JPS6385501A - Fresnel zone plate - Google Patents

Fresnel zone plate

Info

Publication number
JPS6385501A
JPS6385501A JP23214586A JP23214586A JPS6385501A JP S6385501 A JPS6385501 A JP S6385501A JP 23214586 A JP23214586 A JP 23214586A JP 23214586 A JP23214586 A JP 23214586A JP S6385501 A JPS6385501 A JP S6385501A
Authority
JP
Japan
Prior art keywords
zone plate
fresnel zone
ring
order
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23214586A
Other languages
Japanese (ja)
Other versions
JP2508018B2 (en
Inventor
Masaru Kawada
勝 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP23214586A priority Critical patent/JP2508018B2/en
Publication of JPS6385501A publication Critical patent/JPS6385501A/en
Application granted granted Critical
Publication of JP2508018B2 publication Critical patent/JP2508018B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms

Abstract

PURPOSE:To increase the utilizing efficiency of X-rays and to shorten exposing time by providing multiple stages of Fresnel zones which condense light with diffractions of the higher order nearer the outer side from the center. CONSTITUTION:The n-th ring radius of the Fresnel zone plate where the m-th order diffracted light condenses is as expressed by the equation I if the radius of the n-th ring of the Fresnel zone plate 2 and the width of the aperture part thereof are designated respectively as rn, dn; the distance between an X-ray source 1 and the Fresnel zone plate 2 is designated as (a) and the distance between side plate 2 and a condensing point 3 as (b). In the equation, (m) denotes the order of diffractions. The equation II is obtd. by selecting the width dn<(m)> in the aperture of the n-th ring of the m-th order diffraction Fresnel zone plate in such a manner that the optical path difference between the X-ray passing the X-ray source 1-diffraction point 4-condensing point 3 and the X-ray passing the X-ray source 1-bottom end 5 of the n-th ring-condensing point 3 attains mlambdax/2. The multistage Fresnel zone plate is attained by taking the number (n) (radius rn<(m)>) of the zones until the min. manufacturable ring width is attained and increasing the order of diffractions for the larger aperture diameter than said aperture diameter.

Description

【発明の詳細な説明】 (イン産業上の利用分野 本発明は、X線すングワフィーの分野で活性素子として
用いられているフレネルゾーンプレートに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to Fresnel zone plates used as active elements in the field of X-ray radiation.

P〕従来技術 X線は、屈折全利用した集団が困難なので。P] Conventional technology Because X-rays are difficult to use for all refraction groups.

回折全利用したフレネルゾーンプレートがX線用結像素
子として用いられている。
A Fresnel zone plate that makes full use of diffraction is used as an X-ray imaging element.

フレネルゾーンプレートは現在のところ、ル−リングエ
ンジンによる機械刻線、電子ビーム直線描画、ホログラ
フィック露光の3つの方法で製作されている。
Fresnel zone plates are currently manufactured using three methods: mechanical marking using a ruling engine, electron beam linear drawing, and holographic exposure.

フレネルゾーンプレートは外側にいくほど狭いリング幅
が要求され、最外殻リング幅はλX/2からλx/4(
λX:使用波長)あたりに収束していく。従って、使用
波長が短い(数〜数100A)X線用フレネルゾーンプ
レートの口径は製作可能な最小リング幅で決まる。
Fresnel zone plates require a ring width that is narrower toward the outside, and the outermost ring width is from λX/2 to λx/4 (
λX: used wavelength). Therefore, the diameter of a Fresnel zone plate for X-rays with a short wavelength (several to several hundred amperes) is determined by the minimum ring width that can be manufactured.

しかし、上記のいずれの方法によっても製作可能な最小
リング幅は0.2μm程度で、そのため0.1X1前後
の小口径のフレネルゾーンプレートしか製作できなかっ
た。小口径のため使用できるX線量は限られ、露光時間
が長なり。
However, the minimum ring width that can be manufactured by any of the above methods is about 0.2 μm, and therefore only a Fresnel zone plate with a small diameter of about 0.1×1 could be manufactured. Due to the small diameter, the amount of X-rays that can be used is limited and the exposure time is long.

