JP3228386B2 - Flexible fluid transport pipe - Google Patents

Flexible fluid transport pipe

Info

Publication number
JP3228386B2
JP3228386B2 JP34101993A JP34101993A JP3228386B2 JP 3228386 B2 JP3228386 B2 JP 3228386B2 JP 34101993 A JP34101993 A JP 34101993A JP 34101993 A JP34101993 A JP 34101993A JP 3228386 B2 JP3228386 B2 JP 3228386B2
Authority
JP
Japan
Prior art keywords
flat
fluid transport
reinforcing material
transport pipe
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34101993A
Other languages
Japanese (ja)
Other versions
JPH07156285A (en
Inventor
健一 石井
唯志 福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP34101993A priority Critical patent/JP3228386B2/en
Publication of JPH07156285A publication Critical patent/JPH07156285A/en
Application granted granted Critical
Publication of JP3228386B2 publication Critical patent/JP3228386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、海底油田から産出する
高圧の原油などを輸送するのに使用される可撓性流体輸
送管に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flexible fluid transport pipe used for transporting high-pressure crude oil produced from an offshore oil field.

【0002】[0002]

【従来の技術】従来のこの種の可撓性流体輸送管の構造
を図5に示す。最内層は外圧に対する座屈強度が大き
く、耐食性も良好なステンレス製のインターロック管1
で構成される。その外側には、テープ巻き層2を設けた
上で、流体輸送管の本管となるプラスチック管3が押出
成形により設けられる。テープ巻き層2はインターロッ
ク管1の外周面の溝にプラスチックが食い込むのを防止
するものである。プラスチック管3の材質は、輸送流体
が油の場合は一般に、耐食性、加工性、可撓性にすぐれ
たナイロンを用いることが多い。
2. Description of the Related Art The structure of a conventional flexible fluid transport pipe of this type is shown in FIG. The innermost layer is a stainless steel interlock tube 1 having high buckling strength against external pressure and good corrosion resistance.
It consists of. On the outside, a plastic pipe 3 serving as a main pipe of a fluid transport pipe is provided by extrusion molding after providing a tape winding layer 2. The tape winding layer 2 prevents the plastic from biting into the groove on the outer peripheral surface of the interlock tube 1. As the material of the plastic tube 3, when the transport fluid is oil, generally, nylon having excellent corrosion resistance, workability, and flexibility is often used.

【0003】プラスチック管3の上には、凹型補強材4
aを短ピッチでらせん巻きして内圧補強層4が設けられ
る。凹型補強材4aは厚さ3〜6mm程度の鋼条を凹型に
成形したものである。この凹型補強材4aは通常、開口
部側を向い合せて互いにかみ合うように2層に巻きつけ
られる。内圧補強層4は内部を流れる流体の圧力からプ
ラスチック管3を保護するものである。
[0003] On the plastic tube 3, a concave reinforcing material 4
The internal pressure reinforcing layer 4 is provided by spirally winding a at a short pitch. The concave reinforcing material 4a is formed by forming a steel strip having a thickness of about 3 to 6 mm into a concave shape. The concave reinforcing member 4a is usually wound in two layers so that the opening portions face each other and mesh with each other. The internal pressure reinforcing layer 4 protects the plastic pipe 3 from the pressure of the fluid flowing inside.

【0004】内圧補強層4の上には、鋼条からなる多数
本の平型補強材5aを長ピッチでらせん巻きして軸力補
強層5が設けられる。この軸力補強層5は流体輸送管に
かかる張力を受け持つものである。平型補強材5aは1
層毎に巻き方向を反転させて2層以上の偶数層設けられ
る。これは、らせん巻きされた平型補強材5aに張力が
加わったときに発生するねじれトルクを打ち消すためで
ある。最外層にはプラスチックの押出成形により防食層
6が設けられる。
[0004] On the internal pressure reinforcing layer 4, an axial force reinforcing layer 5 is provided by spirally winding a number of flat reinforcing members 5a made of steel strip at a long pitch. This axial force reinforcing layer 5 is responsible for the tension applied to the fluid transport pipe. Flat reinforcement 5a is 1
Two or more even-numbered layers are provided by reversing the winding direction for each layer. This is to counteract the torsional torque generated when tension is applied to the spirally wound flat reinforcement 5a. An anticorrosion layer 6 is provided on the outermost layer by extrusion molding of plastic.

