JPS638832B2 - - Google Patents

Info

Publication number
JPS638832B2
JPS638832B2 JP6199383A JP6199383A JPS638832B2 JP S638832 B2 JPS638832 B2 JP S638832B2 JP 6199383 A JP6199383 A JP 6199383A JP 6199383 A JP6199383 A JP 6199383A JP S638832 B2 JPS638832 B2 JP S638832B2
Authority
JP
Japan
Prior art keywords
water
cathode chamber
chamber
anode chamber
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6199383A
Other languages
Japanese (ja)
Other versions
JPS59186688A (en
Inventor
Tatsuo Okazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6199383A priority Critical patent/JPS59186688A/en
Publication of JPS59186688A publication Critical patent/JPS59186688A/en
Publication of JPS638832B2 publication Critical patent/JPS638832B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/4619Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only cathodic or alkaline water, e.g. for reducing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level

Description

【発明の詳細な説明】 本発明は、アルカリイオン水を生成する電解水
の製造装置に関するものであり、とくに、バージ
式に電解水を連続製造するための構成を持つた電
解水の製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolyzed water manufacturing apparatus that generates alkaline ionized water, and particularly relates to an electrolyzed water manufacturing apparatus that has a configuration for continuously manufacturing electrolyzed water in a barge type. It is something.

この種の製造装置としては、本発明者によつ
て、既に、第1図および第2図に示すような方式
が採用されていた。第1図にみられるものは、陰
極室aと陽極室bとを素焼などの隔壁cで仕切
り、それぞれ両極室a,b内に電極d,eを配置
し、こゝに直流電圧を印加し、水の電気分解およ
び電気滲透作用を行なうようにすると共に、各極
室はそれぞれ底部に排水弁f,gを配置している
もので、給水は陰極室aに対して行なわれ、陽極
室bにはレベルセンサhを配置し、陰極室aから
隔壁cを越えて水を陽極室bに供給する形式にな
つていて、レベルセンサhの働きで自動給水停止
を行なうようになつている。この製造装置では、
陰極室aから排水弁fを介して供給されたアルカ
リイオン水を貯蔵するタンクiがあり、こゝには
レベルセンサjが設けてあつて、レベルセンサj
が貯蔵タンクiの水が使用されてあるレベル以下
になつた時、これを信号として制御系(図示せ
ず)に伝え、給水、電解、排水のシーケンス作業
を行なうようになつている。こゝで問題になる点
は、陰極室aの上部の水がその電解過程で隔壁c
を越えて陽極室bに流入する点である。この問題
点を理解するには、次のような実際の状況を知ら
なければならない。電気分解を行なうと、よく知
られるように、陰極室a内では電気滲透作用で水
レベルが上昇すると共に、水酸基イオン濃度が高
くなるが、この水酸基イオンの分布は、上方に片
寄り、上方で濃度が高く、下方で低いという状況
が実現する。一方、陽極室b内では、電気滲透作
用で水レベルが下降すると共に、酸性度が上方で
高く、下方で低いという分布状況を実現する。し
たがつて、電解中、電気滲透作用で陰極室aのレ
ベルが上昇すると、最も水酸基イオン濃度の高い
水の部分が、隔壁cを越えて陽極室bに入り、中
和作用を起すため、陰極室a内の水の平均的水酸
基イオン濃度を所定値にあげるまでに相当の時間
を要し、電力ロスも大きいという性能上のデメリ
ツトが発生する。
As this type of manufacturing apparatus, the present inventor has already adopted a system as shown in FIGS. 1 and 2. In the case shown in Figure 1, a cathode chamber a and an anode chamber b are separated by a partition wall c made of unglazed ceramic, etc., and electrodes d and e are placed in the bipolar chambers a and b, respectively, to which a DC voltage is applied. In addition to performing electrolysis and electroosmosis of water, each electrode chamber is provided with drain valves f and g at the bottom, respectively, and water is supplied to the cathode chamber a and the anode chamber b. A level sensor h is disposed at , and water is supplied from the cathode chamber a over the partition wall c to the anode chamber b, and the water supply is automatically stopped by the action of the level sensor h. With this manufacturing equipment,
There is a tank i that stores alkaline ionized water supplied from a cathode chamber a through a drain valve f, and a level sensor j is installed in this tank.
When the water in the storage tank i has been used and has fallen below a certain level, this is transmitted as a signal to a control system (not shown), which performs the sequence of water supply, electrolysis, and drainage. The problem here is that the water in the upper part of the cathode chamber a collides with the partition wall c during the electrolysis process.
This is the point where it flows into the anode chamber b. To understand this problem, we must know the following actual situation. As is well known, when electrolysis is carried out, the water level in the cathode chamber a rises due to electroosmosis, and the hydroxyl ion concentration also increases, but the distribution of this hydroxyl ion is biased upward, A situation is realized in which the concentration is high and low at the bottom. On the other hand, in the anode chamber b, the water level decreases due to electroosmosis, and a distribution situation in which the acidity is high at the top and low at the bottom is realized. Therefore, during electrolysis, when the level in the cathode chamber a rises due to electroosmosis, the portion of water with the highest hydroxyl ion concentration crosses the partition wall c and enters the anode chamber b, causing a neutralizing effect. It takes a considerable amount of time to raise the average hydroxyl ion concentration of the water in the room a to a predetermined value, and there are disadvantages in terms of performance such as large power loss.

