・・・プラスチッ
ク外被、18・・・ガス遮蔽層。1 and 2 are side views showing different embodiments of the present invention. DESCRIPTION OF SYMBOLS 10... Flexible fluid transport pipe, 12... Plastic inner tube, 14... Reinforcement layer, 14A... Circumferential reinforcement layer, 14B... Axial force reinforcement layer, 16... - Plastic jacket, 18... gas shielding layer.
Claims (1)
チック外被を被覆してなる可撓性流体輸送管において、
前記プラスチック内管と前記補強層との間又は前記プラ
スチック内管の管壁中に、気体透過係数がプラスチック
内管を構成する材料のそれの1/10以下であるプラス
チック材料よりなるガス遮蔽層を介在させたことを特徴
とする可撓性流体輸送管。In a flexible fluid transport pipe formed by providing a reinforcing layer on a plastic inner pipe and covering the reinforcing layer with a plastic outer jacket,
A gas shielding layer made of a plastic material having a gas permeability coefficient of 1/10 or less of that of the material constituting the plastic inner tube is provided between the plastic inner tube and the reinforcing layer or in the tube wall of the plastic inner tube. A flexible fluid transport pipe characterized in that it is interposed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23082886A JPS6388390A (en) | 1986-09-29 | 1986-09-29 | Flexible fluid transport pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23082886A JPS6388390A (en) | 1986-09-29 | 1986-09-29 | Flexible fluid transport pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6388390A true JPS6388390A (en) | 1988-04-19 |
Family
ID=16913912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23082886A Pending JPS6388390A (en) | 1986-09-29 | 1986-09-29 | Flexible fluid transport pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6388390A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011105215A1 (en) * | 2010-02-26 | 2011-09-01 | 古河電気工業株式会社 | Flexible tube for fluid transport and method for producing flexible tube for fluid transport |
JP2012057724A (en) * | 2010-09-09 | 2012-03-22 | Furukawa Electric Co Ltd:The | Flexible pipe for gas transportation |
JP2012082938A (en) * | 2010-10-14 | 2012-04-26 | Furukawa Electric Co Ltd:The | Termination structure of gas transport flexible pipe |
-
1986
- 1986-09-29 JP JP23082886A patent/JPS6388390A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011105215A1 (en) * | 2010-02-26 | 2011-09-01 | 古河電気工業株式会社 | Flexible tube for fluid transport and method for producing flexible tube for fluid transport |
JP5656971B2 (en) * | 2010-02-26 | 2015-01-21 | 古河電気工業株式会社 | Flexible tube for fluid transportation and method for manufacturing flexible tube for fluid transportation |
JP2012057724A (en) * | 2010-09-09 | 2012-03-22 | Furukawa Electric Co Ltd:The | Flexible pipe for gas transportation |
JP2012082938A (en) * | 2010-10-14 | 2012-04-26 | Furukawa Electric Co Ltd:The | Termination structure of gas transport flexible pipe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100615499B1 (en) | Flexible line pipe | |
EP0844429B1 (en) | Low-permeability sheath and its use in high pressure conduits | |
JP5666551B2 (en) | Composite hose for low temperature fluid transfer | |
JP2003227582A (en) | Plastic pipe reinforced in permeation preventing property | |
JPH0151717B2 (en) | ||
JP2009243518A5 (en) | Flexible tube for cryogenic fluid transport | |
US6098667A (en) | Flexible piping structure having a continuous metal inner tube | |
US6550502B2 (en) | Composite tube comprising an inner casing | |
US7640950B2 (en) | Collapse tolerant flexible pipe and method of manufacturing same | |
US4848408A (en) | Multi-layer compensator with spacers arranged between the layers | |
US6338365B1 (en) | Flexible piping structure having a continuous metal inner tube | |
JPS6388390A (en) | Flexible fluid transport pipe | |
AU764330B2 (en) | Heat-insulated duct for transporting fluids | |
US10207455B2 (en) | Flexible pipe with corrosion resistant layer | |
JP2005030512A (en) | Fluid transportation pipe | |
JP2886323B2 (en) | Inundation detection type high-pressure flexible tube | |
JP3228386B2 (en) | Flexible fluid transport pipe | |
CN112682586B (en) | Flexible pipe for transporting natural gas and/or petroleum fluids submerged in a body of water | |
Makino et al. | The problem of gas permeation in flexible pipe | |
JPH06137471A (en) | Flexible fluid transporting pipe | |
Mustaffa et al. | Flexible thermosetting pipe | |
WO2019239093A1 (en) | Venting apparatus and method | |
JPS622389Y2 (en) | ||
JPH029235B2 (en) | ||
US20140305531A1 (en) | Flexible pipe |