JPS638586B2 - - Google Patents

Info

Publication number
JPS638586B2
JPS638586B2 JP53156632A JP15663278A JPS638586B2 JP S638586 B2 JPS638586 B2 JP S638586B2 JP 53156632 A JP53156632 A JP 53156632A JP 15663278 A JP15663278 A JP 15663278A JP S638586 B2 JPS638586 B2 JP S638586B2
Authority
JP
Japan
Prior art keywords
active material
ptfe
powder
fibers
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53156632A
Other languages
Japanese (ja)
Other versions
JPS5580274A (en
Inventor
Makoto Kanbayashi
Juji Morioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15663278A priority Critical patent/JPS5580274A/en
Publication of JPS5580274A publication Critical patent/JPS5580274A/en
Publication of JPS638586B2 publication Critical patent/JPS638586B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はシート状に成形した活物質層を電極芯
体に貼着し加圧成型してなる電池用電極板の製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing an electrode plate for a battery, in which a sheet-shaped active material layer is adhered to an electrode core and then pressure-molded.

(ロ) 従来の技術 従来のペースト式電極の製法は、活物質粉末と
ポリビニールアルコール、メチルセルロース等の
増粘剤を主成分とする糊料液とを混合混練してペ
ースト状とし、これをニツケル網やニツケルメツ
キを施したパンチング鉄板等の導電芯体の表面に
押し出し機ノズルから押し出して導き、コーテイ
ングして乾燥させたのち化成を施し水洗、乾燥し
て完成極板とするのが一般的であつた。
(b) Conventional technology The conventional manufacturing method for paste-type electrodes is to mix and knead active material powder and a glue solution containing a thickener such as polyvinyl alcohol or methylcellulose to form a paste, and then paste this into a paste. It is common to extrude it from an extruder nozzle onto the surface of a conductive core such as a net or punched iron plate with nickel plating, coat it, dry it, apply chemical conversion, wash it with water, and dry it to make a completed electrode plate. Ta.

しかしながら、上記従来法において添加する増
粘剤の量は活物質ペーストの粘性、乾燥後の極板
強度の面から活物質重量に対して2〜8%を必要
とするが、これらがそのまま電池内にとり込まれ
ると、充放電などで酸化分解され炭酸イオンとな
つて電極内に残存し、電極性能に悪影響を与える
ことになる。従つてこれら不純物の除去は不可欠
でありそのため電極板製造工程における化成は避
けられない。
However, in the above conventional method, the amount of thickener added is required to be 2 to 8% based on the weight of the active material due to the viscosity of the active material paste and the strength of the electrode plate after drying. If it is taken in, it will be oxidized and decomposed during charging and discharging, and will remain in the electrode as carbonate ions, which will have an adverse effect on electrode performance. Therefore, removal of these impurities is essential, and therefore chemical formation in the electrode plate manufacturing process is unavoidable.

これに対して近年化学的に不活性なポリ4フツ
化エチレン(以下PTFEで示す)を結着剤として
用いる電極板の製造法が提案された。この方法は
活物質粉末にPTFEのデイスパージヨンをPTFE
基準で1〜15%添加して混練し、粘土状になるま
で水を加熱或いは抽出によつて除去した後、ゴム
状弾性体となるまで煎断力を加え、これを所定の
厚さの活物質シートに成形したのち電極支持体に
貼着し加圧成型するものであり、この場合PTFE
が電池反応に関与しないため除去が不要であり、
合理化された簡易な製造法である。
In response to this, a method of manufacturing electrode plates using chemically inert polytetrafluoroethylene (hereinafter referred to as PTFE) as a binder has recently been proposed. This method involves adding a dispersion of PTFE to the active material powder.
Add 1 to 15% as standard, knead, remove water by heating or extraction until it becomes clay-like, apply shearing force until it becomes a rubber-like elastic body, and knead it to a predetermined thickness. After forming into a material sheet, it is attached to an electrode support and pressure molded. In this case, PTFE
Since it does not participate in the battery reaction, it is not necessary to remove it.
It is a streamlined and simple manufacturing method.