また、第2図にみられるように、陽極室b側に
水を供給し、レベルセンサhは陰極室a側に配置
する方式も採用された。こゝでは、初期給水段階
において、オーバフローにより陰極室a側に給水
される関係で、酸性水側に残されたスケール
(ABS樹脂などの樹脂系、電気分解残留物、電極
溶出物、サルフアーなど)が陰極室a側に入り、
また、残留酸性水が入る可能性がある。このた
め、陰極室aで飲料に供する良味のアルカリイオ
ン水を生成しても、先きに入つたスケール、残留
酸性水などで味の質を著しく低下するという欠点
がある。
Furthermore, as shown in FIG. 2, a method was adopted in which water was supplied to the anode chamber b side and the level sensor h was placed on the cathode chamber a side. In this case, during the initial water supply stage, water is supplied to the cathode chamber a side due to overflow, so scales left on the acidic water side (resin system such as ABS resin, electrolytic residue, electrode eluate, sulfur, etc.) enters the cathode chamber a side,
Also, residual acidic water may enter. For this reason, even if good-tasting alkaline ionized water for use in beverages is produced in the cathode chamber a, there is a drawback in that the quality of the taste is significantly degraded by the previously introduced scale, residual acidic water, and the like.

本発明は、上記事情にもとづいてなされたもの
で、陰極室から陽極室へのオーバフロー形式では
あるが、水酸基イオン濃度をあげる効率は低下さ
せず、しかも、生成されたアルカリイオン水の味
覚を低下させることがないようにした電解水の製
造装置を提供しようとするものである。
The present invention was made based on the above circumstances, and although it is an overflow type from the cathode chamber to the anode chamber, it does not reduce the efficiency of increasing the hydroxyl group ion concentration, and furthermore, it does not reduce the taste of the generated alkaline ion water. It is an object of the present invention to provide an apparatus for producing electrolyzed water that does not cause problems.

以下、本発明の一実施例を第3図を参照して具
体的に説明する。図において、符号1は、バージ
式に飲料水を生成する電解槽であり、例えば、円
筒状の素焼などのポーラスな隔壁2で内外2室に
仕切り、外側を陰極室3、内側を陽極室4とした
ものである。そして、各極室3,4にはそれぞれ
電極5,6が配置されていて、スイツチ・オンに
よつて直流電圧が印加されるようになつている。
また、各極室3,4の下部には、排水路7,8が
設けてあり、そこにはソレノイド式の排水弁9,
10が設けてある。また、陰極室3には給水弁1
1を介して水が供給されるようになつており、ま
た、陰極室3の下部から陽極室4内の頂部にオー
バフロー通路12が設けられている。この実施例
では、上記オーバフロー通路12は管状体で構成
されている。一方、陰極室3内にはレベルセンサ
13が設けてあり、その水との接触レベルは上記
オーバフロー通路12の頂部より高くなつてい
る。
Hereinafter, one embodiment of the present invention will be specifically described with reference to FIG. In the figure, reference numeral 1 denotes an electrolytic cell that generates drinking water in a barge type. For example, it is partitioned into two internal and external chambers by a porous partition wall 2 such as a cylindrical bisque, with a cathode chamber 3 on the outside and an anode chamber 4 on the inside. That is. Electrodes 5 and 6 are disposed in each electrode chamber 3 and 4, respectively, and a DC voltage is applied by turning on the switch.
In addition, drain channels 7 and 8 are provided at the bottom of each electrode chamber 3 and 4, and there are solenoid-type drain valves 9 and 8.
10 are provided. In addition, a water supply valve 1 is provided in the cathode chamber 3.
1, and an overflow passage 12 is provided from the bottom of the cathode chamber 3 to the top of the anode chamber 4. In this embodiment, the overflow passage 12 is constructed of a tubular body. On the other hand, a level sensor 13 is provided in the cathode chamber 3, and its contact level with water is higher than the top of the overflow passage 12.

