JPS6386267A - Manufacture of grid and grid sheet of lead acid battery - Google Patents

Manufacture of grid and grid sheet of lead acid battery

Info

Publication number
JPS6386267A
JPS6386267A JP61231024A JP23102486A JPS6386267A JP S6386267 A JPS6386267 A JP S6386267A JP 61231024 A JP61231024 A JP 61231024A JP 23102486 A JP23102486 A JP 23102486A JP S6386267 A JPS6386267 A JP S6386267A
Authority
JP
Japan
Prior art keywords
grid
lead
lattice
antimony
sheet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61231024A
Other languages
Japanese (ja)
Inventor
Kazunobu Sawada
和伸 澤田
Takaaki Nakano
中野 敬章
Masayasu Saito
斎藤 雅康
Ryuichi Uchino
内野 龍一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP61231024A priority Critical patent/JPS6386267A/en
Publication of JPS6386267A publication Critical patent/JPS6386267A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/82Multi-step processes for manufacturing carriers for lead-acid accumulators
    • H01M4/84Multi-step processes for manufacturing carriers for lead-acid accumulators involving casting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To obtain a grid and a grid sheet having high crrosion resistance and mechanical strength by melting a lead alloy containing a specified amount of Sb, casting in a grid or grid sheet with a roll-like casting mold, and repeating heating at a specified temperature or more and cooling two times. CONSTITUTION:A lead alloy containing 1.0-2.0% Sb (for example, Pb-Sb alloy containing Sn, As, and Cu other than Sb) is heated to melt and continuously casted to form a grid with a roll-like casting mold. The grid is held at 200 deg.C or more (200-245 deg.C) and quickly cooled to uniformly disperse Sb into alpha-solid solution and to eliminate the surface segregation for increasing corrosion resistance. Again the grid is held at 140 deg.C or more and gradually cooled to ensure mechanical strength.

Description

【発明の詳細な説明】 【発明の目的〕 (産業上の利用分野) 本発明は鉛蓄電池格子体及び格子体用シート材の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a lead-acid battery lattice body and a method for manufacturing a sheet material for the lattice body.

(従来の技術) 従来より、鉛蓄電池格子体を、鉛−アンチモン(Pb−
8t))系合金の連続鋳造にて製造する方法が一般に知
られ多〈実施されている。
(Prior art) Conventionally, lead-acid battery grids have been made of lead-antimony (Pb-
8t)) method of manufacturing by continuous casting of alloys is generally known and has been widely practiced.

又近年、鉛−カルシウム(Pb−Ca)系合金を用いて
連続鋳造によってシート材とし、その後打抜き或いはエ
クスパンディラド工法を行って格子体とする製造方法が
提案され、かつ実施されている。
Also, in recent years, a manufacturing method has been proposed and implemented in which a sheet material is formed by continuous casting using a lead-calcium (Pb-Ca) alloy, and then a lattice body is formed by punching or the Expandirad method.

(発明が解決しようとする問題点) 上記の従来法のうち、鉛−アンチモン(Pb−8b)系
合金の連続鋳造は、その工程中の冷却速度が大きいため
格子最表面にアンチモン(Sb)の大きな偏析を生じ、
製品として耐腐食性が極端に悪化し、寿命低下をきたし
ている。アンチモン(Sb)の表面偏析を少なくする方
法としては、連続鋳造時の冷却速度を小さくする方法と
、アンチモン(Sb)の添加を減少させる方法の2通り
が考えられるが、いずれの方法も充分な機械的強度が得
られず製品上、又製造上実用化が困難であった。
(Problems to be Solved by the Invention) Among the conventional methods described above, continuous casting of lead-antimony (Pb-8b) alloys requires a high cooling rate during the process, so antimony (Sb) is formed on the outermost surface of the lattice. causing large segregation,
As a product, its corrosion resistance has deteriorated significantly, resulting in a shortened lifespan. There are two possible ways to reduce the surface segregation of antimony (Sb): reducing the cooling rate during continuous casting and reducing the amount of antimony (Sb) added. Mechanical strength could not be obtained, making it difficult to put it into practical use as a product or in manufacturing.