スフレ−プツトが悪くなるという不都合が生じていた。This has caused the inconvenience of deteriorating the flake.

e役目 的 本発明は、現在製作可能なリング幅のままでフレネルゾ
ーンプレートの大口径化全実現することを目的とする。
The purpose of the present invention is to fully realize a large diameter Fresnel zone plate while keeping the ring width that can be manufactured at present.

に)程、1成 まず1機械刻線や電子ビーム直接描画で、X線の使用波
長λXでの正確なリングの刻線が可能な場合について説
明する。
2) First, we will explain the case where it is possible to accurately mark a ring at the wavelength λX of X-rays by using mechanical marking or electron beam direct writing.

第1図において、フレネルゾーンプレート2のn′tr
目のリングの半径と開口部の幅ヲそれぞれrn 、 d
n 、 X 線ffJ 1とフレネルゾーンプレート2
の間の距離をa、同プレート2と集光点(X線の無収差
の結像点の位置)3の間の距離をbとする。
In FIG. 1, n'tr of Fresnel zone plate 2
The radius of the eye ring and the width of the opening are rn and d, respectively.
n, X-ray ffJ 1 and Fresnel zone plate 2
Let the distance between the plate 2 and the condensing point (the position of the aberration-free imaging point of X-rays) 3 be b.

一般にこれがm次回折のフレネルゾーンプレートとする
と、X線# ] −’ 8目のリングの上@(回折点)
4−集光点3を通ったX線とX線源1−(n−1)番目
のリングの上端6−集光点3t−通ったX線の光路差は
mλXとなる0 5耳、a”+9−J儒會7−5区+b”= mλ・(n
、mは整数)    ・・・・・−・・・・・・・−・
・(1)但しとo=Oとする。
Generally, if this is a Fresnel zone plate of m-order diffraction, X-ray # ] −' Above the 8th ring @ (diffraction point)
4 - The optical path difference between the X-rays passing through the condensing point 3 and the X-rays passing through the X-ray source 1 - the upper end of the (n-1)th ring 6 - the condensing point 3t is mλX0 5 ears, a "+9-J Confucian Society 7-5 Ward+b" = mλ・(n
, m is an integer) ・・・・・・−・・・・・・・−・
・(1) However, o=O.

(1)式はnが1からr+1で成立するので、これらn
個の式を並べて夫々の和をとると9次のようになる。
Equation (1) holds true for n from 1 to r+1, so these n
If we line up these equations and take the sum of each, we get the 9th order.

r+r −a −b = nrnlx −(2)これよ
り となる。
r+r −a −b = nrnlx −(2) From this.

これは9mm次回先光集光するフレネルゾーンプレート
のn番目のリング半径全示し一ンは回折次数を表わす。
This represents the entire radius of the n-th ring of the Fresnel zone plate that focuses the 9 mm order light, and 1 represents the diffraction order.

X線源l−回折点4−集光点3を通るXiとX線源]−
n番目のリングの下端5−集光点3を通るX線の光路差
が、fflλX/2になるように1m次回折フレネルゾ
ーンプレートのn番目のリングの開口部の幅dnfp>
)を選ぶと。
X-ray source l - Diffraction point 4 - Xi passing through focal point 3 and X-ray source] -
Width of the opening of the nth ring of the 1m-order diffraction Fresnel zone plate dnfp>
).

となる。becomes.

多段階7レネルゾーンプレートは、ある回折次数mで製
作可能な最小リング幅になるまでゾーンの数n(半径、
n(m)、をとυ、それ以上の大口径化は回折次数を増
やすことによって達成しようとするものである。
A multistage 7-Renel zone plate is constructed by increasing the number of zones n (radius,
Increasing the aperture beyond n(m) and υ is attempted to be achieved by increasing the number of diffraction orders.