なお、図中、符号14は排水路7に通じる貯蔵
タンクであり、これには供給用カラン15が設け
られ、また、レベルセンサ16が設けられてい
る。
In the figure, reference numeral 14 is a storage tank that communicates with the drainage channel 7, and is provided with a supply tank 15 and a level sensor 16.

次に、この装置のシーケンシヤルな動作を説明
する。貯蔵タンク14内の水が所定レベル以下に
なると、レベルセンサ16がこれを検知して、図
示しない制御系を動作し、給水弁11を開放させ
る。陰極室3内の水レベルがオーバフロー通路1
2の頂部開口を越えると、上記通路12を介して
陽極室4内に水が入りはじめる。陽極室4の水レ
ベルが上記ヤーバフロー通路12の頂部開口を越
えると、両極室3および4は同レベルで水位をあ
げ、第3図のような水位にいたつて、レベルセン
サ13が働き、給水弁11を閉じ、電極5,6に
直流電圧を印加し、タイマーなどで設定された時
間、電気分解を行なう。
Next, the sequential operation of this device will be explained. When the water in the storage tank 14 falls below a predetermined level, the level sensor 16 detects this and operates a control system (not shown) to open the water supply valve 11. The water level in the cathode chamber 3 is overflow passage 1
2, water begins to enter the anode chamber 4 through the passage 12. When the water level in the anode chamber 4 exceeds the top opening of the Yerba flow passage 12, the water level in both electrode chambers 3 and 4 rises to the same level, reaching the water level as shown in FIG. 11 is closed, a DC voltage is applied to the electrodes 5 and 6, and electrolysis is performed for a time set by a timer or the like.

この電気分解の過程で、電気滲透作用により、
陽極室4から陰極室3への水の移動があるが、オ
ーバフロー通路12を介して陰極室3から陽極室
4への還流により、両極室3,4間で水レベルの
差は生じない。しかも、オーバフロー通路から陽
極室4への水の還流は、陰極室3の下部から行な
われているから、一番イオン濃度の低い水が還流
されるのであり、陰極室3の上部のイオン濃度の
高い水の部分は陰極室3に保持される。しかも、
電解中は、オーバフロー通路12からの水の流れ
は一方的であり、陽極室4の水は電気滲透作用に
よつてしか、陰極室3には入り得ないのである。
電解作用が完了すると、タイマーなどの働きで電
極5,6への電圧印加が解除され、各排水弁9,
10が開放され、陰極室3のアルカリイオン水は
貯蔵タンク14に入り、陽極室4側の酸性水は、
この実施例では、排水弁10を介して排出され
る。
During this electrolysis process, due to the electroosmotic action,
Although there is movement of water from the anode chamber 4 to the cathode chamber 3, there is no difference in water level between the two electrode chambers 3, 4 due to reflux from the cathode chamber 3 to the anode chamber 4 via the overflow passage 12. Moreover, since the water is refluxed from the overflow passage to the anode chamber 4 from the lower part of the cathode chamber 3, the water with the lowest ion concentration is refluxed, and the ion concentration in the upper part of the cathode chamber 3 is refluxed. The high water portion is retained in the cathode chamber 3. Moreover,
During electrolysis, the flow of water from the overflow passage 12 is unidirectional, and water in the anode chamber 4 can only enter the cathode chamber 3 by electroosmosis.
When the electrolytic action is completed, the voltage application to the electrodes 5 and 6 is canceled by the action of a timer, etc., and each drain valve 9,
10 is opened, the alkaline ionized water in the cathode chamber 3 enters the storage tank 14, and the acidic water in the anode chamber 4 side is
In this embodiment, it is drained via a drain valve 10.