ところが、この製造法においても次のような問
題点がある。即ち煎断力を加える際、その方法や
程度が適切でないと圧延工程を経た活物質シート
の表面の均一性が保てないことである。又圧延工
程はカレンダー操作によるのが連続製造する場合
には望ましいが、この場合活物質層が弾性を有し
ているため、設定した一対のローラーの間隔値と
これらローラー間を通過して圧延された活物質シ
ートとの厚さが一致せず寸法精度を出すのが困難
となる。
However, this manufacturing method also has the following problems. That is, when applying shearing force, if the method and degree of application are not appropriate, the surface uniformity of the active material sheet after the rolling process cannot be maintained. In addition, it is desirable for the rolling process to be performed by a calender operation in the case of continuous production, but in this case, since the active material layer has elasticity, the distance between the set pair of rollers and the rolling distance between the pair of rollers is determined. Since the thickness of the active material sheet does not match that of the active material sheet, it is difficult to achieve dimensional accuracy.

PTFEを結着剤として用いる製法において、未
焼結PTFEが活物質粒子を保持し、極板強度を保
つ効果があるのは煎断力を加えることによつて
PTFEがフイブリル化して太さが0.1μ以下の繊維
となり、これが2個以上の活物質粒子をからめと
ることによりそれらを一体のものとしてつなぎ合
せ、巨視的には粉末全体を固定化するためである
と考えられる。ここでPTFEが活物質粒子を確実
に保持し、十分な極板強度を維持するためには活
物質が酸化カドミウムを主体とするような粉末で
ある場合、この粉末重量に対して概ね1%以上の
添加が必要である。
In manufacturing methods that use PTFE as a binder, unsintered PTFE retains active material particles and maintains the strength of the electrode plate by applying shearing force.
This is because PTFE fibrillates into fibers with a thickness of 0.1μ or less, which entangle two or more active material particles and connect them as one, macroscopically fixing the entire powder. it is conceivable that. Here, in order for PTFE to reliably hold the active material particles and maintain sufficient electrode plate strength, if the active material is a powder mainly composed of cadmium oxide, it must be approximately 1% or more of the powder weight. It is necessary to add

(ハ) 発明が解決しようとする問題点 一方、作業性の高いカレンダー法による活物質
シードの均一性について検討してみると、PTFE
の添加量がすくなくなると改善されることがわか
つた。1%以上のPTFEを含む場合、フイブリル
化したPTFE繊維は活物質粒子を保持すると同時
にそれら繊維同士も強く絡み合つている。そして
部分的にはPTFEの密度が相対的に高い箇所がで
き、煎断力をかけた際その部分については過度の
力が加わり形成された繊維の網がそこで切断され
てしまうために表面の均一性が失なわれると考え
られる。従つてPTFEの添加量を少くすると活物
質シートの均一性が得られやすくなるのである。
(c) Problems to be solved by the invention On the other hand, when examining the uniformity of active material seeds by the highly workable calender method, it was found that PTFE
It was found that the improvement was achieved when the amount of addition was reduced. When containing 1% or more of PTFE, the fibrillated PTFE fibers hold active material particles and at the same time, these fibers are also strongly entangled with each other. Then, there are areas where the density of PTFE is relatively high, and when shearing force is applied to these areas, excessive force is applied and the formed fiber network is severed, resulting in a uniform surface. It is thought that the sex will be lost. Therefore, by reducing the amount of PTFE added, it becomes easier to obtain uniformity of the active material sheet.

しかしながら、高い作業性を得るべく、PTFE
の使用量を単に減少させるだけでは、PTFEによ
る極板強度維持という作用が得られない。
However, in order to obtain high workability, PTFE
Merely reducing the amount of PTFE used cannot achieve the effect of maintaining the strength of the electrode plate due to PTFE.

本発明は前記問題点に鑑みなされたものであつ
て、電極製造工程時の活物質シートの均一性、電
極板とした場合の強度維持という点を解決しよう
とするものである。更には、電極の放電特性を改
善するものである。
The present invention has been made in view of the above-mentioned problems, and is intended to solve the problems of uniformity of an active material sheet during the electrode manufacturing process and maintenance of strength when used as an electrode plate. Furthermore, it improves the discharge characteristics of the electrode.