したがって、リング@を正確に刻線できる場合、製作可
能な最小リング幅dsisが与えられたとき、多段階フ
レネルゾーンプレートノ製作は次のようにする。
Therefore, if the ring can be scored accurately, and the minimum manufacturable ring width dsis is given, the fabrication of the multi-step Fresnel zone plate is as follows.

tず、1次回折フレネ〜ゾーンプレー)(m=1)で半
径r。(1)、リング幅d n(11を計算してni増
やしていき、bH1” > ’ 越> dn I +’
?’になるようなゾーンの数nI金求める。1次回折で
は、このときの半径「。!(1)が製作限界なので9次
に回折次数m f 2にとって、同様にしてdn2(2
)> ’xiyr > dn2−J’4’になるような
12 k求「(3)・・・・・・・・・全床める。これ
から半径が0からrn、(IJ、zでn 1 a回折)
、 半径力r。、(1) カラr−ウ(2J寸でと9汐
回址の  皐洋づr−(2)≠S瓜、r13(3)まで
は3次回折の・・−フレネルゾーンを(3)式と(4)
式で与えられるような半径r。←)とリング幅dn(m
)で刻んでいけば高次回折を利用したフレネルゾーンプ
レートの大口径化が実現できる。
tzu, 1st order diffraction Frenet ~ zone play) (m = 1) and radius r. (1), Calculate the ring width d n (11 and increase ni, bH1''>'Exceed> dn I +'
? Find the number of zones nI such that '. In the first-order diffraction, the radius ".!(1)" is the production limit, so for the ninth order of diffraction m f 2, dn2(2
) >'xiyr>dn2-J'4'. Find 12 k such that a diffraction)
, radial force r. , (1) Color r-U (2J size and 9 Shio times R-(2)≠S-melon, 3rd order diffraction up to r13(3)...- Fresnel zone is expressed by equation (3) and (4)
The radius r as given by Eq. ←) and ring width dn (m
), it is possible to increase the diameter of the Fresnel zone plate using higher-order diffraction.

次にホログラフィック露光で多段階フレネルゾーンプレ
ートを製作する場合について説明する。正確な刻線が可
能なときは、原理的に無収差だが、ホログラフィック露
光では露光波長λ■と使用波長λXがことなるために、
生じる収差も考慮しなければならない。m次回折でのフ
レネルゾーンプレートの最大の半径全決定する要因は製
作可能な最小リング幅の他に集光点での収差と回折次数
mの保存がある。
Next, a case will be described in which a multi-stage Fresnel zone plate is manufactured by holographic exposure. When accurate marking lines are possible, there is no aberration in principle, but in holographic exposure, the exposure wavelength λ■ and the used wavelength λX are different, so
The resulting aberrations must also be taken into account. The factors that determine the maximum radius of the Fresnel zone plate in m-order diffraction include the minimum ring width that can be manufactured, aberration at the focal point, and conservation of the diffraction order m.

まず、第2図のように前回折次数(m−1)での製作可
能な最大の半径γ0が与えられたとき、X線源1−回折
点4−集光点3とX線源1−n@目のリングの下端6−
集光点3の光路差が+71λXになる工うな次の(m次
iPIリテの最初のフリンゾの半径r!を求める。
First, as shown in Fig. 2, when the maximum radius γ0 that can be manufactured in the previous diffraction order (m-1) is given, Lower end of n@th ring 6-
Unless the optical path difference at the focal point 3 becomes +71λX, find the radius r! of the first fringe of the next (m-th order iPI Lite).

σ+ 7.2十西β♀r、”−q−力正至)7−〜λ・
よジ・・・・・・・・・・・−(5) 次に、このリング全露光波長λHで作るとき。
σ+ 7.2 Tonishi β♀r, "-q-Rikishoji) 7-~λ・
Yoji・・・・・・・・・・・・-(5) Next, when making this ring with the entire exposure wavelength λH.

io、f+がそれぞれλ11での(n−1)i目とn番
目の半径I n −+ + I nに相当し、露光波長
における2つの球面波の収束点7−回折点4−収束点8
と収束点7−リング下端6−収束点8の光路差がλHに
なるような球面波の集光位置ξ、ηを決める。
io and f+ correspond to the (n-1) i-th and n-th radii I n -+ + I n at λ11, respectively, and the convergence point 7 - diffraction point 4 - convergence point 8 of the two spherical waves at the exposure wavelength
The condensing positions ξ and η of the spherical waves are determined so that the optical path difference between the convergence point 7, the lower end of the ring 6, and the convergence point 8 becomes λH.