なお、この実施例では、排水弁10がさきに開
放されて、オーバフロー通路12の頂部開口レベ
ル以下まで陽極室4のレベルが下るまで、排水弁
9の開放を遅らせるとよい。このために、陰極室
3には別のレベルセンサ17を設けるとよい。こ
の間、陰極室3の底部の水は、オーバフロー通路
12を介して、陽極室4側に流れるので、オーバ
フロー通路12を介して、酸性水が陰極室3側も
もたらされる量は完全になくなる。なお、排水弁
9,10を同時開放しても、陽極室4の水レベル
が陰極室3のそれよりも下になるようにレベル降
下速度が大きければ、実質的にオーバフロー通路
12を介して陰極室3から陽極室4へ水があふ
れ、逆に陽極室4の水が陰極室3側に流入される
おそれはない。
In this embodiment, it is preferable that the drain valve 10 is opened first and the opening of the drain valve 9 is delayed until the level of the anode chamber 4 falls below the level of the top opening of the overflow passage 12. For this purpose, it is preferable to provide another level sensor 17 in the cathode chamber 3. During this time, the water at the bottom of the cathode chamber 3 flows to the anode chamber 4 side via the overflow passage 12, so that the amount of acidic water brought to the cathode chamber 3 side via the overflow passage 12 is completely eliminated. Note that even if the drain valves 9 and 10 are opened at the same time, if the water level in the anode chamber 4 is lower than that in the cathode chamber 3 at a high level drop rate, the cathode water will substantially flow through the overflow passage 12. There is no risk that water will overflow from the chamber 3 to the anode chamber 4 or that water in the anode chamber 4 will flow into the cathode chamber 3 side.

実際にはオーバフロー通路12の底部開口は、
排水路7の開口とできるだけ離して、排水の初
期、オーバフロー通路12に対して、吸引作用が
働かないように工夫するのがよい。このために、
図示のようにオーバフロー通路12の底部開口
は、排水路7のそれとは正反対側に位置される。
In reality, the bottom opening of the overflow passage 12 is
It is advisable to devise measures to prevent suction from acting on the overflow passage 12 at the initial stage of drainage by placing it as far away from the opening of the drainage passage 7 as possible. For this,
As shown, the bottom opening of the overflow passage 12 is located on the opposite side of the drain passage 7.

本発明は、以上詳述したように、陰極室と陽極
室とをポーラスな隔壁で仕切り、両極室に電極を
配置して、直流電圧を印加し、水の電気分解およ
び電気滲透を行なうものにおいて、給水を陰極室
に対して行ない、陰極室の下部から陽極室内頂部
に連通するオーバフロー通路を設け、両極室はそ
れぞれ下部より排水弁を介して排水する構成にす
ると共に、レベルセンサを上記オーバフロー通路
の頂部開口より高く配置して給水停止を行なうよ
うにし、また、排水弁を開いて排水する時には少
なくとも上記オーバフロー通路の頂部開口より下
まで陽極室の水レベルが降下のに対して、陰極室
の水レベルは陽極室の水レベルより上にあるよう
に排水するように構成したので、陰極室から陽極
室へのオーバフロー形式ではあるが、水酸基イオ
ン濃度をあげる効率は低下させず、しかも、酸性
水がアルカリイオン水側に入るおそれがないので
アルカリイオン水の味覚を低下させないという効
果が得られる。
As described in detail above, the present invention is a device in which a cathode chamber and an anode chamber are separated by a porous partition, electrodes are arranged in the bipolar chambers, and a DC voltage is applied to perform water electrolysis and electroosmosis. Water is supplied to the cathode chamber, an overflow passage is provided that communicates from the bottom of the cathode chamber to the top of the anode chamber, and both electrode chambers are configured to drain water from the bottom through drain valves, and the level sensor is connected to the overflow passage. In addition, when the drain valve is opened to drain water, the water level in the anode chamber drops to at least below the top opening of the overflow passage, whereas the water level in the cathode chamber is placed higher than the top opening of the overflow passage. The water level was configured to be drained above the water level in the anode chamber, so although it is an overflow type from the cathode chamber to the anode chamber, it does not reduce the efficiency of increasing the hydroxyl ion concentration, and moreover, the acid water Since there is no risk of the alkaline ionized water entering the alkaline ionized water side, the effect of not reducing the taste of the alkaline ionized water can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来方式を示す図面、第
3図は本発明の一実施例を示す図面である。 1……電解槽、2……隔壁、3……陰極室、4
……陽極室、5,6……電極、7,8……排水
路、9,10……排水弁、11……給水弁、12
……オーバフロー通路、13……レベルセンサ、
14……貯蔵タンク、15……供給用カラン、1
6,17……レベルセンサ。
1 and 2 are drawings showing a conventional system, and FIG. 3 is a drawing showing an embodiment of the present invention. 1... Electrolytic cell, 2... Partition wall, 3... Cathode chamber, 4
... Anode chamber, 5, 6 ... Electrode, 7, 8 ... Drain channel, 9, 10 ... Drain valve, 11 ... Water supply valve, 12
...Overflow passage, 13...Level sensor,
14...Storage tank, 15...Supply tank, 1
6,17...Level sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 陰極室と陽極室とをポーラスな隔壁で仕切
り、両極室に電極を配置して、直流電圧を印加
し、水の電気分解および電気滲透を行なうものに
おいて、給水を陰極室に対して行ない、陰極室の
下部から陽極室内頂部に連通するオーバフロー通
路を設け、両極室はそれぞれ下部より排水弁を介
して排水する構成にすると共に、レベルセンサを
上記オーバフロー通路の頂部開口より高く配置し
て給水停止を行なうようにし、また、排水弁を開
いて排水する時には少なくとも上記オーバフロー
通路の頂部開口より下まで陽極室の水レベルが降
下するのに対して、陰極室の水レベルは陽極室の
水レベルより上にあるように排水するように構成
したことを特徴とする電解水の製造装置。
1 In a device in which a cathode chamber and an anode chamber are separated by a porous partition, electrodes are placed in both electrode chambers, and a DC voltage is applied to perform water electrolysis and electroosmosis, water is supplied to the cathode chamber, An overflow passage is provided that communicates from the bottom of the cathode chamber to the top of the anode chamber, and both electrode chambers are configured to drain water from the bottom through drain valves, and a level sensor is placed higher than the opening at the top of the overflow passage to stop the water supply. Furthermore, when the drain valve is opened to drain water, the water level in the anode chamber drops to at least below the top opening of the overflow passage, while the water level in the cathode chamber is lower than the water level in the anode chamber. An electrolyzed water production device characterized by being configured to drain water as shown above.
JP6199383A 1983-04-08 1983-04-08 Production of water by electrolysis Granted JPS59186688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6199383A JPS59186688A (en) 1983-04-08 1983-04-08 Production of water by electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6199383A JPS59186688A (en) 1983-04-08 1983-04-08 Production of water by electrolysis