【0005】[0005]

【発明が解決しようとする課題】最近、可撓性流体輸送
管の深海への適用が増加する傾向にあり、それに伴い流
体輸送管の軽量化が重要な課題となってきている。その
理由は、流体輸送管の自重が大きいと、海中に懸垂され
た流体輸送管の自重を保持するために軸力補強層の断面
積を大きくする必要があるが、軸力補強層の断面積を大
きくすると流体輸送管の自重が大きくなるというジレン
マがあり、簡単には軽量化ができないからである。この
ようなことから従来の標準構造の流体輸送管では水深 4
00m程度までが限度である。
Recently, the application of flexible fluid transport pipes to the deep sea has been increasing, and accordingly, weight reduction of fluid transport pipes has become an important issue. The reason is that if the weight of the fluid transport pipe is large, it is necessary to increase the sectional area of the axial force reinforcing layer in order to hold the weight of the fluid transport pipe suspended in the sea. This is because there is a dilemma that the weight of the fluid transport pipe increases when the value of “” is increased, and the weight cannot be easily reduced. For this reason, the conventional standard structure fluid transport pipe has a water depth of 4
The limit is about 00m.

【0006】[0006]

【課題を解決するための手段】図3は可撓性流体輸送管
の敷設時に、可撓性流体輸送管の上端に発生する自重と
波浪による変動応力を計算して、従来構造の可撓性流体
輸送管に要求される重量軽減率を水深に対して求めた結
果を示す。この結果は例えば従来より約10%重量を軽減
すれば水深 700m程度まで使用可能となり、30数%重量
を軽減すれば水深1000m程度まで使用可能となることを
示している。
FIG. 3 is a graph showing the calculation of the fluctuating stress caused by the weight and the wave generated at the upper end of the flexible fluid transport pipe when the flexible fluid transport pipe is laid, and the flexibility of the conventional structure is calculated. The result which calculated | required the weight reduction rate required for the fluid transport pipe with respect to the water depth is shown. This result indicates that, for example, if the weight is reduced by about 10%, the water can be used up to a depth of about 700 m, and if the weight is reduced by about 30%, the water can be used up to a depth of about 1000 m.

【0007】可撓性流体輸送管の重量を軽減するために
は、平型補強材および凹型補強材の比強度、すなわち単
位断面積あたりの破断強度および降伏強度を大きくし
て、軸方向補強層および内圧補強層の重量を軽減するこ
とが最も効果的である。平型補強材および凹型補強材に
は炭素鋼を使用しているので、その比強度を向上させる
ためには炭素含有率を増やすことが有効である(従来材
の炭素含有率は 0.4%)。しかし炭素鋼は炭素含有率を
増やすと脆性が顕著になり、プラスチック管への巻付け
の際、ミクロクラックが発生して補強材としては役立た
なくなる。
[0007] In order to reduce the weight of the flexible fluid transport tube, the specific strength of the flat reinforcing material and the concave reinforcing material, that is, the breaking strength and the yield strength per unit cross-sectional area, are increased to increase the axial reinforcing layer. It is most effective to reduce the weight of the internal pressure reinforcing layer. Since carbon steel is used for the flat reinforcing material and the concave reinforcing material, it is effective to increase the carbon content to improve the specific strength (the carbon content of the conventional material is 0.4%). However, when the carbon content is increased, the brittleness of carbon steel becomes remarkable, and when wound around a plastic pipe, microcracks are generated, and the carbon steel is not useful as a reinforcing material.

