JPS6387782A - Semiconductor raman laser - Google Patents

Semiconductor raman laser

Info

Publication number
JPS6387782A
JPS6387782A JP15713587A JP15713587A JPS6387782A JP S6387782 A JPS6387782 A JP S6387782A JP 15713587 A JP15713587 A JP 15713587A JP 15713587 A JP15713587 A JP 15713587A JP S6387782 A JPS6387782 A JP S6387782A
Authority
JP
Japan
Prior art keywords
laser
semiconductor
raman
roman
incident light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15713587A
Other languages
Japanese (ja)
Other versions
JPH0311116B2 (en
Inventor
Junichi Nishizawa
潤一 西澤
Ken Sudo
建 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Research Foundation
Original Assignee
Semiconductor Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Research Foundation filed Critical Semiconductor Research Foundation
Priority to JP15713587A priority Critical patent/JPS6387782A/en
Publication of JPS6387782A publication Critical patent/JPS6387782A/en
Publication of JPH0311116B2 publication Critical patent/JPH0311116B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a long life and compact semiconductor Roman laser by using an implantation type semiconductor laser as an excitation light source. CONSTITUTION:In the case of GaP Roman laser 1, an incident light 4 emitting by a YAG laser comes at a weight of 1MW-2MW and a beam diameter of around 1 mmphi is that of a typical instance. Accordingly, once a semiconductor laser beam is used as the incident light 4 and when a pulse input power is 1 W, a beam having 1 mum enables such a laser to obtain inputs having an almost equal density and to carry out Roman oscillations. The semiconductor laser 2 and semiconductor Roman laser 1 are so integrated on one semiconductor substrate that it is unnecessary for them to have a specific external optical system such as a microscope and the like. Yet, a compact and long lived laser can be achieved.

Description

【発明の詳細な説明】 本発明は、半導体ラマンレーザに関する。[Detailed description of the invention] The present invention relates to semiconductor Raman lasers.

半導体中のフォノンを使った赤外・遠赤外領域の発振器
は、特許第844479号に本願発明者によって提案さ
れているように、電気的な励起法によってフォノンを励
起すれば小形の半導体発振源を得ることができる。
An oscillator in the infrared/far-infrared region that uses phonons in a semiconductor can be created as a small semiconductor oscillation source by exciting the phonons using an electrical excitation method, as proposed by the inventor in Patent No. 844479. can be obtained.

光源を必要としない電気的励起法は最も理想的ではある
が、適当な励起光源があるときは光による励起法も簡便
であり、また光入射角によって出力の波長を変えられる
という利点がある。本発明者らはこれに関しても特開昭
49−5292号において提案している。即ち、入射レ
ーザ光のフォトンエネルギーに近い禁制帯幅を有する半
導体をラマン活性物質として選ぶことにより、必要な入
射レーザ光入力@値を低くした実用的な半導体ラマンレ
ーザが得られることを述べている。しかしながら、入射
光源用レーザとしては、Co2レーザ、He−Neレー
ザ、ルビーレーザなどのガスレーザ、固体レーザが用い
られている。これらのレーザは、放7ll管を使用して
いるため寿命が短く、また穫めで大型であるのが欠点で
あった。
An electrical excitation method that does not require a light source is the most ideal, but an optical excitation method is also simple if a suitable excitation light source is available, and has the advantage of being able to change the wavelength of the output depending on the angle of incidence of the light. The present inventors also proposed this in Japanese Patent Application Laid-Open No. 49-5292. That is, it is stated that by selecting a semiconductor having a forbidden band width close to the photon energy of the incident laser beam as a Raman active material, a practical semiconductor Raman laser with a low required input laser beam input value can be obtained. However, gas lasers and solid lasers such as Co2 lasers, He-Ne lasers, and ruby lasers are used as lasers for incident light sources. Since these lasers use a 7 liter tube, they have a short lifespan and are large in size.

