JPS6387770A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6387770A
JPS6387770A JP23306886A JP23306886A JPS6387770A JP S6387770 A JPS6387770 A JP S6387770A JP 23306886 A JP23306886 A JP 23306886A JP 23306886 A JP23306886 A JP 23306886A JP S6387770 A JPS6387770 A JP S6387770A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
semiconductor
thin band
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23306886A
Other languages
Japanese (ja)
Inventor
Takeshi Nakane
中根 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP23306886A priority Critical patent/JPS6387770A/en
Publication of JPS6387770A publication Critical patent/JPS6387770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce the ON-state resistance and the spreading of two dimensional direction by forming a semiconductor layer as well as an electrode layer as semiconductor active elements on a thin band, thereby extending the above layers in the longitudinal direction and also, thereby winding the thin band into a spiral form in the length direction, while external terminals are mounted so that they can be extended in the cross direction of the thin band. CONSTITUTION:This device comprises a thin band 1, a first semiconductor layer 3, a second semiconductor layer 4, a third semiconductor layer 5, control electrodes 6 and external terminals 11-13: while the thin band 1 has a prescribed width and length as well as a inflec tion property that is wound into a spiral form in the length direction inside out; the first semiconductor layer 3 that is formed on the surface of thin band by extending in the length direction as well as the second semiconductor layer 4 that is isolated from the layer 3 and in parallel with the layer 3 in reality; the third semiconductor layer 5 that comes in contact with the surfaces of semiconductor layers 3 and 4 and also fills the gap between the above two layers; the control electrode layers 6 that connect to the third layer 5; a plurality of the external terminals 11-13 that extend in the cross direction of the thin band 1 connected to the first and second layers 3 and 4 as well as the control electrodes 6. Accordingly elements having the spreading of two dimensional direction comes to a cylindrical form and reduces dimensions on the substrate to be used exclusively when they are mounted on a print substrate and the like. Thus, such an arrangement helps reduced the ON-state resistance and the spread ing of two dimensional direction.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は半導体能動素子に関し、特に、比較的に通電容
量が高い半導体能動素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor active device, and particularly to a semiconductor active device with a relatively high current carrying capacity.

(従来の技術) 例えばソレノイドやモータの通電オン/オフや通電電流
値調整に用いられる半導体能動素子は通電容量が比較的
に高いことと、放熱が良好であることが要求され、パワ
ートランジスタがよく用いられる。パワートランジスタ
の一例は、第9図に示すように、金属製の放熱ベース2
0上にトランジスタチップ19を接合し、放熱ベースに
絶縁体スリーブを介して植立したドレイン電極ピン16
とゲート電極ピン17に、それぞれチップ19上のドレ
イン電極とゲート電極を接続し、放熱べ−スにハンダ付
けしたソース電極ビン18にチップ19上のソース電極
を接続したものである。
(Prior art) For example, semiconductor active elements used for turning on/off the current of solenoids and motors and adjusting the current value are required to have relatively high current carrying capacity and good heat dissipation, and power transistors are often used. used. An example of a power transistor is a metal heat dissipation base 2 as shown in FIG.
A transistor chip 19 is bonded to the drain electrode pin 16 on the heat dissipation base via an insulating sleeve.
The drain electrode and gate electrode on the chip 19 are connected to the and gate electrode pins 17, respectively, and the source electrode on the chip 19 is connected to the source electrode pin 18 soldered to the heat dissipation base.

トランジスタチップ19がFET型の場合、トランジス
タ構造が同じであれば、トランジスタのオン抵抗はチッ
プの面積に逆比例して小さくなる傾向がある。1gたこ
の種のトランジスタのチップは、シリコン単結晶をスラ
イスした、いわゆるウェハを用いており、機能領域を容
易に三次元化することができない、したがって、オン抵
抗を小さくするためには、チップの二次元寸法を巨大化
する方法が一般的であった。
When the transistor chip 19 is an FET type, and the transistor structure is the same, the on-resistance of the transistor tends to decrease in inverse proportion to the area of the chip. This type of transistor chip uses a so-called wafer made by slicing a silicon single crystal, and the functional area cannot be easily made three-dimensional.Therefore, in order to reduce the on-resistance, it is necessary to A common method was to increase the two-dimensional dimensions.