【0008】一方、平型補強材の比強度は断面の偏平度
にも依存するというやっかいな問題がある。すなわち平
型補強材は幅に対して厚さが小さくなりすぎると強度が
大きく低下する傾向がある。このため平型補強材に比強
度の高い材料を使用しても、軽量化のためその厚さを薄
くしたのでは、所望の強度が得られなくなる。
On the other hand, there is a troublesome problem that the specific strength of the flat reinforcing material also depends on the flatness of the cross section. That is, when the thickness of the flat reinforcing material is too small with respect to the width, the strength tends to greatly decrease. For this reason, even if a material having a high specific strength is used for the flat reinforcing material, a desired strength cannot be obtained if the thickness is reduced for weight reduction.

【0009】本発明は、以上のような検討結果に基づい
てなされたもので、その構成は、プラスチック管の外側
に、凹型補強材を短ピッチでらせん巻きした内圧補強層
と、平型補強材を長ピッチでらせん巻きした軸力補強層
とを有する可撓性流体輸送管において、前記凹型補強材
および平型補強材のうち少なくとも平型補強材には炭素
含有率 0.6〜0.8 %の炭素鋼よりなる条材を用い、かつ
軸力補強層には平型補強材1本または複数本おきに等価
比重1.0 以下の軽量平型材を介在させたことを特徴とす
る。
The present invention has been made on the basis of the above-described examination results. The structure of the present invention is as follows: an inner pressure reinforcing layer in which a concave reinforcing material is spirally wound at a short pitch on the outside of a plastic pipe; Fluid reinforcement pipe having an axial reinforcement layer spirally wound at a long pitch, wherein at least the flat reinforcement of the concave reinforcement and the flat reinforcement has a carbon content of 0.6 to 0.8%. A thin flat material having an equivalent specific gravity of 1.0 or less is interposed in one or more flat reinforcing materials in the axial force reinforcing layer.

【0010】[0010]

【作用】本発明において、炭素含有率 0.6〜0.8 %の炭
素鋼よりなる条材を使用するのは、炭素含有率がこの範
囲のものは、平型補強材および凹型補強材の重量軽減に
十分寄与できるだけの機械的強度を有し、しかも巻付け
加工性が良好であることが実験的に確かめられたためで
ある。また本発明においては、平型補強材の強度アップ
による断面積の減少分を、厚さの減少分に充当せずに
(強度低下防止)、平型補強材の本数の減少に充当し、
それによって平型補強材間にできる空間を、等価比重1.
0 以下の軽量平型材で埋めることにより、流体輸送管の
軽量化、浮力増大を図ったものである。
In the present invention, the use of a strip made of carbon steel having a carbon content of 0.6 to 0.8% is sufficient if the carbon content is within this range, which is sufficient to reduce the weight of the flat reinforcing material and the concave reinforcing material. This is because it was experimentally confirmed that the material had sufficient mechanical strength to contribute and good winding workability. Further, in the present invention, the decrease in the cross-sectional area due to the increase in the strength of the flat reinforcement is not applied to the decrease in the thickness (prevention of decrease in strength), but is applied to the decrease in the number of the flat reinforcements,
This creates a space between the flat reinforcements with an equivalent specific gravity of 1.
Filling with 0 or less lightweight flat material is intended to reduce the weight of the fluid transport pipe and increase buoyancy.

【0011】[0011]

【実施例】以下、本発明の実施例を詳細に説明する。平
型補強材および凹型補強材の比強度アップのため、種々
の炭素含有率の鋼条を試作し、強度および巻付け加工性
の点から最適な炭素含有率を調べた。その結果を表1に
示す。
Embodiments of the present invention will be described below in detail. In order to increase the specific strength of the flat reinforcing material and the concave reinforcing material, steel strips with various carbon contents were prototyped, and the optimum carbon content was examined from the viewpoint of strength and winding workability. Table 1 shows the results.

【0012】[0012]

【表1】 [Table 1]

【0013】これより明らかなように、降伏応力が十分
大きく、巻付け加工性の点でも問題のない炭素含有率は
0.6〜0.8 %であることが確認された。
As is apparent from the above, the carbon content at which the yield stress is sufficiently large and there is no problem in terms of winding workability is
It was confirmed that the content was 0.6 to 0.8%.