本発明はこのような欠点のない光励起半導体ラマンレー
ザを提供することを目的としており、励起光源として注
入形半導体レーザを使うことを特徴としている。周知の
ように注入形半導体レーザは、先に述べたレーザ類に比
べて著しく長寿命であり、゛小形であるという特徴を有
する。
The present invention aims to provide an optically pumped semiconductor Raman laser without such drawbacks, and is characterized by using an injection type semiconductor laser as a pumping light source. As is well known, injection type semiconductor lasers have a significantly longer lifespan and are smaller in size than the lasers mentioned above.

半導体ラマンレーザは、注入形半導体レーザと組合せた
り集積化したりすることにより小形の近赤外及び遠赤外
光源を得ることができる。
By combining or integrating a semiconductor Raman laser with an injection type semiconductor laser, a compact near-infrared and far-infrared light source can be obtained.

半導体にはいろいろ種類があるので得られる波長も種々
選べる。
Since there are many types of semiconductors, various wavelengths can be selected.

入射光のフォトンエネルギー1ω1が#制置幅E、に比
べてわずかに小さいときは第1図に説明するように共鳴
効果が生じてラマン増幅率は著しく大きくなるのである
。この効果については特開昭49−5292号で述べた
がここでより詳しく触れておく。
When the photon energy 1ω1 of the incident light is slightly smaller than the constraint width E, a resonance effect occurs as illustrated in FIG. 1, and the Raman amplification factor becomes significantly large. This effect was described in Japanese Patent Application Laid-Open No. 49-5292, but will be discussed in more detail here.

第1図で1は伝導帯、2は111i電子帯である。In FIG. 1, 1 is the conduction band and 2 is the 111i electron band.

上側の準位1との共鳴効果によりラマン散乱断となるか
ら1ωiを禁制帯幅E、)に近づければ共鳴効果は大き
くなる。しかし、1ωIがE&より大きいとバンド間の
吸収により吸収係数が10〜10 C11もあるので損
失が大きくてラマン発振は困難である。
Raman scattering is cut off due to the resonance effect with the upper level 1, so if 1ωi is brought closer to the forbidden band width E,), the resonance effect becomes larger. However, when 1ωI is larger than E&, the absorption coefficient is as high as 10 to 10 C11 due to absorption between bands, so the loss is large and Raman oscillation is difficult.

半導体ラマンレーザ本体としては、m−v放間化合物の
Ga PとQa Asは、1μIIl程度の近赤外線入
射光に対して特にラマン散乱断面積が太きくCdSの約
1000倍の大きさを持っている。GaPは間接遷移半
導体なので(3aΔSより吸収が小さいので一層望まし
い。
As for the semiconductor Raman laser body, the m-v emission compounds GaP and QaAs have a particularly large Raman scattering cross section for near-infrared incident light of about 1 μIIl, which is about 1000 times larger than that of CdS. . Since GaP is an indirect transition semiconductor (it has lower absorption than 3aΔS), it is more desirable.

GaPラマンレーザにおいては第2図に示すような入射
光がYAGレーザのときはIMW〜2MW入射し、ビー
ム径は約1u+φがp4型的な例であるから半導体レー
ザ光を入射光として使うときはパルス入カバワを1Wと
するとビーム径を1μ量φにすることができればほぼ同
じ密度の入力を得るこができ、ラマン発振させることが
可能である。半導体レーザと半導体ラマンレーザは1つ
の半導体基板上に集積化することができるので顕微鏡の
ごとき特別な外部光学系を使わなくとも上記のような入
射パワ密度でラマンレーザを励起することができるので
ある。
In a GaP Raman laser, the incident light as shown in Figure 2 is IMW to 2 MW when it is a YAG laser, and the beam diameter is about 1u + φ, which is a p4 type example, so when using a semiconductor laser light as the incident light, it is pulsed. If the input power is 1W, if the beam diameter can be reduced to 1μ amount φ, it is possible to obtain an input with almost the same density, and Raman oscillation is possible. Since a semiconductor laser and a semiconductor Raman laser can be integrated on one semiconductor substrate, it is possible to excite the Raman laser with the above-mentioned incident power density without using a special external optical system such as a microscope.