(発明が解決しようとする問題点) チップを巨大化すると、二次元の広がりが大きくなるた
め、チップの機械的安全性を得るためのトランジスタ容
器の特別な構造を必要とする。また二次元の広がりのた
め、トランジスタ容器が画法がりが大きいものとなり、
プリント基板上で、大きな基板面積を専有することにな
る。
(Problems to be Solved by the Invention) As the size of the chip increases, the two-dimensional extent becomes larger, requiring a special structure of the transistor container to ensure mechanical safety of the chip. Also, due to the two-dimensional expansion, the transistor container has a large drawing method,
This occupies a large area on the printed circuit board.

本発明は、オン抵抗が小さく、シかも二次元方向の広が
りが小さい半導体能動素子を提供することを目的とする
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor active element with low on-resistance and a small two-dimensional spread.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の半導体装置は、所定幅と所定長さを有し、表面
を内側にして該長さ方向で渦巻状に巻回された屈曲性が
ある薄帯;該薄帯の該表面上に。
(Means for Solving the Problems) A semiconductor device of the present invention has a flexible thin strip having a predetermined width and a predetermined length, and is wound spirally in the length direction with the surface facing inside. ; on the surface of the ribbon.

その長さ方向に延ばして形成された第1の半導体層と、
それとは分離しかつ実質上平行な第2の半導体層;第1
の半導体層と第2の半導体層の表面に接しかつそれらの
間を満した第3の半導体層;第3の半導体層に結合した
制御電極層;それぞれが第1の半導体層、第2の半導体
層および該制御電極層に結合した、前記薄帯の幅方向に
延びる複数個の外部端子;を備える。
a first semiconductor layer formed extending in the length direction;
a second semiconductor layer separate from and substantially parallel to the first semiconductor layer;
a third semiconductor layer that is in contact with the surfaces of the semiconductor layer and the second semiconductor layer and fills the space between them; a control electrode layer that is bonded to the third semiconductor layer; and a plurality of external terminals coupled to the control electrode layer and extending in the width direction of the ribbon.

すなわち本発明の半導体装置は、半導体能動素子として
の半導体層および電極層を、薄帯上に長さ方向に延ばし
て形成し、外部端子は薄帯の幅方向に延びるように装着
し、この薄帯をその長さ方向に渦巻き状に巻回したもの
とする。
That is, in the semiconductor device of the present invention, a semiconductor layer and an electrode layer as a semiconductor active element are formed by extending in the length direction on a thin strip, and external terminals are attached so as to extend in the width direction of the thin strip. Assume that the belt is spirally wound in the length direction.

(作用) これによれば、幅X長さの二次元の広がりを有する素子
が、幅を高さとし、長さ分の巻回直径を有する円筒状と
なり、能動素子としての二次元の広がりに対して、プリ
ント基板などに設置するときの基板上専有面積が極く小
さくなる。
(Function) According to this, an element having a two-dimensional spread of width x length becomes a cylinder with the width as the height and a winding diameter equal to the length, and the element has a two-dimensional spread as an active element. Therefore, when installed on a printed circuit board, the area occupied on the board becomes extremely small.

したがって、オン抵抗が小さく、しかも二次元方向の広
がりが小さい。
Therefore, the on-resistance is small and the two-dimensional spread is small.

