JPS6385429A - Method and device for centrifugal type continuous analysis - Google Patents

Method and device for centrifugal type continuous analysis

Info

Publication number
JPS6385429A
JPS6385429A JP23244286A JP23244286A JPS6385429A JP S6385429 A JPS6385429 A JP S6385429A JP 23244286 A JP23244286 A JP 23244286A JP 23244286 A JP23244286 A JP 23244286A JP S6385429 A JPS6385429 A JP S6385429A
Authority
JP
Japan
Prior art keywords
cuvette
liquid
reagent
reaction
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23244286A
Other languages
Japanese (ja)
Inventor
Toshimi Kadota
門田 俊美
Mitsuhito Fujimura
藤村 満仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP23244286A priority Critical patent/JPS6385429A/en
Publication of JPS6385429A publication Critical patent/JPS6385429A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes

Abstract

PURPOSE:To easily detect the abnormality of the discharge of liquid from cuvettes, the dispensation of cleaning liquid, etc., by detecting whether or not there is liquid in the cuvettes during the rotation of a centrifugal separating rotor from the characteristic absorption wavelength of the liquid at the cleaning stage of the curvettes. CONSTITUTION:The dispensation is performed from a sample tray 13 and a 1st and the 2nd reagent bottle receivers 6 and 7 to the cuvettes 3 on a reaction tray 2 by a pipetter 9 and the 1st and the 2nd reagent dispensers 17 and 23 and a measurement is taken after fast rotation. The tray 2 is fed stepwise after the measuring operation to inject the cleaning water in all cuvettes 3 by a cleaning water dispenser 32, and then the tray 2 is rotated at a high speed to discharge the cleaning water by a siphon phenomenon. A measuring instrument 49 for abnormality detection provided to a measurement part 30 finds the absorbance of detection light 52 passing through the reaction and light measurement part 46 of the cuvette 3 during the water discharging operation and then the absorbance of the reaction and light measurement part 46 which is clean and empty is compared with that of the reaction and light measurement part 46 which is filled with the washing liquid to detect whether or not there is abnormality.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、遠心方式の連続分析方法及びその装置に関し
、特に、血液、血漿、血清、尿、その他体液及び分泌液
等の検体並びにその他生化学試料分析用の遠心方式の連
続分析方法及び装置に関する。また、本発明は、遠心方
式の自動分析装置におけるキュベツト排出路のつまり検
出方法及びその装置並びに検体分注装置及び洗浄液分注
装置の作動監視方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a centrifugal continuous analysis method and apparatus thereof, and in particular, to a centrifugal continuous analysis method and apparatus for analyzing samples such as blood, plasma, serum, urine, other body fluids, secretions, etc. The present invention relates to a centrifugal continuous analysis method and device for biochemical sample analysis. The present invention also relates to a method and device for detecting clogging of a cuvette discharge path in a centrifugal automatic analyzer, and a method and device for monitoring the operation of a sample dispensing device and a washing liquid dispensing device.

(ロ)従来の技術 遠心方式の自動分析装置には、試料受部、試薬受部及び
これらと通路を介して或は介さずに連通する反応兼測光
部を備えるロータが具備されており、このロータを回転
させて、試料受部に注入された試料と試薬受部に注入さ
れた試薬を反応兼測光部に送り、そこで混合反応させて
反応生成物について測定が行われるので、測定時間が非
常に短く、しかも、キュベツトへの微量化された試料及
び試薬の導入も自動的に円滑に行うことができる。
(b) Conventional technology A centrifugal automatic analyzer is equipped with a rotor that includes a sample receiving section, a reagent receiving section, and a reaction/photometry section that communicates with these through or without a passage. By rotating the rotor, the sample injected into the sample receiver and the reagent injected into the reagent receiver are sent to the reaction and photometry section, where they are mixed and reacted and the reaction products are measured, so the measurement time is extremely long. In addition, it is possible to automatically and smoothly introduce trace amounts of samples and reagents into the cuvette.

しかし、遠心方式の自動分析装置は、遠心力を発生させ
るためにキュベツト或はディスク等を有するロータを高
速に回転させなければならず、その間に試料の注入、試
薬の注入、洗浄液の注入等の操作を行うことができない
ために、バッチ式にならざるを得ない。
However, centrifugal automatic analyzers must rotate a rotor containing cuvettes or disks at high speed in order to generate centrifugal force, and during this time, injection of samples, reagents, washing liquid, etc. Because operations cannot be performed, the batch method has to be used.

そこで、本出願人は、前に、サイホン管等の排出路部の
キュベツトを備え、連続して分析が行える遠心方式の自
動分析装置を提案した。
Therefore, the present applicant has previously proposed a centrifugal automatic analyzer that is equipped with a cuvette in the discharge path such as a siphon tube and is capable of continuous analysis.