【0014】一方、図4は直径8〜15mmφの一般的な炭
素鋼材をダイスで断面長方形に成形した平型補強材の、
偏平度(幅w/厚さt)に対する降伏応力の変化を示
す。これから分かるように偏平度が4〜5倍以上になる
と比強度が著しく低下する。平型補強材の幅は、巻付け
成形性や巻付け機のボビン数の制限などから、外径 100
mmφのプラスチック管の場合で10mm以上となるため、平
型補強材の厚さは最低でも2mm以上は必要である。なお
プラスチック管の外径と平型補強材の幅および厚さとの
関係はほぼ相似と考えてよい。
On the other hand, FIG. 4 shows a flat reinforcing material obtained by forming a general carbon steel material having a diameter of 8 to 15 mmφ into a rectangular cross section with a die.
The change of yield stress with respect to flatness (width w / thickness t) is shown. As can be seen, when the flatness is 4 to 5 times or more, the specific strength is significantly reduced. The width of the flat reinforcing material is limited to 100 mm in outer diameter due to the winding formability and the number of bobbins in the winding machine.
Since the thickness is 10 mm or more in the case of a plastic tube of mmφ, the thickness of the flat reinforcing material must be at least 2 mm. Note that the relationship between the outer diameter of the plastic tube and the width and thickness of the flat reinforcing material may be considered to be substantially similar.

【0015】炭素含有率 0.6〜0.8 %の鋼条を用いる
と、表1より明らかなように従来の鋼条(炭素含有率0.
4 %)にくらべ比強度が50%近く向上するので、その
分、平型補強材の断面積を減じることができる。しかし
この減少分を、平型補強材の厚さの低減に向けたのでは
図4で説明したように強度低下で効果が相殺されてしま
う。そこで断面積の減少分は平型補強材の本数の低減に
充当し、それによって平型補強材間に生じる空間は、出
来るだけ軽量で鋼材に対する耐摩耗性がすぐれた軽量平
型材で埋めて、流体輸送管の軽量化を図る方が効果的で
ある。
When a steel strip having a carbon content of 0.6 to 0.8% is used, as is apparent from Table 1, a conventional steel strip (carbon content of 0.
Since the specific strength is improved by nearly 50% compared to 4%), the cross-sectional area of the flat reinforcement can be reduced accordingly. However, if this reduction is used to reduce the thickness of the flat reinforcing material, the effect is offset by the decrease in strength as described with reference to FIG. Therefore, the reduction in the cross-sectional area is used to reduce the number of flat reinforcements, and the space between the flat reinforcements is filled with lightweight flat materials that are as lightweight as possible and have excellent wear resistance to steel. It is more effective to reduce the weight of the fluid transport pipe.

【0016】図1はこのような考え方に基づく本発明の
可撓性流体輸送管の一実施例を示す。図1において図5
と同一部分には同一符号を付してある。すなわち、1は
ステンレス製のインターロック管、2はテープ巻き層、
3はプラスチック管、4は凹型補強材4aの短ピッチ巻
きによる内圧補強層、5は平型補強材5aの長ピッチ巻
きによる軸力補強層、6は防食層である。
FIG. 1 shows an embodiment of the flexible fluid transport pipe of the present invention based on the above concept. In FIG.
The same reference numerals are given to the same parts as. That is, 1 is a stainless steel interlock tube, 2 is a tape winding layer,
Reference numeral 3 denotes a plastic pipe, 4 denotes an internal pressure reinforcing layer formed by short pitch winding of the concave reinforcing material 4a, 5 denotes an axial force reinforcing layer formed by long pitch winding of the flat reinforcing material 5a, and 6 denotes an anticorrosion layer.