F耳)欝π+民票−ξ−η−(・−1)λ・Je”;−
’r、” +Pコn” −e −77= nλ、 °=
−(6)この(6)式を満たすようにn、ξ、ηを決め
ればよいが、これは一義的に決まらないので。
F ear) depression π + national vote −ξ−η−(・−1)λ・Je”;−
'r, "+Pconn" -e -77= nλ, °=
-(6) It is sufficient to determine n, ξ, and η so as to satisfy this equation (6), but these cannot be determined uniquely.

ここではひと1ず、第一近似としてζ二ηの場合につい
てのみ考えると。
For now, let's consider only the case of ζ2η as a first approximation.

のようになる。但し、(m)は回折次数を表わす0次に
、与えた回折次数mが保存される最大の半径金床める。
become that way. However, (m) is the 0th order representing the diffraction order, and the maximum radius anvil in which the given diffraction order m is preserved.

第3図のようにλHで作っ7’C(11−1)番目とn
番目のリング(半径rn−+。
As shown in Figure 3, the 7'C (11-1)th and n
th ring (radius rn-+.

rn)によるX線λXのm次、(m+1)次回新党の結
像位置(集光点)をそれぞれ9 、10 (フレネルゾ
ーンプレート2からの距離はツレぞれbm、bm+1)
とすると。
The imaging positions (focus points) of the m-th and (m+1) next new party of X-ray λX by rn) are 9 and 10, respectively (the distance from the Fresnel zone plate 2 is bm and bm+1 respectively)
If so.

但シcx=p −az+rn−+”  (>O)δ=5
7τ7;7 となる。今無収差の集光点3に最も近い収束光の回折次
数mを bm++  (b  (bm            
   ==−・(9)で定義したとすると、(8)式、
(9)式より但し β=F訂7「F 口 ]はガウス記号 となる。露光波長λトl、露光距離ξ(m)で作られた
最外殻リング(半径r、 )によって、b付近に集光す
るX線の回折次数全mNとするとであり、これが初めに
与えた回折次数mVC等しいためには であればよいので+ rHノr rs+12<< a2
. b2トして近似すると。
However, cx=p −az+rn−+” (>O) δ=5
7τ7;7. Now, the diffraction order m of the convergent light closest to the aberration-free condensing point 3 is bm++ (b (bm
==-・If defined by (9), then equation (8),
From equation (9), β = F7 is a Gaussian symbol.The outermost ring (radius r, ) made by the exposure wavelength λtl and the exposure distance ξ(m) If the total number of diffraction orders of the X-rays focused on is mN, then in order for this to be equal to the initially given diffraction order mVC, + rHnor rs+12<< a2
.. When approximated by b2.

・−・−・・・・・−(111 となる。・-・-・・・・・・-(111 becomes.

2 ツノ球面a (ξ=η)で露光したときのn番目の
リングの半径は で与えられ、r  が決まったときのリングax の個数をNとして、Nを r N < rm a x < j N+1で定義する
と。
2 The radius of the n-th ring when exposed on the horn sphere a (ξ=η) is given by, where N is the number of rings ax when r is determined, and N is r N < rm a x < j N+1 When defined as .

となる。03式と12式からはじめに与えた回折次数m
が保存される最大の半径r9が求まる。
becomes. Diffraction order m initially given from formulas 03 and 12
Find the maximum radius r9 that preserves.

で与えられる。is given by

また第3図のように結像面での収差CNを(−N =(
1−b””−m) rH・・・・−・・・・・・・・・
・・・・巴で定義する。
Also, as shown in Figure 3, the aberration CN at the imaging plane is expressed as (-N = (
1-b””-m) rH・・・・・・・・・・・・・・・・
...Defined by Tomoe.

m次回折でのフレネルゾーンプレートの最大半径は、ま
ず回折次数の保存から、+1)式、02式。
The maximum radius of the Fresnel zone plate in the m-th order of diffraction is determined by the equation +1) and the equation 02 from the conservation of diffraction orders.

D式でおさえられ、さらに製作可能な最小すング幅’m
inと結像点での許容収差Cが与えられると、 dmi
n < dN、 C>CNとなるように制限される。
Minimum swing width that can be suppressed by D type and further manufactured
Given in and the allowable aberration C at the imaging point, dmi
It is restricted so that n < dN, C > CN.

(ホ)実施例 使用波長λXとして5.4人を用い、a=15Qjll
b=680層とする〇 まず、正確な刻線が可能な場合での最大半径の計算結果
t−第4図に示す。但し、製作可能な最小線幅dmin
を0.2μmにとった・次にホログラフィック露光での
結果を第5図に示す。露光波長λHはHe −(:d 
 レーザーの4416人、を用い+ dmin = 0
.14μm 、 C= 0.18Mにとった。
(e) Using 5.4 people as the wavelength λX used in the example, a=15Qjll
Assume that b=680 layers〇 First, the calculation result of the maximum radius t when accurate marking lines are possible is shown in FIG. However, the minimum line width that can be manufactured is dmin
was set to 0.2 μm. Next, the results of holographic exposure are shown in FIG. The exposure wavelength λH is He −(:d
4416 of lasers, using + dmin = 0
.. It was set to 14 μm and C=0.18M.

なお、上述ホログラフィック露光法においては、簡単の
ため、最も単純な場合を考えたがξ=ηの球面波の場合
に駆足する必要はなく、収差等が小さくなるように、こ
のξ、ηあるいは露光波面等を最適化すればよい。
In addition, in the above-mentioned holographic exposure method, for the sake of simplicity, we considered the simplest case, but it is not necessary to use a spherical wave with ξ = η. Alternatively, the exposure wavefront etc. may be optimized.

(へ)効 果 本発明により、X線領域におけるフレネルゾーンプレー
トの大口径化が可能であるので。
(f) Effects According to the present invention, it is possible to increase the diameter of the Fresnel zone plate in the X-ray region.

これによってX線の利用効率が増大し、露光時間の短縮
、スμmプフトの向上といった効果が期待できる。
This increases the utilization efficiency of X-rays, and can be expected to have effects such as shortening exposure time and improving μm swiftness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的なm次回折フレネpゾーンプレート全説
明する図、第2図は小ログラフイック露光によるm次回
折フレネルゾーンプレートを説明する図、第3図はホロ
グラフィック露光で作られたフレネルゾーンプレートに
よる結像を説明する図、第4図は正確な刻線が可能な場
合の製作可能な最大半径の計算例、第5図はホログラフ
ィック露光法で製作したときの最大半径の計算例である
。 1・・・Xii   2・・・フレネルゾーンプレート
3−・焦光点 4・・・n番目のリングの上端(回折点う5・−n番目
のリングの下端 6−・(n−1)番目のリングの上端 7.8−・露光波長における2つの球面波の収束点 9−n番目のゾーンと(ロー1)番目のゾーンによるm
次回新党の結像位置
Figure 1 is a diagram completely explaining the general m-order diffraction Fresnel p-zone plate, Figure 2 is a diagram explaining the m-order fresnel zone plate made by small holographic exposure, and Figure 3 is a diagram explaining the m-order fresnel zone plate made by holographic exposure. A diagram explaining image formation using a Fresnel zone plate, Figure 4 is an example of calculating the maximum radius that can be manufactured when accurate marking lines are possible, and Figure 5 is a calculation of the maximum radius when manufacturing using the holographic exposure method. This is an example. 1. Upper end of the ring 7.8 - Convergence point of two spherical waves at the exposure wavelength 9 - m due to the nth zone and the (row 1)th zone
Next time the new party's image location

Claims (1)

【特許請求の範囲】[Claims] 中心から外側にいくに従ってより高次の回折で集光する
多段階のフレネルゾーンから成ることを特徴とするフレ
ネルゾーンプレート。
A Fresnel zone plate characterized by being composed of multi-stage Fresnel zones that converge light with higher order diffraction from the center outward.
JP23214586A 1986-09-29 1986-09-29 Fresnel Zone Plate Expired - Lifetime JP2508018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23214586A JP2508018B2 (en) 1986-09-29 1986-09-29 Fresnel Zone Plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23214586A JP2508018B2 (en) 1986-09-29 1986-09-29 Fresnel Zone Plate

Publications (2)

Publication Number Publication Date
JPS6385501A true JPS6385501A (en) 1988-04-16
JP2508018B2 JP2508018B2 (en) 1996-06-19

Family

ID=16934699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23214586A Expired - Lifetime JP2508018B2 (en) 1986-09-29 1986-09-29 Fresnel Zone Plate

Country Status (1)

Country Link
JP (1) JP2508018B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121979A (en) * 1986-05-14 1992-06-16 Cohen Allen L Diffractive multifocal optical device
US5144483A (en) * 1986-05-14 1992-09-01 Cohen Allen L Diffractive multifocal optical device
US5627679A (en) * 1991-06-10 1997-05-06 Olympus Optical Co., Ltd. Optical systems making use of phase type fresnel zone plates
CN113253331A (en) * 2021-05-11 2021-08-13 中国工程物理研究院激光聚变研究中心 ICF hot spot three-dimensional coding imaging method based on Bragg Fresnel zone plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121979A (en) * 1986-05-14 1992-06-16 Cohen Allen L Diffractive multifocal optical device
US5144483A (en) * 1986-05-14 1992-09-01 Cohen Allen L Diffractive multifocal optical device
US5627679A (en) * 1991-06-10 1997-05-06 Olympus Optical Co., Ltd. Optical systems making use of phase type fresnel zone plates
CN113253331A (en) * 2021-05-11 2021-08-13 中国工程物理研究院激光聚变研究中心 ICF hot spot three-dimensional coding imaging method based on Bragg Fresnel zone plate
CN113253331B (en) * 2021-05-11 2022-03-01 中国工程物理研究院激光聚变研究中心 ICF hot spot three-dimensional coding imaging method based on Bragg Fresnel zone plate

Also Published As

Publication number Publication date
JP2508018B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
US7916394B2 (en) Diffractive optical element and optical system using the same
WO2010073573A1 (en) Diffractive lens and image pickup device using the same
JP2000075118A (en) Diffraction optical element and optical system using the same
JP4387855B2 (en) Optical system
US8902514B2 (en) Diffractive lens
JP2000249818A (en) Diffraction lend and method for designing the same
JPS6385501A (en) Fresnel zone plate
JPWO2011105067A1 (en) Diffraction lens and imaging apparatus using the same
CN103048716A (en) Single stage focusing wave zone plate and manufacturing method thereof
KR100468855B1 (en) Hybrid lens with high numerical number
US9454132B2 (en) Integrated hologram optical device
JP2000098118A (en) Diffraction optical element and optical system having the element
JP2001042253A (en) Laser irradiation optical system
JPS6026905A (en) Spherical hologram lens
JP3860261B2 (en) Diffractive optical element having diffractive surfaces on both sides
US10436722B2 (en) Positive/negative phase shift bimetallic zone plate
JP2021117366A5 (en)
CN108646330A (en) A kind of full impregnated zone plate
KR102046103B1 (en) Integrated hologram optical element
JPS63239402A (en) Optical device
JPH0431593B2 (en)
WO2022153978A1 (en) Mirror design method, and astigmatism control mirror having reflection surface on which design equation in said method is established
RU2238576C1 (en) Method for focusing wave field and device for realization of said method
JP3655697B2 (en) Ranging device
Dikedi Rotating X-Ray Window for Multilayer Probing of Cells; Microfocussing Techniques