(ハ)発明が解決しようとする問題点 しかし、このようにサイホン骨付キュベツトでは、サイ
ホン管等の排出路部が小径であるために、繰返し使用す
る間に詰まりを生じることがあった。
(c) Problems to be Solved by the Invention However, in the siphon bone cuvette as described above, since the discharge path portion such as the siphon tube has a small diameter, it may become clogged during repeated use.

このような排出路部の詰まりは、反応液或は洗浄液の排
出をすることができず、反応液等が溢れ出たり、さらに
、続く分析を不能にして、貴重な血液等の検体を無駄に
するなど問題であった。
If the discharge path is clogged, the reaction solution or washing solution cannot be drained, causing the reaction solution to overflow, or furthermore, making subsequent analysis impossible and wasting valuable samples such as blood. This was a problem.

本発明は、このようなキュベツトの排出路部の詰まりに
係わる問題点を解決することを目的としている。
It is an object of the present invention to solve such problems related to clogging of the cuvette discharge path.

(ニ)問題点を解決するための手段 本発明は、ロータの回転時に、キュベツトの排出路部の
詰まりが検出できる遠心方式の連続分析方法及び装置を
提供するものである。
(d) Means for Solving the Problems The present invention provides a centrifugal continuous analysis method and apparatus that can detect clogging in the discharge path of a cuvette during rotation of a rotor.

すなわち、本発明は、遠心力の作用下に、キュベツト内
で試料と試薬を混合して反応させ、その反応生成物を測
定し、次いで反応液をキュベツト外に排出し、洗浄しで
、連続して分析を行う遠心方式の連続分析方法において
、キュベツト洗浄段階で、キュベツトについて該液の特
性吸収波長の光の吸光度を測定して、キュベツト内の液
の存否を検出することを特徴とする遠心方式の連続分析
方法にある。また、本発明は、キュベツト取付部を有す
るロータ、該ロータ周囲を囲む排出液路並びに該ロータ
の周囲に設けられる試料注入器、試薬注入器、測光器及
び洗浄液注入器を備える遠心方式の連続自動分析装置に
おいて、液の特性吸収波長領域の波長の光を含有する光
源及び測光器がキュベツト取付部を挟んで設けられてい
ることを特徴とする遠心方式の連続自動分析装置にある
That is, in the present invention, a sample and a reagent are mixed and reacted in a cuvette under the action of centrifugal force, the reaction product is measured, and then the reaction solution is discharged outside the cuvette, washed, and then continuously. A centrifugal continuous analysis method in which the presence or absence of a liquid in the cuvette is detected by measuring the absorbance of light at a characteristic absorption wavelength of the liquid in the cuvette washing step. Continuous analysis method. Further, the present invention provides a centrifugal continuous automated system comprising a rotor having a cuvette attachment part, a discharge liquid path surrounding the rotor, a sample injector, a reagent injector, a photometer, and a cleaning liquid injector provided around the rotor. A centrifugal type continuous automatic analyzer is characterized in that a light source containing light having a wavelength in a characteristic absorption wavelength region of a liquid and a photometer are provided with a cuvette attachment part in between.

本発明においては、キュベツトの吸光度は、反応液の排
出段階及び洗浄液の排出段階のキュベツトについて行わ
れる。キュベツトの吸光度を測定する光の波長は、反応
液又は洗浄液の特性吸光波長の中から選択される。した
がって、測定に使用する光の波長は、反応液用又は洗浄
液用と、夫々、異なる波長の特性吸収波長の光であって
もよいが、共通の特性吸収波長の光を使用するとキュベ
ツトの異常検出用の吸光度の測光工程が簡単化できるの
で好ましい。このような共通の特性吸収波長としては、
溶媒、例えば水の特性吸収波長、例えば、近赤外領域の
1470nm、1200nm。
In the present invention, the absorbance of the cuvette is measured for the cuvette during the reaction solution discharging stage and the washing solution discharging stage. The wavelength of light at which the absorbance of the cuvette is measured is selected from among the characteristic absorption wavelengths of the reaction solution or washing solution. Therefore, the wavelength of light used for measurement may be different wavelengths for the reaction solution or for the cleaning solution, but if light with a common characteristic absorption wavelength is used, abnormalities in the cuvette can be detected. This is preferable because it simplifies the photometric process for measuring absorbance. These common characteristic absorption wavelengths are:
A characteristic absorption wavelength of a solvent, such as water, such as 1470 nm or 1200 nm in the near-infrared region.

970nm等の分析用の測定波長帯とは異なる波長の光
を選択するのが好ましい。このために、例えば、光源に
は、特定波長のフィルタ等が設けられる。
It is preferable to select light of a wavelength different from the measurement wavelength band for analysis, such as 970 nm. For this purpose, for example, the light source is provided with a filter for a specific wavelength.