【0017】この流体輸送管は、平型補強材5aに炭素
含有率 0.6〜0.8 %の高強度の鋼条を用いたことによ
り、平型補強材5aの本数を従来より減らし、それによ
って生じた空間に軽量平型材7を介在させたものであ
る。図示の例では、2本の平型補強材5aと1本の軽量
平型材7を周方向に交互に配列することにより軸力補強
層5が構成されている。
In this fluid transport pipe, the number of the flat reinforcing members 5a is reduced by using high-strength steel strips having a carbon content of 0.6 to 0.8% as the flat reinforcing members 5a. The light flat member 7 is interposed in the space. In the illustrated example, the axial force reinforcing layer 5 is configured by alternately arranging two flat reinforcing members 5a and one lightweight flat member 7 in the circumferential direction.

【0018】軽量平型材7の材質としては、ポリエチレ
ン、ポリプロピレン、ポリカーボネートのような比重1
以下の軽量なプラスチックを使用することができる。ま
た軽量平型材7の材質として比重が1より大きい繊維強
化プラスチック等を使用する場合は、図2に示すように
内部を中空にして等価比重を1以下とすればよい。軽量
平型材7の等価比重を1以下とすれば、軸力補強層5の
重量は従来の約1/3に減らすことができる。
The material of the lightweight flat member 7 is a specific gravity of 1 such as polyethylene, polypropylene and polycarbonate.
The following lightweight plastics can be used: When a fiber-reinforced plastic or the like having a specific gravity larger than 1 is used as the material of the lightweight flat member 7, the equivalent specific gravity may be set to 1 or less by hollowing the inside as shown in FIG. 2. If the equivalent specific gravity of the lightweight flat member 7 is set to 1 or less, the weight of the axial reinforcing layer 5 can be reduced to about 1/3 of the conventional one.

【0019】従来の流体輸送管の総重量に占める軸力補
強層の重量の割合は約40%であるから、この軸力補強層
の重量が、平型補強材の比強度アップと軽量平型材の介
在により約33%軽減されたとすれば、流体輸送管全体の
重量軽減率は40%×33%=13%となる。従来より13%重
量が軽減されれば、図3より水深約 750mまで使用可能
となる。
Since the weight ratio of the axial force reinforcing layer to the total weight of the conventional fluid transport pipe is about 40%, the weight of the axial force reinforcing layer increases the specific strength of the flat reinforcing material and the lightweight flat material. As a result, the weight reduction rate of the entire fluid transport pipe is 40% × 33% = 13%. If the weight is reduced by 13% compared to the conventional one, it can be used up to a water depth of about 750m from Fig.

【0020】以上は、軸力補強層の平型補強材5aにの
み炭素含有率 0.6〜0.8 %の鋼条を使用し、内圧補強層
の凹型補強材4aには従来の鋼条を使用した場合である
が、凹型補強材4aにも炭素含有率 0.6〜0.8 %の鋼条
を使用すれば、流体輸送管全体の重量軽減率はさらに向
上する。凹型補強材4aの偏平度は従来から2〜2.5倍
で、平型補強材5aに比べより正方形に近い形状が採用
されているので、比強度のアップ分はそのまま厚さの低
減に向けることができる。
The above description is based on the case where a steel strip having a carbon content of 0.6 to 0.8% is used only for the flat reinforcing material 5a of the axial force reinforcing layer and a conventional steel strip is used for the concave reinforcing material 4a of the internal pressure reinforcing layer. However, if a steel strip having a carbon content of 0.6 to 0.8% is also used for the concave reinforcing member 4a, the weight reduction rate of the entire fluid transport pipe is further improved. The flatness of the concave reinforcing material 4a is 2 to 2.5 times that of the conventional type, and a shape closer to a square than that of the flat reinforcing material 5a is employed. it can.