本発明の他の目的および特徴は、図面を参照した以下の
実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

(実施例) 第1図に本発明の一実施例の外観を示す、第1図におい
て、14が半導体能動素子であるFETであり、渦巻き
円筒状である。このFETの外観を第8図に示す、第1
図および第8図を参照すると、11は渦巻円筒状のFE
T14のドレイン電極に接続したドレイン電極ビン、1
2はゲート電極に接続したゲート電極ビン、13はソー
ス電極に接続したソース電極ビンである。FET14の
基板1は、この実施例では表面に絶縁膜を形成したアル
ミニウム薄帯であり、その裏面が外側面として露出して
いる。FET14は放熱フィンを有する円筒状の放熱器
15に挿入されており。
(Embodiment) FIG. 1 shows the appearance of an embodiment of the present invention. In FIG. 1, numeral 14 is a semiconductor active element, FET, which has a spiral cylindrical shape. The appearance of this FET is shown in Figure 8.
Referring to the figure and FIG. 8, 11 is a spiral cylindrical FE.
Drain electrode bin connected to the drain electrode of T14, 1
2 is a gate electrode bin connected to the gate electrode, and 13 is a source electrode bin connected to the source electrode. In this embodiment, the substrate 1 of the FET 14 is an aluminum thin strip with an insulating film formed on its surface, and its back surface is exposed as the outer surface. The FET 14 is inserted into a cylindrical heat radiator 15 having radiation fins.

FET14の外側面が放熱器15の丸穴の内面に接触し
ている。
The outer surface of the FET 14 is in contact with the inner surface of the round hole of the heat sink 15.

次に第2a図〜第8図を参照して、FET14の製造過
程の概要を説明する。
Next, an outline of the manufacturing process of the FET 14 will be explained with reference to FIGS. 2a to 8.

まず第2a図を参照する1表面に絶縁層2が形成されて
いるアルミニウム薄帯1の表面に、すなわち絶縁−層2
の表面に、アモルファスシリコンを原材料としてドレイ
ン領域層3が櫛歯状に形成される。櫛歯のように延びる
方向が、薄1f1の長さ方向であり、それと直角な方向
が薄帯lの幅方向である。このようにドレイン領域層3
を形成した状態の幅方向断面を第2b図に示す。
First of all, on the surface of an aluminum ribbon 1 on which an insulating layer 2 is formed (see FIG. 2a), i.e. an insulating layer 2.
A drain region layer 3 is formed in a comb-teeth shape on the surface using amorphous silicon as a raw material. The direction in which the thin strip 1f1 extends like a comb tooth is the length direction of the thin strip 1f1, and the direction perpendicular thereto is the width direction of the thin strip l. In this way, drain region layer 3
Fig. 2b shows a cross section in the width direction in a state in which the wafer is formed.

次に、第3a図に示すように、アルミニウム薄帯1の表
面に、すなわち絶縁層2の表面に、アモルファスシリコ
ンを原材料としてソース領域層4が。
Next, as shown in FIG. 3a, a source region layer 4 is formed using amorphous silicon as a raw material on the surface of the aluminum ribbon 1, that is, on the surface of the insulating layer 2.

ドレイン領域N3の間に櫛歯状に形成される。このよう
にソース領域層4を形成した状態の幅方向断面を第3b
図に示す。
A comb-like shape is formed between the drain regions N3. The cross section in the width direction with the source region layer 4 formed in this way is shown in 3b.
As shown in the figure.

次に、第4a図に示すように、ドレイン領域層3とソー
ス領域層4にまたがって、チャネル用の層5がアモルフ
ァスシリコンを原材料として形成され1次いでドレイン
領域層3とソース領域層4の間に所要の深さのチャネル
層が形成される6次にチャネル用の層5の表面は絶縁処
理されて絶縁層5aが形成される。第4b図にチャネル
用の層5および絶縁層5aを形成した状態の幅方向断面
を示す。
Next, as shown in FIG. 4a, a channel layer 5 is formed using amorphous silicon as a raw material, spanning the drain region layer 3 and the source region layer 4. A channel layer with a required depth is formed.Next, the surface of the channel layer 5 is subjected to insulation treatment to form an insulating layer 5a. FIG. 4b shows a cross section in the width direction with the channel layer 5 and the insulating layer 5a formed.