本発明におけるキュベツトの排出路の異常検出用の吸光
度の測定は、ロータの回転時に行われる。
In the present invention, absorbance measurement for detecting an abnormality in the cuvette discharge path is performed while the rotor is rotating.

したがって、測定器の位置は、少くとも、キュベツトの
反応兼測光部を挟んで、光源と測光器が配置され、測光
時、キュベツトの反応兼測光部を通る光路長が一定とな
る位置であれば、ロータの周囲の適宜の筒所に設けるこ
とができる。
Therefore, the measuring device should be positioned at least as long as the light source and photometer are placed across the reaction and photometry section of the cuvette, and the length of the optical path passing through the reaction and photometry section of the cuvette is constant during photometry. , can be provided at an appropriate cylindrical location around the rotor.

このような本発明によるキュベツト排出路等の異常の検
出は、吸光度の測定値をブランク値と比較して行われる
が、異常が検出されたときは、例えば、警報或は信号灯
等の手段により、作業具に知らせることができる。
Detection of an abnormality in the cuvette discharge path, etc. according to the present invention is performed by comparing the measured value of absorbance with a blank value, but when an abnormality is detected, for example, by means such as an alarm or a signal light, This can be notified to the work tool.

(ホ)作用 本発明においては、反応液排出段階或は洗浄液排出段階
、例えば、反応液又は洗浄液の排出直後のキュベツトに
ついて、これら液の特性吸収波長の光についての吸光度
を測定するので、吸光度のこの測定値(D)を、清浄時
の空のキュベツトについての当該波長の光の吸光度の測
定値(B)と比較することによって、キュベツトの排出
路の異常を検出することができる。
(E) Effect In the present invention, the absorbance of light having the characteristic absorption wavelength of these liquids is measured in the cuvette at the reaction liquid discharge stage or washing liquid discharge stage, for example, immediately after the reaction liquid or washing liquid has been discharged. By comparing this measured value (D) with the measured value (B) of the absorbance of light at the relevant wavelength for an empty cuvette at the time of cleaning, an abnormality in the cuvette discharge path can be detected.

すなわち、B=Dであれば、排出段階において、キュベ
ツト内に反応液又は洗浄液が存在しないことを意味し、
キュベツトの排出路が異常でない、つまり、詰まった状
態でないことを示していることになる。
That is, if B=D, it means that there is no reaction solution or washing solution in the cuvette during the discharge step,
This indicates that there is no abnormality in the cuvette discharge path, that is, it is not clogged.

また、B << Dであれば、排出段階において、キュ
ベツトから液が排出されないで残っていることを意味し
、キュベツトの排出路に異常を生じていることを示して
いる。
If B << D, it means that the liquid remains without being drained from the cuvette during the draining stage, indicating that an abnormality has occurred in the cuvette drain path.

また、本発明においては、反応液排出段階から洗浄段階
にかけてキュベツトについて、液の特性吸収波長の光に
ついての吸光度を、洗浄液による洗浄時及びその排出時
に測定して、洗浄液による洗浄時の吸光度の測定値(C
)及び洗浄液の排出時の吸光度(D)を、清浄時の空の
キュベツトについての当該特性吸収波長の光についての
吸光度の測定値(B)及び洗浄液、例えば、水による洗
浄時のキュベラtの当該吸収波長の光についての吸光度
の測定値(B)と比較して、キュベツトの排出路の異常
及び各分注器の作動状態の異常を検出することができる
In addition, in the present invention, the absorbance of light having a characteristic absorption wavelength of the liquid is measured for the cuvette from the reaction solution discharging stage to the washing stage, and the absorbance during washing with the washing solution is measured. Value (C
) and the absorbance (D) at the time of draining the washing liquid, the measured value (B) of the absorbance for light at the characteristic absorption wavelength of the empty cuvette at the time of cleaning, and the absorbance (B) of the empty cuvette at the time of cleaning, and the absorbance of the cuvela T at the time of washing with a washing liquid, e.g., water. By comparing the measured value (B) of the absorbance for light at the absorption wavelength, it is possible to detect abnormalities in the discharge path of the cuvette and in the operating state of each dispenser.

すなわち、B=DでB=Cであれば、洗浄液による洗浄
段階で、キュベツトの反応兼測光部に洗浄液が導入され
ており、また、洗浄液排出段階では、キュベツトの反応
兼測光部内は、洗浄液が排出されて空になっていること
を意味しており、キュベツトの排出路に異常がみられず
、洗浄液分注器も正常に動作していることを示している
That is, if B=D and B=C, the cleaning liquid was introduced into the reaction/photometering section of the cuvette during the washing step with the washing liquid, and the washing solution was not introduced into the reaction/photometering section of the cuvette during the washing liquid discharge step. This means that the cuvette has been drained and is empty, indicating that there is no abnormality in the cuvette discharge path and that the washing liquid dispenser is also operating normally.