(ニ) 問題点を解決するための手段 本発明の電池用電極板の製造法は、活物質粉末
に煎断力の付加により繊維化可能な未焼結フツ素
樹脂粉末を前記活物質に対し0.15〜0.2%添加し、
混合したのち煎断力を加えて前記未焼結フツ素樹
脂粉末を繊維化し、ついで耐電解液性、耐酸化性
の短繊維を含む糊料液を加えて混練して得た混練
物をシート状に成形し、この活物質シートを電極
芯体に貼着し加圧成型することを特徴とするもの
である。
(d) Means for Solving the Problems The method for manufacturing a battery electrode plate of the present invention involves applying unsintered fluororesin powder, which can be made into fibers by applying shearing force to the active material powder, to the active material. Add 0.15-0.2%,
After mixing, shearing force is applied to make the unsintered fluororesin powder into fibers, and then a sizing solution containing electrolyte-resistant and oxidation-resistant short fibers is added and kneaded to form a sheet. The active material sheet is adhered to an electrode core and pressure-molded.

(ホ) 作用 PTFEの添加量に対し、種々の検討を加えた結
果、次の事が判明した。
(E) Effect As a result of various studies regarding the amount of PTFE added, the following was found.

一般的に未焼結PTFEを加えた粉末に液体を含
んだ状態で煎断力を加えると全体がゴム状弾性体
を呈するが、このような状態の物を得、単に活物
質を保持するだけであればPTFEの添加量は0.15
〜0.2%で充分である。つまりカレンダー法の作
業性の高さを生かした活物質シートの薄出し及び
前記活物質シートを電極芯体へ貼着するという製
造工程を採用することのみに注目し、極板からの
活物質の脱落、言い換えれば極板強度を問題にし
ない場合は、PTFEの添加量を0.15〜0.2%とすれ
ば良い。
Generally, when a shearing force is applied to a powder containing unsintered PTFE and it contains a liquid, the whole becomes a rubber-like elastic body. If so, the amount of PTFE added is 0.15
~0.2% is sufficient. In other words, we focused only on adopting the manufacturing process of thinning out the active material sheet and pasting the active material sheet to the electrode core by taking advantage of the high workability of the calendar method, If falling off, in other words, plate strength is not a problem, the amount of PTFE added may be 0.15 to 0.2%.

又、PTFEを結着剤として含んだ活物質層をカ
レンダーロール間を通過させて活物質シートを形
成するに際して、活物質層の弾力性を因としてゴ
ム状弾性体となつているので厚み調整が困難とな
ることは前述したとおりである。しかし、この点
についても本発明者が検討を加えた結果、PTFE
の添加量を減少させると共に液量を適当に調整す
れば、活物質層の弾力性は除々に失なわれ、
PTFEの添加量が0.3%以下になると電極製造工
程上ほとんど無視出来る程になり、活物質シート
を形成する際に厚み調整が容易に出来ることがわ
かつた。
In addition, when an active material layer containing PTFE as a binder is passed between calender rolls to form an active material sheet, the thickness can be adjusted because the active material layer becomes a rubber-like elastic body due to its elasticity. As mentioned above, this is difficult. However, as a result of the inventor's study on this point, PTFE
By reducing the amount of addition and adjusting the amount of liquid appropriately, the elasticity of the active material layer will gradually be lost.
It was found that when the amount of PTFE added is 0.3% or less, it becomes almost negligible in the electrode manufacturing process, and the thickness can be easily adjusted when forming the active material sheet.

一方、電極特性から検討すると、PTFEの添加
量を減ずれば電極反応を阻害する要因を除くこと
になり、放電特性も改良される。
On the other hand, when considering electrode characteristics, reducing the amount of PTFE added eliminates factors that inhibit electrode reactions, and improves discharge characteristics.

以上より、電極製造工程及び電極特性の両面か
ら考えると、PTFEの添加量は0.15%以上、0.2%
以下とするのが好ましいことが判明した。
From the above, considering both the electrode manufacturing process and electrode characteristics, the amount of PTFE added should be 0.15% or more, 0.2%
It has been found that the following is preferable.

したがつて、詳述したようにカレンダー法等の
圧延操作を行う上でPTFEの添加量を減少させ、
添加量を0.15〜0.2%とすることにより、活物質
シートの厚み調整、及び電池性能の改良が計れ
る。
Therefore, as described in detail, the amount of PTFE added during rolling operations such as the calender method is reduced,
By controlling the addition amount to 0.15 to 0.2%, it is possible to adjust the thickness of the active material sheet and improve battery performance.

ここで、PTFEの添加量の減少による乾燥後の
極板強度の低下を補う手段として耐電解液性、耐
酸化性の短繊維を少量添加することで目的が達成
される。その量は活物質重量に対して0.5〜0.7%
で充分である。
Here, the purpose is achieved by adding a small amount of electrolyte-resistant and oxidation-resistant short fibers as a means to compensate for the decrease in the strength of the electrode plate after drying due to the decrease in the amount of PTFE added. The amount is 0.5-0.7% based on the weight of the active material
is sufficient.

又、本発明法をアルカリ蓄電池の電極板に適用
する場合、上記短繊維としてポリエチレン、ポリ
プロピレン、ビニロン、ナイロン等の耐アルカリ
性、耐酸化性を有する微細な短繊維を用いること
ができる。
Further, when the method of the present invention is applied to electrode plates of alkaline storage batteries, fine short fibers having alkali resistance and oxidation resistance such as polyethylene, polypropylene, vinylon, nylon, etc. can be used as the short fibers.

(ヘ) 実施例 以下、本発明法の一実施例をアルカリ蓄電池の
カドミウム陰極板を例にとり詳述する。
(f) Example Hereinafter, an example of the method of the present invention will be described in detail by taking a cadmium cathode plate of an alkaline storage battery as an example.

酸化カドミウム粉末(平均粒子径0.7μ)90部、
放電可能な活性金属カドミウム(平均粒子径
3.0μ)10部及び未焼結PTFE粉末0.2部(活物質に
対し0.2%)を加えて混合したのち、煎断力を加
えて未焼結PTFEを繊維化する。その後ヒドロキ
シプロピルセルロース2.0部、リン酸2ナトリウ
ム4.4部、ポリエチレン繊維5.1部及び水100部を
均質に混合してなる糊料液を上記混合物質に対し
て26部加えて練合する。そしてゴム状弾性体を呈
したらカレンダー操作により厚さ0.3mmの活物質
シートを成形し、これをニツケル網よりなる電極
芯体の両側面に貼着し、更に加圧したのち熱風乾
燥炉に導き水分を除去して完成極板とする。
90 parts of cadmium oxide powder (average particle size 0.7μ),
Dischargeable active metal cadmium (average particle size
3.0μ) and 0.2 parts of unsintered PTFE powder (0.2% based on the active material) are added and mixed, and then shearing force is applied to fiberize the unsintered PTFE. Thereafter, 26 parts of a sizing solution prepared by homogeneously mixing 2.0 parts of hydroxypropyl cellulose, 4.4 parts of disodium phosphate, 5.1 parts of polyethylene fibers, and 100 parts of water are added to the above mixed material and kneaded. Once it becomes a rubber-like elastic body, a 0.3 mm thick active material sheet is formed by calendering, which is pasted on both sides of an electrode core made of nickel mesh, and after being further pressurized, it is introduced into a hot air drying oven. Water is removed to obtain a completed electrode plate.

図は上記実施例で得たカドミウム陰極板を用い
た電池Aと、従来のようにPTFEのみ結着剤とす
る(PTFEの添加量;1.2%)電池Bとの1時間
率の放電特性比較図を示す。
The figure shows a comparison of the discharge characteristics at a 1-hour rate between Battery A using the cadmium cathode plate obtained in the above example and Battery B using only PTFE as a binder (additional amount of PTFE: 1.2%) as in the past. shows.

図より電池Aの方が優れていることが伺える
が、これはPTFEのみを結着剤とする場合に比
し、活物質の反応面を覆う割合が少ないためと思
われる。
From the figure, it can be seen that Battery A is superior, but this is probably due to a smaller proportion of the reactive surface of the active material being covered than when using only PTFE as a binder.

(ト) 発明の効果 上述した如く、本発明による製造法によれば生
産性、作業性に優れ、且つ電池性能も改善される
ことになりその工業的価値は大である。
(G) Effects of the Invention As described above, the manufacturing method according to the present invention has excellent productivity and workability, and also improves battery performance, so it has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明により得たカドミウム陰極板を用い
た電池Aと、従来法によるカドミウム陰極板を用
いた電池Bとの放電特性比較図である。
The figure is a comparison diagram of discharge characteristics between battery A using a cadmium cathode plate obtained by the present invention and battery B using a cadmium cathode plate obtained by a conventional method.

Claims (1)

【特許請求の範囲】 1 活物質粉末に煎断力の付加により繊維化可能
な未焼結フツ素樹脂粉末を前記活物質に対し0.15
〜0.2%添加し、混合したのち煎断力を加えて前
記未焼結フツ素樹脂粉末を繊維化し、ついで耐電
解液性、耐酸化性の短繊維を含む糊料液を加えて
混練して得た混練物をシート状に成形し、この活
物質シートを電極芯体に貼着し加圧成型してなる
電池用電極板の製造法。 2 前記煎断力の付加により繊維化可能な未焼結
フツ素樹脂粉末として、ポリ4フツ化エチレン粉
末を用いることを特徴とする特許請求の範囲第1
項記載の電池用電極板の製造法。
[Scope of Claims] 1. Unsintered fluororesin powder that can be made into fibers by applying shearing force to the active material powder is 0.15% of the active material powder.
After adding ~0.2% and mixing, the unsintered fluororesin powder is made into fibers by applying shearing force, and then a sizing solution containing electrolyte-resistant and oxidation-resistant staple fibers is added and kneaded. A method for manufacturing an electrode plate for a battery, in which the obtained kneaded product is formed into a sheet shape, this active material sheet is adhered to an electrode core, and pressure molded. 2. Claim 1, characterized in that polytetrafluoroethylene powder is used as the unsintered fluororesin powder that can be made into fibers by applying shearing force.
A method for producing a battery electrode plate as described in .
JP15663278A 1978-12-11 1978-12-11 Manufacturing method for cell plate Granted JPS5580274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15663278A JPS5580274A (en) 1978-12-11 1978-12-11 Manufacturing method for cell plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15663278A JPS5580274A (en) 1978-12-11 1978-12-11 Manufacturing method for cell plate

Publications (2)

Publication Number Publication Date
JPS5580274A JPS5580274A (en) 1980-06-17
JPS638586B2 true JPS638586B2 (en) 1988-02-23

Family

ID=15631917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15663278A Granted JPS5580274A (en) 1978-12-11 1978-12-11 Manufacturing method for cell plate

Country Status (1)

Country Link
JP (1) JPS5580274A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198053A (en) * 1984-02-23 1985-10-07 Toshiba Battery Co Ltd Manufacture of positive electrode for nonaqueous electrolyte battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128137A (en) * 1974-03-18 1975-10-08
JPS5189133A (en) * 1975-02-03 1976-08-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128137A (en) * 1974-03-18 1975-10-08
JPS5189133A (en) * 1975-02-03 1976-08-04

Also Published As

Publication number Publication date
JPS5580274A (en) 1980-06-17

Similar Documents

Publication Publication Date Title
EP2343757B1 (en) Electrode for lead storage battery and lead storage battery
US3894886A (en) Apparatus for pasting battery plates
CN218274694U (en) Dry method composite electrode pole piece and lithium battery
JPS638586B2 (en)
CN112038575A (en) Lithium belt and preparation method and application thereof
US3003015A (en) Battery electrode
JP4352187B2 (en) Method for producing positive electrode for air battery
JP2006066246A (en) Positive electrode plate for alkaline storage battery, and its manufacturing method
JP4678301B2 (en) Method for manufacturing electrode for electric double layer capacitor
CN111146401A (en) Preparation method of battery pole piece and battery
US3791872A (en) Method for production of electrode for electrochemical cells
CN210167435U (en) Double-roller extrusion coating production equipment for energy storage electrode
JPH06231762A (en) Dispersion liquid of hydrogen storage alloy powder
CN112542559A (en) Double-roller extrusion coating production equipment for energy storage electrode
CN117199243A (en) Fluorine-free environment-friendly lithium manganese button cell and preparation method of positive electrode thereof
JPH07282814A (en) Manufacture of gas diffusion electrode
CN112542560A (en) Double-roller extrusion coating production method of energy storage electrode
CN116130788A (en) Battery cell negative electrode ceramic serging adhesive, preparation method and laminated battery
JPH02244555A (en) Zinc electrode for alkaline storage battery
CN116525748A (en) Pole piece, manufacturing method thereof and battery
JPS61135057A (en) Silver oxide cell
JPH0963574A (en) Manufacture of hydrogen storage alloy negative electrode for secondary battery
JPH1125958A (en) Manufacture of lithium battery electrode slurry
JPH09306508A (en) Manufacture of catalyst layer sheet, catalyst sheet by this method, and air battery therewith
WO1997020356A1 (en) Electrode for cell