又、鉛−カルシウム(Pb−Ca)系合金を用いる方法
は、深い放電を伴うサイクル寿命が短く、又高温域にお
いて格子腐食による大きな伸張が生じ耐食性の劣化及び
機械的強度の低下によって鉛蓄電池の寿命性能を短くす
るという欠点をもっていた。
In addition, methods using lead-calcium (Pb-Ca) alloys have a short cycle life due to deep discharge, and large elongation due to lattice corrosion occurs in high-temperature ranges, resulting in deterioration of corrosion resistance and mechanical strength, which leads to lead-acid batteries. It had the disadvantage of shortening the life performance.

本発明は、上記の問題点がなく、従来用いられている連
続鋳造法を改良することによって耐食性、機械的強度に
優れた格子体及び格子体用シート材を、生産可能にした
鉛蓄電池格子体及び格子体用シート材の製造方法を提供
することを目的とする。
The present invention is a lead-acid battery lattice body that does not have the above-mentioned problems and makes it possible to produce a lattice body and a sheet material for a lattice body with excellent corrosion resistance and mechanical strength by improving the conventional continuous casting method. It is also an object of the present invention to provide a method for manufacturing a sheet material for a lattice body.

[発明の構成] (問題点を解決するための手段) 本発明の鉛蓄電池格子体及び格子体用シート材の製造方
法は、鉛−アンチモン系合金の連続鋳造により製造され
る鉛蓄電池用格子体及び格子体用シート材の製造方法に
おいて、 上記連続鋳造は、アンチモン1.0〜2.0%を含む鉛
合金を加熱溶融させロール状鋳型に鋳込んで格子体ある
いは格子体シート材形状にした成形体を連続的に形成す
る成形工程と、 該成形体を200℃以上で加熱保持する加熱保持工程と
、 該加熱保持工程を経た後置成形体を急冷する急冷工程と
、 急冷後、該成形体を140℃以上に再加熱保持する再加
熱保持工程と、 再加熱保持工程に次いで該成形体を徐冷する徐冷工程と
からなることを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The method for producing a lead-acid battery lattice body and a sheet material for a lattice body of the present invention provides a lead-acid battery lattice body manufactured by continuous casting of a lead-antimony alloy. and a method for manufacturing a sheet material for a lattice body. A molding process of continuously forming a molded body; A heating and holding process of heating and holding the molded body at 200°C or higher; A quenching process of rapidly cooling the post-molded body that has passed through the heating and holding process; After the quenching, the molding This method is characterized by comprising a reheating and holding step in which the molded body is reheated and held at 140° C. or higher, and a slow cooling step in which the molded body is slowly cooled following the reheating and holding step.

即ち、本発明は、高生産性工法で、良好な製品精度が(
りられる連続鋳造を採用しアンチモン(Sb)を1.0
〜2.0%含む鉛合金を原料とした、格子体あるいは格
子体シート材の成形体を連続的に形成する形成工程と、
この成形体を200℃以上で加熱保持する加熱保持工程
と、この後成形体を急冷する急冷工程と、成形体を14
0℃以上に再加熱保持する再加熱工程及び成形体を徐冷
する徐冷工程とで製造工程を構成したことを特色とする
That is, the present invention is a highly productive construction method with good product accuracy (
Adopts continuous casting to reduce antimony (Sb) to 1.0
A forming step of continuously forming a molded body of a lattice body or a lattice body sheet material using a lead alloy containing ~2.0%;
A heating and holding step in which the molded body is heated and held at 200°C or higher, a quenching step in which the molded body is then rapidly cooled, and a molded body is
The manufacturing process is characterized by comprising a reheating step of reheating and holding at 0° C. or higher and a slow cooling step of slowly cooling the molded body.