しかし、B=Dであっても、B=Cであると外は、洗浄
液による洗浄段階で、キュベツトの反応兼測光部に洗浄
液が導入されていないことを意味するから、洗浄液分注
器の動作不良であり、異常を生じたことを示している。
However, even if B=D, if B=C, it means that the cleaning liquid is not introduced into the reaction/photometering section of the cuvette during the cleaning stage with the cleaning liquid, so the operation of the cleaning liquid dispenser will be affected. It is defective and indicates that an abnormality has occurred.

また、B=Cであれば、洗浄液排出段階で、キュベツト
の反応兼測光部に、液が残留していることを意味し、キ
ュベツト排出路の排出不良であり、異常を生じたことを
示している。
If B=C, it means that some liquid remains in the reaction and photometry part of the cuvette during the cleaning liquid discharge stage, indicating that the cuvette discharge path is defective and an abnormality has occurred. There is.

このように、本発明によると、キュベツトの排出路の排
出不良或は、各分注器の分注不良等の異常を即座に検出
することができることになり、遠心方式の連続自動分析
装置のキュベツト及び各分注器の作動状態を監視できる
ことになる。
As described above, according to the present invention, abnormalities such as a discharge failure in the cuvette discharge path or a dispensing failure in each dispenser can be immediately detected, and the cuvette in a centrifugal continuous automatic analyzer can be detected immediately. And the operating status of each dispenser can be monitored.

(へ)実施例 以下、添付図面を参照して、本発明の実施の態様の−を
説明するが、本発明は、以下の説明及び例示により何ら
制限されるものではない。
(F) EXAMPLES Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings, but the present invention is not limited in any way by the following explanations and examples.

第1図は、本発明の一実施例の遠心方式の自動分析装置
の一例についての平面図である。第2図は、第1図に示
される実施例の異常検出用測定部を中心に示す概略の断
面図である。
FIG. 1 is a plan view of an example of a centrifugal automatic analyzer according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view mainly showing the abnormality detection measuring section of the embodiment shown in FIG. 1. FIG.

遠心方式の自動化学分析装置1は、高速回転及び間欠送
りができるように制御されている電動機(図示されてい
ない。)に、歯車その他の運動伝達機構(図示されてい
ない。)を介して連結している反応トレイ2を備えてお
り、この反応トレイ2は、複数個のキュベツト3を備え
ている。この反応トレイ2に並置して、反応トレイと同
様に、高速回転及び間欠送りができるように電動機に運
動伝達機構を介して連結している試薬トレイ4が設けら
れており、本例において、試薬トレイ4には試薬瓶5を
配置する試薬瓶受けが、同心状に二列に設けられている
。外側の試薬瓶受け6は第一試薬瓶用であり、内側の試
薬瓶受け7は第二試薬瓶用であり、夫々独立して移動す
るように設けられている。
The centrifugal automatic chemical analyzer 1 is connected to an electric motor (not shown) that is controlled to enable high-speed rotation and intermittent feeding via a gear or other motion transmission mechanism (not shown). The reaction tray 2 is equipped with a plurality of cuvettes 3. A reagent tray 4 is provided juxtaposed to the reaction tray 2, and is connected to an electric motor via a motion transmission mechanism to enable high-speed rotation and intermittent feeding, similar to the reaction tray. The tray 4 is provided with two concentric rows of reagent bottle holders for disposing the reagent bottles 5. The outer reagent bottle holder 6 is for the first reagent bottle, and the inner reagent bottle holder 7 is for the second reagent bottle, and they are provided so as to be moved independently.

反応トレイ2は、本例においては、時計の回転方向と同
方向に回転する。
In this example, the reaction tray 2 rotates in the same direction as the clock rotation direction.

反応トレイ2の周囲には、試料及び第一試薬分注位置8
にあるキュベツトに試料を分注するためにピペッタ9が
設けられている。ピペッタ9は回転軸から互に120°
開隔で外方に延び、反時計廻りに回る三本の腕部材10
,11及び12を有しており、各腕部材には、吸引ノズ
ル(図示されていない。)が設けられている。このピペ
ッタ9は、試料トレイ13の試料吸引位置14にある試
料容器15から試料を吸引し、ついで、反時計廻りに回
って、試料及び第一試薬分注位置8のキュベツト3に吸
引した試料を吐出して試料分注を行う。
Around the reaction tray 2, there are sample and first reagent dispensing positions 8.
A pipettor 9 is provided for dispensing the sample into a cuvette located in the chamber. Pipetters 9 are 120° from the axis of rotation.
Three arm members 10 extending outwardly at a distance and rotating counterclockwise.
, 11 and 12, and each arm member is provided with a suction nozzle (not shown). This pipetter 9 aspirates the sample from the sample container 15 located at the sample suction position 14 of the sample tray 13, and then rotates counterclockwise to aspirate the aspirated sample into the cuvette 3 at the sample and first reagent dispensing position 8. Dispense and dispense the sample.