【0021】従来の流体輸送管の総重量に占める内圧補
強層の重量の割合は軸力補強層と同じく約40%であるか
ら、この内圧補強層の重量が、凹型補強材の比強度アッ
プにより約50%軽減されたとすれば、流体輸送管全体の
重量軽減率は、40%×50%=20%(内圧補強層分)に前
記軸力補強層分13%を加えて、約33%となる。従来より
33%重量が軽減されれば、図3より水深約1000mまで使
用可能となる。
Since the weight ratio of the internal pressure reinforcing layer to the total weight of the conventional fluid transport pipe is about 40% like the axial force reinforcing layer, the weight of the internal pressure reinforcing layer increases due to the increase in the specific strength of the concave reinforcing material. If it is reduced by about 50%, the weight reduction rate of the entire fluid transport pipe will be about 33% by adding 40% x 50% = 20% (internal pressure reinforcing layer) and 13% of the axial force reinforcing layer. Become. Than before
If the weight is reduced by 33%, it can be used up to a depth of about 1000 m as shown in FIG.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、可
撓性流体輸送管を軽量化できるので、従来よりさらに深
い海での可撓性流体輸送管の使用が可能となる。
As described above, according to the present invention, since the flexible fluid transport pipe can be reduced in weight, it becomes possible to use the flexible fluid transport pipe in a deeper sea than before.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る可撓性流体輸送管の一実施例を
示す横断面図。
FIG. 1 is a cross-sectional view showing one embodiment of a flexible fluid transport pipe according to the present invention.

【図2】 本発明の可撓性流体輸送管に使用される軽量
平型材の一例を示す横断面図。
FIG. 2 is a cross-sectional view showing one example of a lightweight flat member used for the flexible fluid transport pipe of the present invention.

【図3】 可撓性流体輸送管の重量軽減率と使用可能な
水深との関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the weight reduction rate of a flexible fluid transport pipe and the usable water depth.

【図4】 平型補強材の偏平度と比強度低下率との関係
を示すグラフ。
FIG. 4 is a graph showing a relationship between flatness of a flat reinforcing material and a specific strength reduction rate.

【図5】 従来の可撓性流体輸送管の構造を示す縦断面
図。
FIG. 5 is a longitudinal sectional view showing the structure of a conventional flexible fluid transport pipe.

【符号の説明】[Explanation of symbols]

1:インターロック管 2:テープ巻き総 3:プラスチック管 4:内圧補強層 4a:凹型補強材 5:軸力補強層 5a:平型補強材 6:防食層 7:軽量平型材 1: Interlock pipe 2: Tape wrapped 3: Plastic pipe 4: Internal pressure reinforcing layer 4a: Concave reinforcing material 5: Axial force reinforcing layer 5a: Flat reinforcing material 6: Anticorrosion layer 7: Light weight flat material

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−49937(JP,A) 特開 平2−225893(JP,A) 特開 昭50−24371(JP,A) 特表 平5−508466(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29C 70/06 B29D 23/00 - 23/24 F16L 11/08 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-49937 (JP, A) JP-A-2-225893 (JP, A) JP-A-50-24371 (JP, A) 508466 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B29C 70/06 B29D 23/00-23/24 F16L 11/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】プラスチック管の外側に、凹型補強材を短
ピッチでらせん巻きした内圧補強層と、平型補強材を長
ピッチでらせん巻きした軸力補強層とを有する可撓性流
体輸送管において、前記凹型補強材および平型補強材の
うち少なくとも平型補強材には炭素含有率 0.6〜0.8 %
の炭素鋼よりなる条材を用い、かつ軸力補強層には平型
補強材1本または複数本おきに等価比重1.0 以下の軽量
平型材を介在させたことを特徴とする可撓性流体輸送
管。
1. A flexible fluid transport pipe having an internal pressure reinforcing layer spirally wound with a concave reinforcing material at a short pitch and an axial force reinforcing layer spirally wound with a flat reinforcing material at a long pitch outside a plastic pipe. In the above, at least the flat reinforcing material of the concave reinforcing material and the flat reinforcing material has a carbon content of 0.6 to 0.8%.
Flexible fluid transportation characterized by using a strip made of carbon steel as described above, and interposing one or more flat reinforcing materials in the axial force reinforcing layer with a lightweight flat material having an equivalent specific gravity of 1.0 or less. tube.
JP34101993A 1993-12-10 1993-12-10 Flexible fluid transport pipe Expired - Fee Related JP3228386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34101993A JP3228386B2 (en) 1993-12-10 1993-12-10 Flexible fluid transport pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34101993A JP3228386B2 (en) 1993-12-10 1993-12-10 Flexible fluid transport pipe