Publications (2)

Publication Number Publication Date
JPS59186688A JPS59186688A (en) 1984-10-23
JPS638832B2 true JPS638832B2 (en) 1988-02-24

Family

ID=13187230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6199383A Granted JPS59186688A (en) 1983-04-08 1983-04-08 Production of water by electrolysis

Country Status (1)

Country Link
JP (1) JPS59186688A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530673Y2 (en) * 1988-02-09 1993-08-05
JPH0716727U (en) * 1993-09-06 1995-03-20 小川珈琲株式会社 Drip coffee cup package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530673Y2 (en) * 1988-02-09 1993-08-05
JPH0716727U (en) * 1993-09-06 1995-03-20 小川珈琲株式会社 Drip coffee cup package

Also Published As

Publication number Publication date
JPS59186688A (en) 1984-10-23

Similar Documents

Publication Publication Date Title
JP3468835B2 (en) Electrolyzed water generator
JPS638832B2 (en)
EP1314699A1 (en) Electrolyzed water production apparatus
JPS60139384A (en) Apparatus for preparing electrolytic water
JPS59186687A (en) Production of water by electrolysis
JPS60139386A (en) Apparatus for preparing electrolytic water
JPS60139385A (en) Apparatus for preparing electrolytic water
KR100613362B1 (en) Washing device of Ion water purifier and Control method the same
JPH025914Y2 (en)
CN2292096Y (en) Float controlled hydrogen-water separator
JPS637359Y2 (en)
JPH027674Y2 (en)
JPH0519332Y2 (en)
JPS5847983Y2 (en) Non-diaphragm electrolytic cell for continuous ion water conditioner
KR100639837B1 (en) Method of electrolysis water and making apparatus of electrolysis water
JP3421127B2 (en) Electrolytic ionic water generator
JPH026588B2 (en)
JP3389648B2 (en) Alkaline ion water purifier
JP3494808B2 (en) Intake control unit for electrolyzed water generator
JPH07328625A (en) Electrolytic ionized water generator
JPS637358Y2 (en)
JPH0623358A (en) Water electrolytic apparatus
JPH07323287A (en) Electrolyzed water producer
JPH08117752A (en) Electrolytic water-making apparatus
JPH07328627A (en) Electrolytic water generator