ついで、ピペッタ9のノズルを洗浄するために、洗浄液
の入っている容器16が設けられており、この容器16
内の洗浄液にピペッタ9のノズル先端を浸漬して洗浄液
の吸引吐出を行い、ノズルを洗浄する。
Next, in order to clean the nozzle of the pipetter 9, a container 16 containing a cleaning liquid is provided.
The nozzle tip of the pipetter 9 is immersed in the cleaning liquid inside, and the cleaning liquid is suctioned and discharged to clean the nozzle.

ピペッタ9に対し、反応トレイ2の回転方向つまり、ロ
ータの回転方向前方に位置して、第一試薬分注器17が
設けられている。この試薬分注器17は、ピペッタ9と
同様にノズル(図示されていない。)を有し、回転軸か
ら互に120°間隔で外方に延びる三本の腕部材18,
19及び20を備えるが、この腕部材18.19及び2
0は、ピペッタ9とは逆に時計廻りに回る。この第一試
薬分注器17は、第−試薬瓶受け6の第一試薬吸引位置
21にある試薬瓶から第一試薬を吸引して、時計廻りに
回り、試料及び第一試薬分注位置8のキュベツト3に吸
引した第一試薬を吐出して、第一試薬の分注を行う。つ
いで、第一試薬分注器17のノズルを洗浄するために、
洗浄液の入っている容器22が設けられており、この容
器22の洗浄液中に第一試薬分注器17のノズル先端を
浸漬して洗浄液の吸引吐出を行い、該ノズルを洗浄する
A first reagent dispenser 17 is provided in front of the pipetter 9 in the direction of rotation of the reaction tray 2, that is, in the direction of rotation of the rotor. This reagent dispenser 17 has a nozzle (not shown) like the pipettor 9, and three arm members 18 extending outward from the rotation axis at 120° intervals,
19 and 20, this arm member 18.19 and 2
0 rotates clockwise in the opposite direction to the pipettor 9. This first reagent dispenser 17 sucks the first reagent from the reagent bottle located at the first reagent suction position 21 of the first reagent bottle holder 6, rotates clockwise, and rotates the sample and first reagent dispensing position 8. The aspirated first reagent is discharged into the cuvette 3, and the first reagent is dispensed. Next, in order to clean the nozzle of the first reagent dispenser 17,
A container 22 containing a cleaning liquid is provided, and the nozzle tip of the first reagent dispenser 17 is immersed in the cleaning liquid in the container 22 to suction and discharge the cleaning liquid to clean the nozzle.

第一試薬分注器に対し、反応トレイ2の回転方向前方に
位置して、第二試薬分注器23が設けられている。この
第二試薬分注器23は、第一試薬分注器と同様にノズル
(図示されていない。)を有し、回転軸から互に120
°間隔で外方に延びる三本の腕部材24.25及び26
を備えるが、この腕部材24,25及び26は第一試薬
分注器17とは逆に反時計廻りに回る。この第二試薬分
注器23は、第二試薬瓶受け7の第二試薬吸引位置27
にある試薬瓶から第二試薬を吸引して、反時計廻りに回
り、反応トレイ2の第二試薬分注位置28に位置するキ
ュベツト3内、吸引された第二試薬を吐出して、第二試
薬の分注を行う。ついで、第二試薬分注器23のノズル
を洗浄するために、洗浄液の入っている容器29が設け
られており、この容器29の洗浄液中に第二試薬分注器
23のノズル先端を浸漬して洗浄液の吸引吐出を行い、
該ノズルを洗浄する。
A second reagent dispenser 23 is provided in front of the first reagent dispenser in the rotational direction of the reaction tray 2 . This second reagent dispenser 23 has a nozzle (not shown) similarly to the first reagent dispenser, and has a nozzle (not shown) that is arranged at a distance of 120 mm from the rotation axis.
Three arm members 24, 25 and 26 extending outwardly at ° intervals
However, the arm members 24, 25 and 26 rotate counterclockwise in the opposite direction to the first reagent dispenser 17. This second reagent dispenser 23 is located at a second reagent suction position 27 of the second reagent bottle receiver 7.
Aspirate the second reagent from the reagent bottle located at Dispense reagents. Next, in order to clean the nozzle of the second reagent dispenser 23, a container 29 containing a cleaning liquid is provided, and the nozzle tip of the second reagent dispenser 23 is immersed in the cleaning liquid in this container 29. to suction and discharge the cleaning liquid,
Clean the nozzle.