[作用〕 本発明の製造方法では、アンチモンを2%以下(好まし
くは1〜2%)含む鉛−アンチモン(Pb−8b)系合
金を原料として、これを加熱溶融させロール状鋳型に鋳
込んで格子体あるいは格子体シート材形状にした成形体
を連続的に形成し、この成形体を溶体化によるアンチモ
ン表面偏析をなくし、耐腐食性を高めるための下限温度
である200℃以上に加熱保持し、その後、成形体を急
冷してアンチモン(Sb)をα固溶体(Pb−8b)へ
均一拡散せしめ、次いで製造工程中の取扱い性等の改善
のため、前記急冷(即ち溶体化)後140℃以上に再加
熱保持し、最後に徐冷して製品の機械的強度を向上させ
る。
[Function] In the production method of the present invention, a lead-antimony (Pb-8b) alloy containing 2% or less (preferably 1 to 2%) of antimony is used as a raw material, which is heated and melted and cast into a roll mold. A molded body in the shape of a lattice body or a lattice sheet material is continuously formed, and this molded body is heated and maintained at a temperature of 200°C or higher, which is the lower limit temperature in order to eliminate antimony surface segregation due to solution treatment and to improve corrosion resistance. Then, the molded body is rapidly cooled to uniformly diffuse antimony (Sb) into the α solid solution (Pb-8b), and then heated to 140°C or higher after the rapid cooling (i.e., solutionization) to improve handleability during the manufacturing process. The product is then reheated and finally cooled to improve the mechanical strength of the product.

(実施例) 以下、本発明を実施例に基づき説明する。(Example) Hereinafter, the present invention will be explained based on examples.

(第1実施例) 鉛−アンチモン(Pb−3b)系合金として、アンチモ
ン(Sb)以外にスズ<Sn>0.1%、砒素(As)
0.2%、銅(Cu)0.01%(いずれち型組%)を
用いた。これを熱溶融させロール状鋳型に鋳込んで連続
的に格子体の成形体(厚み1.1111m>を形成しく
成形工程)、この成形体を200℃以上で加熱保持した
く加熱保持工程)。この加熱は200〜245℃程度で
15分〜5時間行うことが好ましい。この加熱保持によ
リアンチモン(Sb)がα固溶体へ拡散しうる状態にす
る。次に成形体を急冷した(急冷W工程)。この急冷に
よりアンチモン(Sb)をα固溶体へ均一に拡散せしめ
、耐食性を向上させることができる。急冷侵、S!J造
工程中のハンドリング性等の改善のため140℃以上に
再加熱保持しく再加熱保持工程)、最後に徐冷して(徐
冷工程)機械的強度を確保するようにした。
(First Example) As a lead-antimony (Pb-3b) alloy, in addition to antimony (Sb), tin <Sn> 0.1% and arsenic (As) were used.
0.2% and copper (Cu) 0.01% (both mold assembly %) were used. This is heated and melted and poured into a roll mold to continuously form a lattice molded body (thickness 1.1111 m>) (molding process), and this molded body is heated and held at 200° C. or higher (heat holding process). This heating is preferably performed at about 200 to 245°C for 15 minutes to 5 hours. By maintaining this heating, antimony (Sb) is brought into a state in which it can diffuse into the α solid solution. Next, the molded body was rapidly cooled (quenching W step). This rapid cooling allows antimony (Sb) to be uniformly diffused into the α solid solution, thereby improving corrosion resistance. Rapid cooling, S! In order to improve handling properties during the J-building process, it was reheated and held at 140°C or higher (reheating and holding process), and finally slowly cooled (slow cooling process) to ensure mechanical strength.

本実施例における連f−鋳造の結果、生じたアンチモン
量とガス発生との関係をHt O電気分解によって調べ
第1図に示すデータを19だ。
As a result of continuous f-casting in this example, the relationship between the amount of antimony produced and gas generation was investigated by Ht 2 O electrolysis, and the data shown in FIG. 1 is 19.

本実施例によって製造された格子のアンチモン量(重量
%)とその表面偏析■(%)及び耐食量(mq)の関係
を第2図に示す。第2図から、連続鋳造という大きな冷
W速度を要する工法にて製造された格子体あるいは格子
体用シート材はアンチモン(Sb)ffiが多い程、そ
の表面偏析が多く又腐食間も多くなることからアンチモ
ン(Sb)の上限含有量は2%であることがわかった。
FIG. 2 shows the relationship between the amount of antimony (% by weight), its surface segregation (%), and the amount of corrosion resistance (mq) in the lattice produced according to this example. From Figure 2, it can be seen that the more antimony (Sb)ffi there is in the lattice body or the sheet material for the lattice body manufactured by continuous casting, which requires a high cold W speed, the more the surface segregation and the number of corrosion gaps. It was found that the upper limit content of antimony (Sb) was 2%.