半導体レーザとしてl1l−V族の混晶を使うことによ
り、C1を適当に変えられ、先に述べた共鳴条件に近づ
けることができるという利点もある。第3図は半導体レ
ーザを入射光源とする集積化したラマンレーザの一例で
あり、aは断面図、bは上面図である。例えば基板結晶
6はGapまたはQa Asであり、2はへテロエピタ
キシャル成長で製作されたGa AfAS系あるいL1
111Qa761S系、夏n Ga PAs系等の半導
体レーザである。7は入射光用導光路、8は近赤外出力
用導光路、5は遠赤外用導光路であり遠赤外光に対して
半導体が充分に透明なとぎは半導体そのものを用いても
よいが、充分透明でないときは、イオンミリング法、ス
パッタエツチング法、プラズマエツチング法等で5の部
分を切り込み、空間を導光路として使うか空間にマイラ
などの遠赤外透明物質を充填する。
The use of a l1l-V group mixed crystal as a semiconductor laser has the advantage that C1 can be changed appropriately and the resonance conditions described above can be approached. FIG. 3 shows an example of an integrated Raman laser using a semiconductor laser as an incident light source, in which a is a cross-sectional view and b is a top view. For example, the substrate crystal 6 is Gap or Qa As, and the substrate crystal 2 is Ga AfAS-based or L1 made by heteroepitaxial growth.
These are semiconductor lasers such as 111Qa761S type, summer n Ga PAs type, etc. 7 is a light guide path for incident light, 8 is a light guide path for near-infrared output, and 5 is a light guide path for far-infrared light. If the semiconductor is sufficiently transparent to far-infrared light, the semiconductor itself may be used. If it is not sufficiently transparent, cut out the part 5 using ion milling, sputter etching, plasma etching, etc. and use the space as a light guide, or fill the space with a far-infrared transparent material such as mylar.

フォノン振動数をω、、(LOフォノン)ω□。The phonon frequency is ω, (LO phonon) ω□.

(Toフォノン)とし、ラマン出力振動数をω。とする
とωj−ω。−C8はフォノン撮動数に等しい場合と、
フォノンと遠赤外電磁波とが結合したポラリトンモード
の場合とがあり結晶方位によって種々のモードを発振さ
せることができた。例えばGaPの端面の方向が<10
0〉に近いときはし0フオノン、<110>方向に近い
ときは前方散乱によりポラリトンモードが、又後方散乱
によりTOフォノンが発振した。ポラリトンモードが発
振すると基本的には入射光強度あるいは出力のω。の強
度に比べてω、/ω、の比で遠赤外光出力強度がI]ら
れる。
(To phonon), and the Raman output frequency is ω. Then ωj−ω. -C8 is equal to the number of captured phonons;
There are cases of polariton mode in which phonons and far-infrared electromagnetic waves are combined, and various modes can be oscillated depending on the crystal orientation. For example, the direction of the end face of GaP is <10
When it is close to the <110> direction, a polariton mode oscillates due to forward scattering, and when it is close to the <110> direction, a polariton mode oscillates, and a TO phonon oscillates due to backscatter. When the polariton mode oscillates, basically the incident light intensity or output ω. The far-infrared light output intensity is determined by the ratio of ω, /ω, compared to the intensity of ω.

つまり、近赤外光ω。と遠赤外光ω、の両方が得られる
。しかもθをかえることにより遠赤外光の振動数ω3は
第2図のように連続的に変えられる。
In other words, near-infrared light ω. and far-infrared light ω can be obtained. Furthermore, by changing θ, the frequency ω3 of the far-infrared light can be continuously changed as shown in FIG.

近赤外光用導光路7.8は基板物質そのものでもよいが
、パワの広がりを防ぎ高密度で入射または取り出すには
若干屈折率の大きい層をへテロエピタキシャル成長し、
いわゆる半導体集束性導光路とすれば入射光パワの閾値
が低くなる。もちろん半導体レーザ2と導光路7、ラマ
ン発振部1と導光路8はツインガイドの構成にしてもよ
い。ラマン部は図例では基板と同一物質だが、もちろん
へテロエピタキシャル成長でもよい。Ml 、M2は反
射膜を蒸着してもよいが、蒸着深さにむらができたり、
縦方向蒸着が困難なときは第4図の様にグレーティング
構造にして切り込みの厚みt1周期λを適当に選ぶとω
。に対して反射率を最大にすることができる。みぞに屈
折率nの充填物質を入れて調整してもよい。
The light guide path 7.8 for near-infrared light may be made of the substrate material itself, but in order to prevent the spread of power and to input or extract it at high density, a layer with a slightly higher refractive index is grown by heteroepitaxial growth.
If a so-called semiconductor focusing light guide path is used, the threshold value of the incident light power will be lowered. Of course, the semiconductor laser 2 and the light guide path 7, and the Raman oscillation section 1 and the light guide path 8 may be configured as twin guides. In the illustrated example, the Raman part is made of the same material as the substrate, but of course it may be grown by heteroepitaxial growth. Reflective films may be deposited on Ml and M2, but the deposition depth may be uneven, or
If vertical deposition is difficult, use a grating structure as shown in Figure 4 and select the thickness t1 of the notches and the period λ appropriately.
. The reflectance can be maximized. Adjustment may be made by placing a filling material with a refractive index n in the groove.

入射面のなす角度θ、は、所望の波長の出力ω8を得る
に必要なθ1nが第10図から求められるから必要なθ
inとなるようθ、を決定すればよい。θ2はω8の出
力方向に直角面となるように選ぶのがよい。ω、の方向
は、ω1、ω。、ω8の波数に1、kOlqが第5図の
ように三角形を構成することにより位相整合条件を満足
すればよく、qは第10図などから得られまたに1、k
Oはω1、ω。における屈折率n1noからki−ni
ω; /C,ko−noω、 /Cなる関係から求まる
The angle θ formed by the plane of incidence is the necessary θ since θ1n necessary to obtain the output of the desired wavelength ω8 can be found from Fig. 10.
What is necessary is to determine θ such that in. It is preferable to select θ2 so that it is perpendicular to the output direction of ω8. The direction of ω is ω1, ω. , the wave number of ω8 is 1, kOlq should satisfy the phase matching condition by forming a triangle as shown in Fig. 5, and q can be obtained from Fig. 10, etc., and 1, k
O is ω1, ω. refractive index n1no to ki-ni
ω; Determined from the relationship: /C, ko-noω, /C.

以上はいずれも近赤外光ωIに対して反射率を大にする
共振器を構成して発振させるのであるが、ラマン物質1
の吸収係数がω1に対するよりもω3に対して小さいと
きは、ω3に対して共振器を構成することができる。こ
の利点はグレーティングで共振器を構成するときω6の
波長は10〜100μmなので極めて加工精度のうえで
簡単にグレーティングがつくれることである。第6図に
実施例を示す。図中半導体レーザ部は第3図と同様なの
で示していない。第4図、第6図のグレーティングはD
FBレーザのように波形や埋め込み形でもよいのである
が、グレーティング部が長くなると吸収損が増すので図
のように切り込みを深くして繰り返しを減らすことが望
ましい。
In all of the above, a resonator is constructed to increase the reflectance for near-infrared light ωI, and oscillation is caused by Raman material 1.
If the absorption coefficient of is smaller for ω3 than for ω1, a resonator can be constructed for ω3. The advantage of this is that when a resonator is constructed using a grating, the wavelength of ω6 is 10 to 100 μm, so the grating can be easily manufactured with extremely high processing accuracy. An example is shown in FIG. The semiconductor laser section in the figure is not shown because it is the same as in FIG. 3. The grating in Figures 4 and 6 is D.
A corrugated or embedded type like an FB laser may be used, but as the length of the grating portion increases, the absorption loss increases, so it is desirable to make the cuts deep as shown in the figure to reduce the number of repetitions.

次にラマン部分1としては−様な単結晶層だけでなく第
7図のようにpn接合の空乏層あるいはpin接合の1
層を使うと、自由キャリアによる吸収損が少なく、また
導波路効果により入射波電磁界強度が高まり、ラマン発
振閾値が下がる。さらに接合に逆方向電圧をくわえてな
だれを起させると高速電子がオプティカルフォノンと衝
突するのでフォノン励起を助ける働きをする。特に第6
図のようにω8に対して共振器を構成し発振させるとき
はこの方向はvAIllを下げるのに有効である。
Next, as the Raman part 1, there is not only a --like single crystal layer, but also a pn junction depletion layer or a pin junction depletion layer as shown in Figure 7.
The use of layers reduces absorption loss due to free carriers, increases the incident wave electromagnetic field strength due to the waveguide effect, and lowers the Raman oscillation threshold. Furthermore, when a reverse voltage is applied to the junction to create an avalanche, high-speed electrons collide with optical phonons, helping to excite the phonons. Especially the 6th
When a resonator is configured and oscillated for ω8 as shown in the figure, this direction is effective for lowering vAIll.

集積形の場合、上記の例はうマン部に対する入射角が切
込み部の角度等で決まってしまうのであるが第8図は入
射角を変えることにより可変波長とする例である。第8
図では表面波超音波を電極対10,11で励撮し、その
周波数を変えることによって回折角を変化させ入射角θ
inを制御する。12は蒸着された圧電物質。第9図で
は表面から見た形が三角プリズム状のpn接合を導光路
7の途中に形成し空乏層の厚みを変えると実効的にプリ
ズム屈折率が変わり光の進路方向のまがり方が変わる。
In the case of the integrated type, in the above example, the angle of incidence with respect to the arm portion is determined by the angle of the notch, etc., but FIG. 8 shows an example in which the wavelength can be made variable by changing the angle of incidence. 8th
In the figure, surface wave ultrasound is excited by a pair of electrodes 10 and 11, and by changing the frequency, the diffraction angle is changed and the incident angle θ
Control in. 12 is a deposited piezoelectric material. In FIG. 9, a pn junction having a triangular prism shape when viewed from the surface is formed in the middle of the light guide path 7, and changing the thickness of the depletion layer effectively changes the prism refractive index and changes the direction in which the light travels.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はうマン散乱の説明図、第2図はYAGレーザを
励起光源とする半導体ラマンレーザ、第3図は本発明の
一実施例であり、半導体レーザを入射光源とする集積化
したラマンレーザの一例で、<a )は断面図、(b)
は平面図、第4図は本発明の集積化したラマンレーザの
他の一例で、(a )は断面図、(b )は平面図、第
5図は本発明の説明図、第6図は本発明の他の実施例、
第7図はうマン発振部の説明図、第8図及び第9図は本
発明の更に他の実施例、第10図はGaPのポラリトン
モードの分散関係を示す図である。
Fig. 1 is an explanatory diagram of creepman scattering, Fig. 2 is a semiconductor Raman laser using a YAG laser as an excitation light source, and Fig. 3 is an embodiment of the present invention, showing an integrated Raman laser using a semiconductor laser as an incident light source. In one example, <a) is a cross-sectional view, (b)
is a plan view, FIG. 4 is another example of the integrated Raman laser of the present invention, (a) is a cross-sectional view, (b) is a plan view, FIG. 5 is an explanatory diagram of the present invention, and FIG. Other embodiments of the invention,
FIG. 7 is an explanatory diagram of the Flyman oscillator, FIGS. 8 and 9 are still other embodiments of the present invention, and FIG. 10 is a diagram showing the dispersion relationship of the polariton mode of GaP.

Claims (2)

【特許請求の範囲】[Claims] (1)同一半導体基板上に形成された半導体ラマン発振
部、前記半導体ラマン発振部を励起する注入形半導体レ
ーザ、前記注入形半導体レーザの出力光を高密度で前記
半導体ラマン発振部に入射する導光路とよりなる半導体
ラマンレーザ。
(1) A semiconductor Raman oscillation unit formed on the same semiconductor substrate, an injection type semiconductor laser that excites the semiconductor Raman oscillation unit, and a guide that makes the output light of the injection type semiconductor laser enter the semiconductor Raman oscillation unit at high density. A semiconductor Raman laser consisting of an optical path.
(2)前記半導体ラマン発振部がGaP、GaAsのい
ずれかより選ばれ、前記注入形半導体レーザがGaAl
As、InGaAs、InGaPAs系のいずれかより
選ばれることを特徴とする前記特許請求の範囲第1項記
載の半導体ラマンレーザ。
(2) The semiconductor Raman oscillator is selected from GaP or GaAs, and the injection type semiconductor laser is made of GaAl.
The semiconductor Raman laser according to claim 1, wherein the semiconductor Raman laser is selected from As, InGaAs, and InGaPAs.
JP15713587A 1987-06-24 1987-06-24 Semiconductor raman laser Granted JPS6387782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15713587A JPS6387782A (en) 1987-06-24 1987-06-24 Semiconductor raman laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15713587A JPS6387782A (en) 1987-06-24 1987-06-24 Semiconductor raman laser

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13327079A Division JPS5656689A (en) 1979-10-15 1979-10-15 Semiconductor raman laser

Publications (2)

Publication Number Publication Date
JPS6387782A true JPS6387782A (en) 1988-04-19
JPH0311116B2 JPH0311116B2 (en) 1991-02-15

Family

ID=15642966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15713587A Granted JPS6387782A (en) 1987-06-24 1987-06-24 Semiconductor raman laser

Country Status (1)

Country Link
JP (1) JPS6387782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002341392A (en) * 2001-05-18 2002-11-27 Telecommunication Advancement Organization Of Japan Device and method for emitting teraheltz light

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495292A (en) * 1972-04-28 1974-01-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495292A (en) * 1972-04-28 1974-01-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002341392A (en) * 2001-05-18 2002-11-27 Telecommunication Advancement Organization Of Japan Device and method for emitting teraheltz light

Also Published As

Publication number Publication date
JPH0311116B2 (en) 1991-02-15

Similar Documents

Publication Publication Date Title
FI113719B (en) modulator
US4539687A (en) Semiconductor laser CRT
US6239901B1 (en) Light source utilizing a light emitting device constructed on the surface of a substrate and light conversion device that includes a portion of the substrate
US20050040410A1 (en) Tilted cavity semiconductor optoelectronic device and method of making same
Hayamizu et al. Lasing from a single-quantum wire
JPH05313220A (en) Face emission type second higher harmonic forming element
US4329660A (en) Semiconductor light emitting device
JPS63205984A (en) Surface emitting type semiconductor laser
JPH04229683A (en) Output laser having active mirror
JP2017050308A (en) Quantum cascade laser
US8355419B2 (en) Semiconductor optoelectronic device with improved beam quality
JP2005195707A (en) Terahertz electromagnetic wave oscillator
JP2723045B2 (en) Flare structure semiconductor laser
US6351482B1 (en) Variable reflectivity mirror for increasing available output power of a laser
JPS6387782A (en) Semiconductor raman laser
US5384801A (en) Power lasers with semiconductor filter
JP7093220B2 (en) Quantum cascade laser
EP1071179B1 (en) Saturable Bragg reflectors and their use in mode-locked lasers
JPH01105589A (en) Semiconductor raman laser
RU2109382C1 (en) Semiconductor laser
JPS6342436B2 (en)
JPH04247676A (en) Surface light-emitting semiconductor mode lock laser
EP1124294A2 (en) Laser device
Kubodera et al. Laser performance of a glass‐clad LiNdP4O12 rectangular waveguide
JP2669373B2 (en) Surface emitting laser