第二試薬分注器23に対し、反応トレイ2の回転方向の
前方の測定位置に位置して、測定部30が設けられてお
り、この測定部30には、測定部置を通過するキュベツ
ト3又は測定位置に存在するキュベツト3を光学的に測
定するための光度計が設けられている。また、測定部3
0に対して、反応トレイ2の回転方向前方の洗浄水分注
位置31には、この洗浄水分注装置31に対応して、洗
浄水分注器32が設けられている。この洗浄水分注器3
2は、洗浄水容器33にノズルを挿入しで、洗浄水を吸
引し、反時計廻りに回って、洗浄水分注装置31に位置
するキュベツト内に洗浄水を吐出するようになっており
、洗浄水容器33と洗浄水分注位置31の開を往復動可
能になっている。また、この洗浄水分注器32に対し、
反応トレイ2の回転方向前方の洗剤分注位置34には、
洗剤分注位置34に対応して、洗剤分注器35が設けら
れている。この洗剤分注器35は、洗剤容器36にノズ
ルを挿入して、洗剤を吸引し、反時計廻りに回って、洗
剤分注位置34に位置するキュベツトに洗剤を吐出分注
するものであり、洗剤容器36と洗剤分注位置34の間
を往復動可能となっている。この洗剤分注器35に対し
、反応トレイ2の回転方向前方の洗浄水分注位置37に
は、この洗浄水分注位置37に対応して、洗浄水分注器
38が設けられている。この洗浄水分注器38は、洗浄
水容器3つにノズルを挿入して、洗浄水を吸引し、反時
計廻りに回って、洗浄水分注位置に位置するキュベツト
に洗浄水を吐出するものであり、洗浄水分注位置37と
洗浄水容器39の間を往復動可能となっている。この洗
浄水分注器38に対し、反応トレイ2の回転方向前方の
純水分注位置40に対応して、純水分注器41が設けら
れている。この純水分注器41は、純水容器42にノズ
ルを挿入して、純水を吸引し、反時計廻りに回って、純
水分注位置40に位置するキュベツト3に純水を吐出分
注するものであり、純水分注位置40と純水容器42の
間を往復動可能となっている。また、純水分注器41と
ピペッタ9の間に位置し、ロータの洗浄水分注位置43
に対応して設けられる洗浄水分注器44は、洗浄水容器
45にノズルを挿入しで、洗浄水を吸引して、反時計廻
りに回り、洗浄水分注位置43に位置するキュベツト3
.に吐出分注するものであり、洗浄水分注位置43と洗
浄水容器45の開を往復動可能になっている。
A measurement section 30 is provided at a measurement position in front of the second reagent dispenser 23 in the rotational direction of the reaction tray 2. Alternatively, a photometer is provided for optically measuring the cuvette 3 present at the measurement position. In addition, the measuring section 3
0, a cleaning water injector 32 is provided at a cleaning water injecting position 31 in front of the reaction tray 2 in the rotational direction, corresponding to this cleaning water injecting device 31 . This cleaning water dispenser 3
2 is designed to insert a nozzle into the washing water container 33, suck up the washing water, turn counterclockwise, and discharge the washing water into the cuvette located in the washing water injection device 31. The water container 33 and the cleaning water injection position 31 can be opened and reciprocated. Moreover, for this cleaning water injector 32,
At the detergent dispensing position 34 at the front of the reaction tray 2 in the rotational direction,
A detergent dispenser 35 is provided corresponding to the detergent dispensing position 34. This detergent dispenser 35 inserts a nozzle into a detergent container 36, sucks in detergent, rotates counterclockwise, and discharges and dispenses the detergent into a cuvette located at a detergent dispensing position 34. It is capable of reciprocating between the detergent container 36 and the detergent dispensing position 34. With respect to the detergent dispenser 35 , a cleaning water dispenser 38 is provided at a cleaning water dispenser 37 in front of the reaction tray 2 in the rotational direction, corresponding to the cleaning water dispenser 37 . This washing water injector 38 inserts nozzles into three washing water containers, sucks out the washing water, rotates counterclockwise, and discharges the washing water into the cuvette located at the washing water injection position. , can reciprocate between the cleaning water injection position 37 and the cleaning water container 39. In contrast to the cleaning water injector 38, a pure water injector 41 is provided corresponding to a pure water injecting position 40 in front of the reaction tray 2 in the rotational direction. The pure water injector 41 inserts a nozzle into a pure water container 42, sucks in pure water, rotates counterclockwise, and discharges and dispenses the pure water into the cuvette 3 located at the pure water injection position 40. It is capable of reciprocating between the pure water injection position 40 and the pure water container 42. Also, it is located between the pure water injector 41 and the pipetter 9, and is located at a washing water injecting position 43 of the rotor.
A washing water injector 44 provided corresponding to the washing water container 45 inserts a nozzle into the washing water container 45, sucks out washing water, rotates counterclockwise, and fills the cuvette 3 located at the washing water injection position 43.
.. The washing water injection position 43 and the opening of the washing water container 45 can be moved back and forth.