次に、第5a図に示すように、チャネルの上方のチャネ
ル用の層5の絶縁層5aの表面にゲート電極WJ6が形
成される。ゲート電極Fs6を形成した状態の幅方向断
面を第5b図に示す。
Next, as shown in FIG. 5a, a gate electrode WJ6 is formed on the surface of the insulating layer 5a of the channel layer 5 above the channel. FIG. 5b shows a cross section in the width direction with the gate electrode Fs6 formed.

次に、第6図に示すように、ドレイン領域層3゜ソース
領域層4およびゲート電極層6に、引出し電極接続用の
導体層7,8および91〜94が形成される。
Next, as shown in FIG. 6, conductor layers 7, 8 and 91 to 94 for connecting lead electrodes are formed on the drain region layer 3, the source region layer 4, and the gate electrode layer 6.

次に、薄帯1の表面全面に保護膜10が被覆される。保
護膜10を被覆した状態の幅方向の断面を第7b図に示
す。次に、第7a図に示すように、引出し電極接続用の
導体層91〜94が細径導線95で接続される。そして
引出し電極接続用の導体層7,8および91に、ドレイ
ン電極ピン11゜ソース電極ピン13およびゲート電極
ピン12が接合される。
Next, the entire surface of the ribbon 1 is coated with a protective film 10. FIG. 7b shows a cross section in the width direction in a state where the protective film 10 is covered. Next, as shown in FIG. 7a, the conductor layers 91 to 94 for connecting the extraction electrodes are connected with a small diameter conducting wire 95. A drain electrode pin 11.degree., a source electrode pin 13, and a gate electrode pin 12 are then joined to the conductor layers 7, 8, and 91 for connecting the extraction electrodes.

このように形成された、平面展開のFETチップ(第7
a図)は、所定直径の棒体に、ソース電極ピン13側か
ら渦巻状に巻回され、この巻回が終わると、第8図に示
す、円筒状のFET14となる。この円筒状のFET1
4は、放熱器15(第1図)の丸穴に挿入され、そこで
棒体が、渦巻きを巻き戻す方向に回転されてから抜き出
され、薄帯1等の戻り力により、円筒状の外側面、すな
わち薄帯1の裏面が放熱器15の丸穴の内面に密に接触
する。この状態で、用途によっては、放熱器15の丸穴
の上、下開口が、金属板や樹脂により密閉される。
The plane-developed FET chip (7th
In Fig. a), it is spirally wound around a rod having a predetermined diameter from the source electrode pin 13 side, and when this winding is completed, it becomes a cylindrical FET 14 as shown in Fig. 8. This cylindrical FET1
4 is inserted into the round hole of the radiator 15 (Fig. 1), where the rod is rotated in the direction of unwinding the spiral, and then pulled out. The side surface, ie, the back surface of the ribbon 1, is in close contact with the inner surface of the round hole of the heat sink 15. In this state, depending on the application, the upper and lower openings of the round hole of the heat radiator 15 are sealed with a metal plate or resin.

以上に説明した製造工程は、リールに巻した薄帯をそれ
を所定長毎に繰り出して、薄帯の送りラインに沿った各
所で各プロセスを実行し、所定長さの巻回毎に切断し、
放熱器15に順次に挿入して行く形で実行できるので、
FET14の1個当りのコストを大幅に低減できる。
The manufacturing process described above involves unwinding a thin strip wound onto a reel in predetermined lengths, performing each process at various points along the feed line of the thin strip, and cutting it after each winding of a predetermined length. ,
Since it can be executed by sequentially inserting it into the heat sink 15,
The cost per FET 14 can be significantly reduced.

〔発明の効果〕〔Effect of the invention〕

本発明の半導体装置は、幅X長さ、すなわち能動素子と
しての面積が大きいが、それを円筒状に巻回し、幅方向
に外部端子(ピン)を立てているので、プリント基板な
どに実装する場合、該面積に対して極く高い実装密度と
なる。すなわち、オン抵抗が小さく、実装面積が小さく
なる。
The semiconductor device of the present invention has a large width x length, that is, a large area as an active element, but since it is wound into a cylindrical shape and has external terminals (pins) erected in the width direction, it can be mounted on a printed circuit board, etc. In this case, the packaging density is extremely high for the area. That is, the on-resistance is small and the mounting area is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1I!!は本発明の一実施例の外観を示す斜視図であ
る。 第2a図、第3a図、第4a図、第5a図、第6図、お
よび第7a図は、該実施例の製造工程の各時点における
薄帯1の平面図である。 第2b図は第2a図のnB−IIB線断面図、第3b図
は第3a図のmB−IIIB線断面図、第4b図は第4
a図のIVB−fVB線断面図、第5b図は第5a図の
VB−VB線断面図、第7b図は第7a図の■B−■B
線断面図である。 第8図は、放熱器15に挿入する前の本発明の該実施例
の外観を示す斜視図である。 第9図は、従来のパワートランジスタの平面図である。 1:薄帯       2:絶縁層 3ニドレイン領域層(第1の半導体層)4:ソース領域
層(第2の半導体M) 5:チャネル用の層(第3の半導体層)5a:絶縁層 
 6:ゲート電極N1(制御電極層)7、L 9t〜9
3 :導体層 95:細径導線    10:保護膜 11ニドレイン電極ピン(外部端子) 12:ゲート電極ピン(外部端子) 13:ソース電極ピン(外部端子) 14:渦巻状のFET  15:放熱器16:ドレイン
電極ピン
1st I! ! FIG. 1 is a perspective view showing the appearance of an embodiment of the present invention. 2a, 3a, 4a, 5a, 6, and 7a are plan views of the ribbon 1 at various points in the manufacturing process of this embodiment. Figure 2b is a cross-sectional view taken along the nB-IIB line in Figure 2a, Figure 3b is a cross-sectional view taken along the mB-IIIB line in Figure 3a, and Figure 4b is a cross-sectional view taken along the line nB-IIIB in Figure 2a.
Fig. 5b is a sectional view taken along the line IVB-fVB of Fig. 5a, Fig. 7b is a sectional view taken along the line IVB-■B of Fig. 7a.
FIG. FIG. 8 is a perspective view showing the appearance of this embodiment of the present invention before being inserted into the heat sink 15. FIG. FIG. 9 is a plan view of a conventional power transistor. 1: Thin strip 2: Insulating layer 3 Nidorain region layer (first semiconductor layer) 4: Source region layer (second semiconductor M) 5: Channel layer (third semiconductor layer) 5a: Insulating layer
6: Gate electrode N1 (control electrode layer) 7, L 9t~9
3: Conductor layer 95: Thin conductor wire 10: Protective film 11 Nidrain electrode pin (external terminal) 12: Gate electrode pin (external terminal) 13: Source electrode pin (external terminal) 14: Spiral FET 15: Heat sink 16 :Drain electrode pin

Claims (2)

【特許請求の範囲】[Claims] (1)所定幅と所定長さを有し、表面を内側にして該長
さ方向で渦巻状に巻回された屈曲性がある薄帯; 該薄帯の該表面上に、その長さ方向に延ばして形成され
た第1の半導体層と、それとは分離しかつ実質上平行な
第2の半導体層; 第1の半導体層と第2の半導体層の表面に接しかつそれ
らの間を満した第3の半導体層; 第3の半導体層に結合した制御電極層; それぞれが第1の半導体層、第2の半導体層および該制
御電極層に結合した、前記薄帯の幅方向に延びる複数個
の外部端子; を備える半導体装置。
(1) A flexible thin strip having a predetermined width and a predetermined length and spirally wound in the longitudinal direction with the surface facing inside; a first semiconductor layer formed in an extended manner, and a second semiconductor layer separated from and substantially parallel to the first semiconductor layer; in contact with the surfaces of the first semiconductor layer and the second semiconductor layer and filling the space between them; a third semiconductor layer; a control electrode layer coupled to the third semiconductor layer; a plurality of layers extending in the width direction of the ribbon, each coupled to the first semiconductor layer, the second semiconductor layer, and the control electrode layer; A semiconductor device comprising an external terminal;
(2)薄帯は表面を絶縁処理した金属薄帯であり、第1
の半導体層はドレイン層であり、第2の半導体層はソー
ス層であり、制御電極層は第1および第2の半導体層間
のギャップの上方において第3の半導体層の表面に絶縁
層を介して接合したゲート電極である、前記特許請求の
範囲第1項記載の半導体装置。
(2) The ribbon is a metal ribbon whose surface has been insulated.
The semiconductor layer is a drain layer, the second semiconductor layer is a source layer, and the control electrode layer is formed on the surface of the third semiconductor layer through an insulating layer above the gap between the first and second semiconductor layers. The semiconductor device according to claim 1, which is a bonded gate electrode.
JP23306886A 1986-09-30 1986-09-30 Semiconductor device Pending JPS6387770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23306886A JPS6387770A (en) 1986-09-30 1986-09-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23306886A JPS6387770A (en) 1986-09-30 1986-09-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6387770A true JPS6387770A (en) 1988-04-19

Family

ID=16949299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23306886A Pending JPS6387770A (en) 1986-09-30 1986-09-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6387770A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522992A (en) * 2007-03-29 2010-07-08 ノースロップ グラマン システムズ コーポレーション Spiral semiconductor transistor
JP2012191454A (en) * 2011-03-10 2012-10-04 Toshiba Corp Nitride semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522992A (en) * 2007-03-29 2010-07-08 ノースロップ グラマン システムズ コーポレーション Spiral semiconductor transistor
JP2012191454A (en) * 2011-03-10 2012-10-04 Toshiba Corp Nitride semiconductor device
US8624261B2 (en) 2011-03-10 2014-01-07 Kabushiki Kaisha Toshiba Nitride semiconductor device

Similar Documents

Publication Publication Date Title
US7955902B2 (en) Manufacturing method of semiconductor device with surface mounting terminals
US5541446A (en) Integrated circuit package with improved heat dissipation
KR100328143B1 (en) Lead frame with layered conductive plane
US5796159A (en) Thermally efficient integrated circuit package
US5105257A (en) Packaged semiconductor device and semiconductor device packaging element
JPH04179264A (en) Resin-sealed semiconductor device
US5939781A (en) Thermally enhanced integrated circuit packaging system
US5295045A (en) Plastic-molded-type semiconductor device and producing method therefor
US6117709A (en) Resin sealing type semiconductor device and method of manufacturing the same
KR940020539A (en) Low inductance semiconductor package
JPS6387770A (en) Semiconductor device
EP0770266B1 (en) Method of manufacturing a semiconductor device suitable for surface mounting
JPH0239097B2 (en)
US3395447A (en) Method for mass producing semiconductor devices
KR20010036142A (en) semiconductor chip package with multi- level leads
US10978432B2 (en) Semiconductor package
US3737738A (en) Continuous strip processing of semiconductor devices and novel bridge construction
DE102021122591A1 (en) MULTI-LAYER CONNECTING TAPE
JP2878929B2 (en) Semiconductor device
KR100243376B1 (en) Semiconductor package &manufacturing method thereof
KR19980063740A (en) Multilayer Leadframe for Molded Packages
JPH04171848A (en) Semiconductor device
JPS61144834A (en) Resin-sealed semiconductor device
JPH039335Y2 (en)
GB2147457A (en) Encapsulated semiconductor device with composite conductive leads