(第2実施例) 鉛−アンチモン(Pb−8b)系合金のアンチモン(S
b)の聞(重量%で示す)を2.0%、スズ(Sn)0
.1%、砒素(As)0.2%、銅(Cu)0.01%
とした。合金を用いて、第1実施例と同様の工程により
格子体を連続鋳造した。本実施例における溶体化温度(
’C)と腐食量(mlの関係を第3図に示す。第3図よ
り腐食mを減少させうる温度は200℃が下限であるこ
とがわかる。なお上限は部分的にも再溶解しなければ良
い温度である。
(Second Example) Antimony (S) of lead-antimony (Pb-8b) based alloy
b) 2.0% (expressed in weight%), tin (Sn) 0
.. 1%, arsenic (As) 0.2%, copper (Cu) 0.01%
And so. A lattice body was continuously cast using the alloy in the same process as in the first example. Solution temperature in this example (
Figure 3 shows the relationship between 'C) and the amount of corrosion (ml). Figure 3 shows that the lower limit of the temperature at which corrosion m can be reduced is 200°C. Note that the upper limit must be partially remelted. It's a good temperature.

(第3実施例) 鉛−アンチモン(Pb−3b)系合金のアンチモン(S
b)の量を3%にし、他は第2実施例と全く同様にして
連続鋳造により格子、を製造した。
(Third Example) Antimony (S
A grid was manufactured by continuous casting in the same manner as in Example 2 except that the amount of b) was 3%.

本実施例における溶体化温度(’C)と腐食ffi(m
g)の関係を第3図に示す。第3図より7ンチモン(S
b)の間が多いとPb0t化しやすく、即ち、耐食性が
低下することがわかった。
Solution temperature ('C) and corrosion ffi (m
The relationship g) is shown in Figure 3. From Figure 3, 7 inches (S
It was found that when there are many spaces between b), Pb0t tends to occur, that is, corrosion resistance decreases.

(第4実施例) アンチモン(Sb)の量を2.0%、1.0%、0.8
%の3通りに変え、いずれのケースもアンチモン(Sb
)以外の含有量を同じ(スズ061%、砒素0.2%、
銅0.01%)にして第1〜第3実施例と全く同様の工
程により厚さ1,111111の格子体を連続鋳造した
(Fourth Example) The amount of antimony (Sb) was 2.0%, 1.0%, 0.8
% in three ways, and in all cases antimony (Sb
) except for the same content (tin 061%, arsenic 0.2%,
A lattice body having a thickness of 1,111,111 mm was continuously cast using the same process as in the first to third embodiments.

第4図は、本実施例における再加熱保持及びそれにつづ
く徐冷工程く焼戻しを意味する)における温度と引張り
強さくkg/m1)の関係をアンチモン(Sb)の各含
有量について示したものである。
Figure 4 shows the relationship between temperature and tensile strength (kg/m1) during reheating and holding in this example and the subsequent slow cooling step (meaning tempering) for each content of antimony (Sb). be.

第4図から、必要な引張り強さである2kg/m112
を得るには、アンチモン(、S b )の量は1%以上
で温度は140℃以上でなければならないことがわかっ
た。即ち、アンチモン(Sb)ffiが1%未満で焼戻
し温度が140℃未満の場合には時効硬化効果が得られ
ない。
From Figure 4, the required tensile strength is 2kg/m112
It was found that the amount of antimony (, S b ) must be at least 1% and the temperature must be at least 140° C. to obtain . That is, when the antimony (Sb)ffi is less than 1% and the tempering temperature is less than 140°C, no age hardening effect can be obtained.

(計画) 以上の結果から、鉛−アンチモン(Pb−8b)系合金
より連続鋳造にて格子あるいは格子用シート材を製造す
る場合、機械的強度、耐食性等に優れた製品を1qるた
めには(1)合金中のアンチモン(Sb)の含有量が1
〜2%であること、(2)溶体化によるアンチモン(S
b)の表面偏析をなくし腐食間を減少させるための温度
の下限は200℃であること、(3)2kg/ll11
以上の引張り強さを得るためには焼戻しく再加熱保持)
温度は140’C以上であることが条件となることが理
解される。
(Plan) From the above results, when manufacturing grids or grid sheet materials from lead-antimony (Pb-8b) alloy by continuous casting, it is necessary to produce products with excellent mechanical strength, corrosion resistance, etc. (1) The content of antimony (Sb) in the alloy is 1
~2%; (2) antimony (S) by solution treatment;
b) The lower limit of temperature to eliminate surface segregation and reduce corrosion interval is 200°C, (3) 2kg/ll11
To obtain higher tensile strength, temper and reheat (reheat and hold)
It is understood that the condition is that the temperature is 140'C or higher.

[発明の効果] 本発明の鉛蓄電池格子体及び格子体用シート材の製造方
法によれば、連続鋳造法の欠点を解消し、長所を最大限
に生かして、機械的強度、耐食性等に優れた製品を安価
に、作業性より、盲生産率のもとに製造することができ
、格子の寿命向上、ひいては鉛蓄電池の寿命性能を向上
させるものである。
[Effects of the Invention] According to the method for producing a lead-acid battery lattice body and a sheet material for a lattice body of the present invention, the drawbacks of the continuous casting method are eliminated, and the advantages are maximized, resulting in excellent mechanical strength, corrosion resistance, etc. This makes it possible to manufacture products at low cost, with good workability, and at a blind production rate, thereby improving the lifespan of the grid and, by extension, the lifespan performance of lead-acid batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の第1実施例におけるアンチモン
量とガス発生との関係を示す図であり、第2図は第1実
施例におけるアンチモン量とアンチモンの表面偏析但及
び腐食量の関係を示す図である。 第3図は本発明方法の第2実施例及び第3実施例におけ
る溶体化温度と腐食Rとの関係を示す図であり、第4図
は第4実施例における焼戻し温度と引張り強度をアンチ
モン(Sb)の含有量との相対的関係において示す図で
ある。
FIG. 1 is a diagram showing the relationship between the amount of antimony and gas generation in the first embodiment of the method of the present invention, and FIG. 2 is a diagram showing the relationship between the amount of antimony and the amount of surface segregation and corrosion of antimony in the first embodiment. FIG. FIG. 3 is a diagram showing the relationship between solution temperature and corrosion R in the second and third embodiments of the method of the present invention, and FIG. 4 shows the relationship between the tempering temperature and the tensile strength in the fourth embodiment. It is a figure shown in relative relationship with content of Sb).

Claims (4)

【特許請求の範囲】[Claims] (1)鉛−アンチモン系合金の連続鋳造により製造され
る鉛蓄電池用格子体及び格子体用シート材の製造方法に
おいて、 上記連続鋳造は、アンチモン1.0〜2.0%を含む鉛
合金を加熱溶融させロール状鋳型に鋳込んで格子体ある
いは格子体シート材形状にした成形体を連続的に形成す
る成形工程と、 該成形体を200℃以上で加熱保持する加熱保持工程と
、 該加熱保持工程を経た後該成形体を急冷する急冷工程と
、 急冷後、該成形体を140℃以上に再加熱保持する再加
熱保持工程と、 再加熱保持工程に次いで該成形体を徐冷する徐冷工程と
からなることを特徴とする鉛蓄電池格子体及び格子体用
シート材の製造方法。
(1) In a method for manufacturing a lead-acid battery lattice body and a lattice sheet material manufactured by continuous casting of a lead-antimony alloy, the continuous casting process involves casting a lead alloy containing 1.0 to 2.0% antimony. a molding process of continuously forming a molded body in the form of a lattice body or a lattice sheet material by heating and melting the molded body and casting it into a roll-shaped mold; a heating holding process of heating and holding the molded body at 200°C or higher; A quenching step in which the molded body is rapidly cooled after the holding step; a reheating and holding step in which the molded body is reheated and held at 140°C or higher after the quenching; and a slow cooling step in which the molded body is slowly cooled after the reheating and holding step. A method for producing a lead-acid battery grid and a sheet material for a grid, the method comprising a cooling process.
(2)加熱保持工程における加熱温度は200〜245
℃である特許請求の範囲第1項記載の鉛蓄電池格子体及
び格子体用シート材の製造方法。
(2) The heating temperature in the heating and holding step is 200 to 245
The method for producing a lead-acid battery lattice body and a sheet material for a lattice body according to claim 1, wherein the temperature is .degree.
(3)加熱保持工程における加熱保持時間は15分〜5
時間である特許請求の範囲第1項記載の鉛蓄電池格子体
及び格子体用シート材の製造方法。
(3) The heating holding time in the heating holding process is 15 minutes to 5 minutes.
The method for producing a lead-acid battery lattice body and a sheet material for a lattice body according to claim 1, which is a time.
(4)急冷工程は溶体化処理のことである特許請求の範
囲第1項記載の鉛蓄電池格子体及び格子体用シート材の
製造方法。
(4) The method for manufacturing a lead acid battery grid and a sheet material for a grid according to claim 1, wherein the quenching step is a solution treatment.
JP61231024A 1986-09-29 1986-09-29 Manufacture of grid and grid sheet of lead acid battery Pending JPS6386267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61231024A JPS6386267A (en) 1986-09-29 1986-09-29 Manufacture of grid and grid sheet of lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61231024A JPS6386267A (en) 1986-09-29 1986-09-29 Manufacture of grid and grid sheet of lead acid battery

Publications (1)

Publication Number Publication Date
JPS6386267A true JPS6386267A (en) 1988-04-16

Family

ID=16917067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61231024A Pending JPS6386267A (en) 1986-09-29 1986-09-29 Manufacture of grid and grid sheet of lead acid battery

Country Status (1)

Country Link
JP (1) JPS6386267A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643959A (en) * 1987-06-26 1989-01-09 Shin Kobe Electric Machinery Lead-antimony alloy current collector
JP2016006412A (en) * 2014-05-26 2016-01-14 株式会社Gsユアサ Sensor
CN112086646A (en) * 2020-10-12 2020-12-15 天能集团(河南)能源科技有限公司 High-temperature-resistant lead-acid storage battery and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643959A (en) * 1987-06-26 1989-01-09 Shin Kobe Electric Machinery Lead-antimony alloy current collector
JP2016006412A (en) * 2014-05-26 2016-01-14 株式会社Gsユアサ Sensor
CN112086646A (en) * 2020-10-12 2020-12-15 天能集团(河南)能源科技有限公司 High-temperature-resistant lead-acid storage battery and preparation method thereof

Similar Documents

Publication Publication Date Title
KR930009985B1 (en) Process for strengthening lead-antimony alloys
CN101622742B (en) Method for producing lead-base alloy grid for lead-acid battery
CN110714147B (en) 6082 aluminum alloy plate for aviation and preparation process thereof
JPS60100655A (en) Production of high cr-containing ni-base alloy member having excellent resistance to stress corrosion cracking
JP2003535446A (en) Porous current collector for storage batteries and electrochemical cells with improved corrosion resistance
JPS6386267A (en) Manufacture of grid and grid sheet of lead acid battery
JPS609061A (en) Manufacture of lead alloy plate for lead storage battery substrate
JPH0413824B2 (en)
JPH03140444A (en) Manufacture of beryllium copper alloy member
JPH0326905B2 (en)
JPH0580543B2 (en)
JPS6062A (en) Manufacture of electrode plate for lead storage battery
CN114686662B (en) GH2132 high-temperature alloy and heat treatment method for improving hardness of GH2132 high-temperature alloy
JPS58204165A (en) Manufacture of lead alloy member
JPS58157054A (en) Manufacture of substrate for lead-acid battery
JPS6123856B2 (en)
JPH04366556A (en) Lead-acid battery electrode plate and its manufacture
JPH0320020B2 (en)
CN116043147A (en) Preparation method of superfine crystal bronze material
JPS59167966A (en) Manufacture of plate grid for lead storage battery
JPS5832742B2 (en) Method for manufacturing electrode plates for lead-acid batteries
JPH0450708B2 (en)
JPH05343070A (en) Manufacture of lead alloy sheet for expanded grid body of lead acid battery
CN117737625A (en) Nickel-based superalloy ingot casting homogenization heat treatment method
JPS60185365A (en) Manufacture of substrate for storage battery plate