本例の反応トレイ2は、ロータ(図示されていない。)
に取付けられており、ロータと共に回転する。この反応
トレイ外周には放射状にキュベツト3が形成されている
。キュベツト3は、試料受は部43、試料受は部44を
備えており、その間に第二試薬量は部45が形成されて
いる。遠心力が作用する方向の端部に反応兼測光部46
が設けられており、その端部にサイホン管47が形成さ
れている。測光用窓部48は、本例のキュベツトにおい
ては、端部近くに形成されており、僅かに残留する洗浄
液をも検出できるようになっている。
The reaction tray 2 of this example has a rotor (not shown).
It is attached to the rotor and rotates with the rotor. Cuvettes 3 are formed radially around the outer periphery of this reaction tray. The cuvette 3 includes a sample receiving section 43 and a sample receiving section 44, with a second reagent amount section 45 formed therebetween. A reaction/photometering section 46 is located at the end in the direction in which centrifugal force acts.
is provided, and a siphon pipe 47 is formed at the end thereof. In the cuvette of this example, the photometric window 48 is formed near the end so that even a small amount of cleaning liquid remaining can be detected.

異常検出用測定器49は、本例においては、キュベツト
の測光用窓部48の並ぶ方向に光源及び検出部(いずれ
も図示されていない。)が配置されており、光源からの
光は半透明鏡50により、−部反射されて参照光51と
なり、残部は透過して検出光52どなる。
In this example, the abnormality detection measuring device 49 has a light source and a detection section (both not shown) arranged in the direction in which the photometric window section 48 of the cuvette is lined up, and the light from the light source is semitransparent. A negative portion of the light is reflected by the mirror 50 and becomes the reference light 51, and the remaining portion is transmitted and becomes the detection light 52.

本例の遠心方式の自動化学分析装置は概略以上のように
構成されているので、反応トレイを間欠送り即ちステッ
プ送りとし、この段階で、反応トレイ2のキュベツトを
順次、試料及び第一試薬分注位置8に送り、ここで、こ
れらのキュベツトの総てに、試料トレイ13からピペッ
タ9によって、また、第−試薬瓶受け6がら第一試薬分
注器17によって、試料及び第一試薬が夫々、試料受は
部43及び第−試薬量は部44に順次分注される。
Since the centrifugal automatic chemical analyzer of this example is roughly configured as described above, the reaction tray is fed intermittently, that is, step fed, and at this stage, the cuvettes in reaction tray 2 are sequentially loaded with the sample and the first reagent. Here, the sample and first reagent are respectively poured into all of these cuvettes from the sample tray 13 by the pipetter 9 and from the first reagent bottle receiver 6 by the first reagent dispenser 17. The sample receiver is sequentially dispensed into the section 43 and the first reagent amount is dispensed into the section 44.

これらのキュベツトの総てに試料及び第一試薬が分注さ
れたところで、反応トレイ2を高速回転させて、試料と
第一試薬を反応兼測光s46に移動させて、混合させ、
測定用の光度計により測定を行う。次いで反応トレイ2
をステップ送りにさせて、第二試薬分注器23によって
第二試薬をキュベツト3の第二試薬量は部45を分注す
る。第二試薬の分注が終ったところで、反応トレイ2を
高速回転させで、測定用の光度計により測定を行い、前
段の高速回転時の測定値と合わせて、分析値を求める。
When the sample and the first reagent have been dispensed into all of these cuvettes, the reaction tray 2 is rotated at high speed, and the sample and the first reagent are moved to the reaction/photometry s46 and mixed.
Measurement is performed using a photometer for measurement. Next, reaction tray 2
is fed in steps, and the second reagent is dispensed into the cuvette 3 by the second reagent dispenser 23. When the dispensing of the second reagent is completed, the reaction tray 2 is rotated at high speed, and a measurement is performed using a photometer for measurement, and an analysis value is obtained by combining the measurement value with the value measured during high speed rotation in the previous stage.