Publications (2)

Publication Number Publication Date
JPH07156285A JPH07156285A (en) 1995-06-20
JP3228386B2 true JP3228386B2 (en) 2001-11-12

Family

ID=18342470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34101993A Expired - Fee Related JP3228386B2 (en) 1993-12-10 1993-12-10 Flexible fluid transport pipe

Country Status (1)

Country Link
JP (1) JP3228386B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209958A (en) * 2009-03-09 2010-09-24 Furukawa Electric Co Ltd:The Flexible pipe for fluid transportation
JP5675768B2 (en) * 2010-02-24 2015-02-25 古河電気工業株式会社 Flexible pipe for fluid transportation
JPWO2011104830A1 (en) * 2010-02-24 2013-06-17 古河電気工業株式会社 Flexible pipe for fluid transportation
WO2011105216A1 (en) * 2010-02-26 2011-09-01 古河電気工業株式会社 Flexible tube for fluid transport and method for producing flexible tube for fluid transport
WO2011105215A1 (en) * 2010-02-26 2011-09-01 古河電気工業株式会社 Flexible tube for fluid transport and method for producing flexible tube for fluid transport
JP5534980B2 (en) * 2010-06-30 2014-07-02 古河電気工業株式会社 Flexible pipe for fluid transportation, carbon dioxide storage system, and carbon dioxide storage method
FR2993955B1 (en) * 2012-07-24 2014-07-04 Technip France METALLIC COATING OF STEEL ARMOR WIRES OF A FLEXIBLE TUBULAR DRIVE FOR TRANSPORTING HYDROCARBON FLUID

Also Published As

Publication number Publication date
JPH07156285A (en) 1995-06-20

Similar Documents

Publication Publication Date Title
US6691743B2 (en) Flexible pipe with wire or strip winding for maintaining armours
US5062456A (en) Kink-resistant, small bend radius hose with polyfluorocarbon liner
US6843278B2 (en) Flexible duct with shrinkage-proof film
US6904939B2 (en) Flexible tubular pipe for hydrocarbon transport with carcass consisting of an elongated element stapled with a band iron
JP3368317B2 (en) Flexible tubular conduit with interlocking outer layer
JPH0151717B2 (en)
JPH05501911A (en) Carcass, flexible tubular conduit having such a carcass and method for manufacturing the same
JPH061114B2 (en) Flexible conduit that does not change significantly in length under internal pressure
WO1998016770A1 (en) Flexible conduit
JP2659277B2 (en) Flexible tubular conduit including interlocking outer layer
AU2004282385B2 (en) Flexible tubular line which is suitable, for example, for oil exploitation, comprising a PTFE coil
JP3228386B2 (en) Flexible fluid transport pipe
BR0214550B1 (en) flexible malleable submarine conduit for transporting a fluid.
US6338365B1 (en) Flexible piping structure having a continuous metal inner tube
AU764330B2 (en) Heat-insulated duct for transporting fluids
AU2001291963B2 (en) Double-sheath pipe for transporting fluids, provided with a device for limiting propagation of an outer tube and method for limiting propagation
JP2003225951A (en) Reinforced plastic pipe
CN1873280A (en) Special multi-layered flexible tube and mfg. method thereof
JPS616485A (en) Transport pipe for high-temperature fluid
JPH06137471A (en) Flexible fluid transporting pipe
JPH06294482A (en) Pressure tube
JP3228366B2 (en) Manufacturing method of fluid transport pipe
DK1154184T4 (en) Flexible tubes of sheath of wire or strip to the support of the reinforcement.
JP6892292B2 (en) High pressure hose
JPH07151273A (en) Fluid transport pipe

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees