JP2508018B2 - Fresnel Zone Plate - Google Patents

Fresnel Zone Plate

Info

Publication number
JP2508018B2
JP2508018B2 JP23214586A JP23214586A JP2508018B2 JP 2508018 B2 JP2508018 B2 JP 2508018B2 JP 23214586 A JP23214586 A JP 23214586A JP 23214586 A JP23214586 A JP 23214586A JP 2508018 B2 JP2508018 B2 JP 2508018B2
Authority
JP
Japan
Prior art keywords
fresnel zone
zone plate
diffraction
ring
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23214586A
Other languages
Japanese (ja)
Other versions
JPS6385501A (en
Inventor
勝 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP23214586A priority Critical patent/JP2508018B2/en
Publication of JPS6385501A publication Critical patent/JPS6385501A/en
Application granted granted Critical
Publication of JP2508018B2 publication Critical patent/JP2508018B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は,X線リングラフィーの分野で結像素子として
用いられているフレネルゾーンプレートに関する。
The present invention relates to a Fresnel zone plate used as an imaging element in the field of X-ray linography.

(ロ)従来技術 X線は,屈折を利用した集団が困難なので,回折を利
用したフレネルゾーンプレートがX線用結像素子として
用いられている。
(B) Conventional technology Since it is difficult to collect X-rays using refraction, Fresnel zone plates using diffraction are used as X-ray imaging elements.

フレネルゾーンプレートは現在のところ,ルーリング
エンジンによる機械刻線,電子ビーム直線描画,ホログ
ラフィック露光の3つの方法で製作されている。
Fresnel zone plates are currently manufactured by three methods: mechanical engraving by a ruling engine, electron beam straight line drawing, and holographic exposure.

フレネルゾーンプレートは外側にいくほど狭いリング
幅が要求され,最外殻リング幅はλx/2からλx/4(λx:
使用波長)あたりに収束していく。従って,使用波長が
短い(数〜数100Å)X線用フレネルゾーンプレートの
口径は製作可能な最小リング幅で決まる。
The Fresnel zone plate is required to have a narrow ring width toward the outside, and the outermost shell ring width is λx / 2 to λx / 4 (λx:
It converges around the (used wavelength). Therefore, the diameter of the Fresnel zone plate for X-rays with a short operating wavelength (several to several hundreds of liters) is determined by the minimum ring width that can be manufactured.

しかし,上記のいずれの方法によっても製作可能な最
小リング幅は0.2μm程度で,そのため0.1mm前後の小口
径のフレネルゾーンプレートしか製作できなかった。小
口径のため使用できるX線量は限られ,露光時間が長な
り,スループットが悪くなるという不都合が生じてい
た。
However, the minimum ring width that can be produced by any of the above methods is about 0.2 μm, so only a Fresnel zone plate with a small diameter of around 0.1 mm could be produced. Due to the small aperture, the X-ray dose that can be used is limited, the exposure time becomes long, and the throughput deteriorates.

(ハ)目 的 本発明は,現在製作可能なリング幅のままでフレネル
ゾーンプレートの大口径化を実現することを目的とす
る。
(C) Objective The present invention aims to realize a large diameter Fresnel zone plate with the ring width that can be manufactured at present.

(ニ)構 成 まず,機械刻線や電子ビーム直接描画で,X線の使用波
長λxでの正確なリングの刻線が可能な場合について説
明する。
(D) Configuration First, we will describe the case where an accurate ring marking can be made at the wavelength λx used for X-rays by mechanical marking or electron beam direct writing.

第1図において,フレネルゾーンプレート2のn番目
のリングの半径と開口部の幅をそれぞれrn,dn,X線源1
とフレネルゾーンプレート2の間の距離をa,同プレート
2と集光点(X線の無収差の結像点の位置)3の間の距
離をbとする。
In FIG. 1, the radius of the n-th ring and the width of the opening of the Fresnel zone plate 2 are represented by rn, dn, and X-ray source 1, respectively.
The distance between the Fresnel zone plate 2 and the Fresnel zone plate 2 is a, and the distance between the plate 2 and the focal point (the position of the X-ray aberration-free image forming point) 3 is b.

一般にこれがm次回折のフレネルゾーンプレートとす
ると,X線源1−n番目のリングの上端(回折点)4−集
光点3を通ったX線とX線源1−(n−1)番目のリン
グの上端6−集光点3を通ったX線の光路差はmλxと
なる。
Generally, if this is the Fresnel zone plate for the m-th order diffraction, the X-ray source 1-the upper end (diffraction point) of the nth ring 4-the X-ray passing through the condensing point 3 and the X-ray source 1- (n-1) th The optical path difference of the X-ray passing through the upper end 6 of the ring-the condensing point 3 is mλx.

但しγ=oとする。 However, γ 0 = o.

(1)式はnが1からnまで成立するので,これらn個
の式を並べて夫々の和をとると,次のようになる。
In the expression (1), n is satisfied from 1 to n. Therefore, when these n expressions are arranged and the sums thereof are obtained, the following is obtained.

これより となる。 Than this Becomes

これは,m次回折光が集光するフレネルゾーンプレート
のn番目のリング半径を示し(m)は回折次数を表わ
す。X線源1−回折点4−集光点3を通るX線とX線源
1−n番目のリングの下端5−集光点3を通るX線の光
路差がmλx/2になるように,m次回折フレネルゾーンプ
レートのn番目のリングの開口部の幅dn (m)を選ぶ
と, となる。
This represents the n-th ring radius of the Fresnel zone plate on which the m-th order diffracted light is focused, and (m) represents the diffraction order. The optical path difference between the X-ray source 1-diffraction point 4-converging point 3 and the X-ray source 1-the lower end of the nth ring 5-X-ray passing the converging point 3 should be mλx / 2. If the width d n (m) of the opening of the n-th ring of the m-th order Fresnel zone plate is selected, Becomes

多段階フレネルゾーンプレートは,ある回折次数mで
製作可能な最小リング幅になるまでゾーンの数n(半径
rn (m))をとり,それ以上の大口径化は回折次数を増
やすことによって達成しようとするものである。
The multi-stage Fresnel zone plate has a number of zones n (radius up to the minimum ring width that can be manufactured with a certain diffraction order m).
r n (m) ) is taken, and the further increase in diameter is to be achieved by increasing the diffraction orders.

したがって,リング幅を正確に刻線できる場合,製作
可能な最小リング幅d minが与えられたとき,多段階フ
レネルゾーンプレートの製作は次のようにする。
Therefore, if the ring width can be accurately marked, given the minimum ring width d min that can be manufactured, the fabrication of the multi-stage Fresnel zone plate is as follows.

まず,1次回折フレネルゾーンプレート(m=1)で半
径rn (1),リング幅dn (1)を計算してnを増やして
いき,bn1 (1)>d min>bn1+1 (1)になるようなゾー
ンの数n1を求める。1次回折では,このときの半径rn1
(1)が製作限界なので,次に回折次数mを2にとっ
て,同様にしてdn2 (2)>dmin>dn2+1 (2)になるよ
うなn2を求める。以上同様の手続きを経てrn1 (1),r
n2 (2),rn3 (3)……を求める。これから半径が0か
らrn1 (1)までは1次回折の,半径がrn1 (1)からr
n2 (2)までは2次回折の,半径がrn2 (2)からrn3
(3)までは3次回折の……フレネルゾーンを(3)式
と(4)式で与えられるような半径rn (m)とリング幅
dn (m)で刻んでいけば高次回折を利用したフレネルゾ
ーンプレートの大口径化が実現できる。
First, calculate the radius r n (1) and the ring width d n (1) in the 1st-order diffractive Fresnel zone plate (m = 1) to increase n, and b n1 (1) > d min > b n1 + 1 Find the number of zones n 1 that gives (1) . In the 1st order diffraction, the radius r n1 at this time
Since (1) is the fabrication limit, next, the diffraction order m is set to 2, and similarly n 2 is obtained so that d n2 (2) > d min > d n2 + 1 (2) . Through the same procedure as above, r n1 (1) , r
Find n2 (2) , r n3 (3) .... From this, the radius from 0 to r n1 (1) is the first diffraction order, and the radius is from r n1 (1) to r n1 (1)
Up to n2 (2) , the second-order diffraction has a radius from r n2 (2) to r n3
(3) up to the 3 order diffraction ...... Fresnel zone (3) and (4) as given by formulas radius r n (m) and ring width
Engraving with d n (m) makes it possible to increase the diameter of the Fresnel zone plate using high-order diffraction.

次にホログラフィック露光で多段階フレネルゾーンプ
レートを製作する場合について説明する。正確な刻線が
可能なときは,原理的に無収差だが,ホログラフィック
露光では露光波長λと使用波長λがことなるため
に,生じる収差も考慮しなければならない。m次回折で
のフレネルゾーンプレートの最大の半径を決定する要因
は製作可能な最小リング幅の他に集光点での収差と回折
次数mの保存がある。まず,第2図のように前回折次数
(m−1)での製作可能な最大の半径γが与えられた
とき,X線源1−回折点4−集光点3とX線源1−n番目
のリングの下端6−集光点3の光路差がmλxになるよ
うな次の(m次回折の最初の)リングの半径γを求め
る。
Next, a case of manufacturing a multi-stage Fresnel zone plate by holographic exposure will be described. When accurate marking lines are possible, there is no aberration in principle, but since the exposure wavelength λ H and the use wavelength λ X are different in holographic exposure, the aberration that occurs must also be considered. Factors that determine the maximum radius of the Fresnel zone plate in the m-th order diffraction include the aberration at the focal point and the conservation of the diffraction order m in addition to the minimum ring width that can be manufactured. First, given the maximum manufacturable radius γ 0 in the pre-diffraction order (m-1) as shown in Fig. 2, X-ray source 1-diffraction point 4-focus point 3 and X-ray source 1 The radius γ 1 of the next (first in the m-th order diffraction) ring such that the optical path difference between the lower end 6 of the n-th ring and the focal point 3 is mλx is obtained.

次に,このリングを露光波長λで作るとき,γ0
がそれぞれλでの(n−1)番目とn番目の半径γ
n-1に相当し,露光波長における2つの球面波の収
束点7−回折点4−収束点8と収束点7−リング下端6
−収束点8の光路差がλになるような球面波の集光位
置ξ,ηを決める。
Next, when this ring is made at the exposure wavelength λ H , γ 0 , γ
1 is the (n-1) th and nth radii γ at λ H , respectively
n-1, gamma corresponds to n, the convergence point of two spherical waves at the exposure wavelength 7 and diffraction points 4 convergence point 8 converging point 7 ring lower end 6
-Determine the condensing positions ξ and η of the spherical wave so that the optical path difference at the converging point 8 becomes λ H.

この(6)式を満たすようにn,ξ,ηを決めればよい
が,これは一義的に決まらないので,ここではひとま
ず,第一近似としてξ=ηの場合についてのみ考える
と, のようになる。但し,(m)は回折次数を表わす。次
に,与えた回折次数mが保存される最大の半径を求め
る。第3図のようにλで作った(n−1)番目とn番
目のリング(半径γn-1)によるX線のλのm
次,(m+1)次回折光の結像位置(集光点)をそれぞ
れ9,10(フレネルゾーンプレート2からの距離はそれぞ
れbm,bm+1)とすると, となる。今無収差の集光点3に最も近い収束光の回折次
数mを bm+1<b<bm ……(9) で定義したとすると,(8)式,(9)式より となる。露光波長λH,露光距離ξ(m)で作られた最外
殻リング(半径γ)によって,b付近に集光するX線の
回折次数をmNとすると であり,これが初めに与えた回折次数mに等しいために
であればよいので,γN 2N+1 2《a2,b2として近似する
と, となる。
It is sufficient to determine n, ξ, and η so as to satisfy the expression (6), but this is not uniquely determined, so here, for the time being, consider only the case of ξ = η as the first approximation. become that way. However, (m) represents the diffraction order. Next, the maximum radius where the given diffraction order m is stored is found. As shown in FIG. 3, m of λ X of X-ray by (n-1) th and nth rings (radius γ n-1 , γ n ) made with λ H
If the imaging positions (focus points) of the 2nd and (m + 1) th order diffracted lights are 9 and 10 (distances from the Fresnel zone plate 2 are b m and b m + 1 , respectively), Becomes Now, assuming that the diffraction order m of the convergent light closest to the focus point 3 with no aberration is defined by b m + 1 <b <b m (9), from equations (8) and (9) Becomes Assuming that the diffraction order of X-rays focused near b is m N by the outermost shell ring (radius γ N ) created with exposure wavelength λ H and exposure distance ξ (m) And in order for this to be equal to the diffraction order m initially given, Therefore, if it is approximated as γ N 2 , γ N + 1 2 << a 2 , b 2 , Becomes

2つの球面波(ξ=η)で露光したときのn番目のリ
ングの半径は で与えられ,γmaxが決まったときのリングの個数をN
として,Nを γ<γmax<γN+1 で定義すると, となる。(13)式と(12)式からはじめに与えた回折次
数mが保存される最大の半径γが求まる。N番目のゾ
ーンの開口部の幅dNで与えられる。
The radius of the nth ring when exposed with two spherical waves (ξ = η) is And the number of rings when γ max is determined is N
And N is defined as γ NmaxN + 1 , Becomes From equations (13) and (12), the maximum radius γ N in which the diffraction order m given at the beginning is stored can be found. The width d N of the opening of the Nth zone is Given in.

また第3図のように結像面での収差CNで定義する。Also, as shown in FIG. 3, the aberration C N on the image plane is Defined by

m次回折でのフレネルゾーンプレートの最大半径は,
まず回折次数の保存から(11)式,(12)式,(13)式
でおさえられ,さらに製作可能な最小リング幅dminと結
像点での許容収差Cが与えられると,dmin<dN,C>CN
なるように制限される。
The maximum radius of the Fresnel zone plate in the mth diffraction is
First, from the conservation of the diffraction order, it is controlled by the equations (11), (12), and (13). Furthermore, given the minimum ring width d min that can be manufactured and the allowable aberration C at the image formation point, d min < It is restricted so that d N , C> C N.

(ホ)実施例 使用波長λxとして5.4Åを用い,a=150mm b=680mm
とする。
(E) Example Using 5.4Å as the wavelength λx used, a = 150 mm b = 680 mm
And

まず,正確な刻線が可能な場合での最大半径の計算結
果を第4図に示す。但し,製作可能な最小線幅dminを0.
2μmにとった。
First, Fig. 4 shows the calculation result of the maximum radius when accurate carving is possible. However, the minimum line width d min that can be manufactured is 0.
It was set to 2 μm.

次にホログラフィック露光での結果を第5図に示す。
露光波長λはHe−Cdレーザの4416Å,を用い,dmin
0.14μm,C=0.18mmにとった。
Next, the result of the holographic exposure is shown in FIG.
The exposure wavelength λ H is 4416Å of He-Cd laser, and d min =
The distance was 0.14 μm and C = 0.18 mm.

なお,上述ホログラフィック露光法においては,簡単
のため,最も単純な場合を考えたがξ=ηの球面波の場
合に限定する必要はなく,収差等が小さくなるように,
このξ,ηあるいは露光波面等を最適化すればよい。
In the above holographic exposure method, the simplest case was considered for simplicity, but it is not necessary to limit to the case of a spherical wave of ξ = η, and the aberration etc. can be reduced so that
This ξ, η or the exposure wavefront may be optimized.

(ヘ)効 果 本発明により,X線領域におけるフレネルゾーンプレー
トの大口径化が可能であるので,これによってX線の利
用効率が増大し,露光時間の短縮,スループットの向上
といった効果が期待できる。
(F) Effects Since the present invention allows the Fresnel zone plate to have a large diameter in the X-ray region, it is expected that the use efficiency of X-rays is increased, the exposure time is shortened, and the throughput is improved. .

【図面の簡単な説明】[Brief description of drawings]

第1図は一般的なm次回折フレネルゾーンプレートを説
明する図,第2図はホログラフィック露光によるm次回
折フレネルゾーンプレートを説明する図,第3図はホロ
グラフィック露光で作られたフレネルゾーンプレートに
よる結像を説明する図,第4図は正確な刻線が可能な場
合の製作可能な最大半径の計算例,第5図はホログラフ
ィック露光法で製作したときの最大半径の計算例であ
る。 1……X線源、2……フレネルゾーンプレート 3……焦光点 4……n番目のリングの上端(回折点) 5……n番目のリングの下端 6……(n−1)番目のリングの上端 7,8……露光波長における2つの球面波の収束点 9……n番目のゾーンと(n−1)番目のゾーンによる
m次回折光の結像位置 10……n番目のゾーンと(n−1)番目のゾーンによる
(m+1)次回折光の結像位置
FIG. 1 is a diagram for explaining a general m-th order diffractive Fresnel zone plate, FIG. 2 is a diagram for explaining an m-th order diffractive Fresnel zone plate by holographic exposure, and FIG. 3 is a Fresnel zone made by holographic exposure. Fig. 4 is a diagram for explaining image formation by a plate, Fig. 4 is an example of calculation of the maximum radius that can be manufactured when accurate marking is possible, and Fig. 5 is an example of calculation of the maximum radius when the holographic exposure method is used. is there. 1 ... X-ray source, 2 ... Fresnel zone plate 3 ... Focus point 4 ... Top of nth ring (diffraction point) 5 ... Bottom of nth ring 6 ... (n-1) th Upper end of the ring of 7 ... Convergence point of two spherical waves at exposure wavelength 9 ... Image forming position of m-th order diffracted light by nth zone and (n-1) th zone 10 ... nth zone And the imaging position of the (m + 1) th order diffracted light by the (n-1) th zone

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】中心から外側にいくに従ってより高次の回
折で集光する多段階のフレネルゾーンから成ることを特
徴とするフレネルゾーンプレート。
1. A Fresnel zone plate comprising a multi-stage Fresnel zone for collecting light in higher diffraction orders from the center to the outside.
JP23214586A 1986-09-29 1986-09-29 Fresnel Zone Plate Expired - Lifetime JP2508018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23214586A JP2508018B2 (en) 1986-09-29 1986-09-29 Fresnel Zone Plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23214586A JP2508018B2 (en) 1986-09-29 1986-09-29 Fresnel Zone Plate

Publications (2)

Publication Number Publication Date
JPS6385501A JPS6385501A (en) 1988-04-16
JP2508018B2 true JP2508018B2 (en) 1996-06-19

Family

ID=16934699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23214586A Expired - Lifetime JP2508018B2 (en) 1986-09-29 1986-09-29 Fresnel Zone Plate

Country Status (1)

Country Link
JP (1) JP2508018B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121979A (en) * 1986-05-14 1992-06-16 Cohen Allen L Diffractive multifocal optical device
US5144483A (en) * 1986-05-14 1992-09-01 Cohen Allen L Diffractive multifocal optical device
JPH04361201A (en) * 1991-06-10 1992-12-14 Olympus Optical Co Ltd Optical system using fresnel zone plate
CN113253331B (en) * 2021-05-11 2022-03-01 中国工程物理研究院激光聚变研究中心 ICF hot spot three-dimensional coding imaging method based on Bragg Fresnel zone plate

Also Published As

Publication number Publication date
JPS6385501A (en) 1988-04-16

Similar Documents

Publication Publication Date Title
JP3614294B2 (en) Light intensity conversion element, optical device, and information storage device
JPH1092002A (en) Diffraction grating lens
EP0372345B1 (en) Light source device
JPS59149315A (en) Optical apparatus for semiconductor laser
JP2508018B2 (en) Fresnel Zone Plate
US4235507A (en) Optical system to condense light from a semiconductor laser into a circular spot
JP2003270528A (en) Method for designing objective lens, objective lens, lens for multiple wavelengths, optical system for multiple wavelengths, optical head, and optical disk device
KR100468855B1 (en) Hybrid lens with high numerical number
US7280444B2 (en) Objective optical element, optical pickup device, and optical information recording and reproducing device
JP2005158213A (en) Objective optical system for optical recording medium, and optical pickup device using the same
EP0135047A1 (en) A method of producing a hologram lens
GB2204149A (en) Graded refractive index lens system
JP2005522026A (en) Condensing unit comprising a reflective element for an illumination optical system using a wavelength of 193 nm or less
RU2238576C1 (en) Method for focusing wave field and device for realization of said method
JPH0823626B2 (en) Objective lens for optical disc
JP2006114081A (en) Objective lens and optical pickup system
JPH06215409A (en) Optical system and chromatic aberration compensating element for optical information recording and reproducing device
JPH0127402B2 (en)
JP3331144B2 (en) Beam shaping optics
JPS6131447B2 (en)
JP2001083410A (en) Objective lens and pickup device using it
JP3348873B2 (en) Defocus detection device and optical head using the same
JP2005149626A (en) Objective lens for optical recording medium, and optical pickup device using the same
JPH0797162B2 (en) Optical beam expander
JPH07114025B2 (en) Optical information reproducing device