測定を終えたところで、反応トレイ2をステップ送りに
させて、洗浄水分注器32によって、洗浄水が第−試薬
量は部44に注入される。キュベツト3の総てに洗浄水
が注入されたところで、反応トレイ2を高速回転させる
。洗浄水の分注量は、キュベツト3の反応兼測光部46
を充分に充満する量であり、高速回転時、液面がサイホ
ン管部の湾曲点より高い位置となるために、サイホン現
象により排出が行われる。この排出中及び排出後に、反
応兼測光部46内の洗浄液の有無について、測定部30
に設けられている異常検出用測定器49により測定する
When the measurement is finished, the reaction tray 2 is moved in steps, and the washing water injector 32 injects washing water into the first reagent portion 44 . After washing water has been poured into all of the cuvettes 3, the reaction tray 2 is rotated at high speed. The amount of washing water dispensed is determined by the reaction and photometry section 46 of the cuvette 3.
During high-speed rotation, the liquid level is higher than the bending point of the siphon tube, so the siphon phenomenon causes the liquid to be discharged. During and after this discharge, the measuring section 30 checks the presence or absence of the cleaning liquid in the reaction/photometering section 46.
The measurement is performed using an abnormality detection measuring device 49 provided in the.

光源側から投射される光は、1470nmの波長を有し
、一部は、半透明の鏡50で反射された参照光51とな
り、比較部(図示されていない。)に送られる。一方、
半透明の鏡50を透過して、キュベツト3の測光用窓部
48からキュベツト3の反応兼測光部46を透過する検
出光52は、検出部に送られる。
The light projected from the light source side has a wavelength of 1470 nm, and part of it becomes reference light 51 reflected by the semi-transparent mirror 50 and is sent to a comparison section (not shown). on the other hand,
Detection light 52 that passes through the semi-transparent mirror 50 and passes through the photometry window 48 of the cuvette 3 and the reaction and photometry section 46 of the cuvette 3 is sent to the detection section.

比較部及び検出部に送られた光束は、夫々、測光されて
、吸光度が求められる。この吸光度は、高速回転の前半
の段階、つまり洗浄液による洗浄時及び高速回転の後半
の段階、つまり洗浄液排出時に行われる。このようにし
て測定された洗浄時の吸光度(C)及び洗浄液排出時の
吸光度(D)は、予め求められて、夫々、比較回路に設
定されている、清浄な空の反応兼測光部46の吸光度(
B)及び洗浄液で充満された反応兼測光部46の吸光度
(B)と、比較される。この場合、比較回路の組合わせ
によって、異常が否かの信号を得ることができる。
The light beams sent to the comparison section and the detection section are each photometered to determine the absorbance. This absorbance measurement is performed in the first half of the high-speed rotation, that is, when cleaning with the cleaning liquid, and in the second half of the high-speed rotation, that is, when the cleaning liquid is discharged. The absorbance (C) during cleaning and the absorbance (D) during discharge of the cleaning liquid measured in this way are obtained in advance and are set in the comparison circuit, respectively, of the clean and empty reaction/photometer unit 46. Absorbance (
B) and the absorbance (B) of the reaction/photometering section 46 filled with cleaning liquid. In this case, a signal indicating whether there is an abnormality can be obtained by combining the comparison circuits.

すなわち、吸光度C=吸光度Bであり、吸光度D=吸光
度Bであれば、洗浄液の分注及びキュベツト3の排出に
異常のないことを示している。しかし、吸光度D=吸光
度Bであっても、吸光度C=吸光度Bであるときは、洗
浄液分注動作不良であり、異常となる。また吸光度D=
吸光度百は排出不良であり異常である。
That is, if absorbance C=absorbance B, and absorbance D=absorbance B, this indicates that there is no abnormality in dispensing the washing liquid and discharging the cuvette 3. However, even if absorbance D=absorbance B, when absorbance C=absorbance B, the cleaning liquid dispensing operation is defective and becomes abnormal. Also, absorbance D=
Absorbance of 100 indicates poor discharge and is abnormal.

このような吸光度の比較による異常の検出は、洗剤に洗
浄工程、洗浄水による洗浄工程及び純水による洗浄工程
においても、同様に行われる。
Abnormalities are detected by comparing absorbance in the same way in the detergent washing process, the washing water washing process, and the pure water washing process.

(ト)発明の効果 本発明は、遠心方式の分析方法において、反応液をキュ
ベツト外に排出した後のキュベツトの洗浄段階において
、ロータの回転時に、キュベツト内の液の存否を、液の
特性吸収波長により検出するので、従来の方法に比しで
、キュベラ)からの液の排出及び洗浄液の分注等の異常
を簡単に検出できることになり、貴重な検体を無駄によ
ることなく確実に分析を行うことができる。
(G) Effects of the Invention The present invention provides a centrifugal analysis method in which the presence or absence of a liquid in the cuvette is determined by absorbing the characteristics of the liquid while the rotor is rotating in the cuvette washing step after the reaction liquid has been discharged outside the cuvette. Because it detects by wavelength, it is easier to detect abnormalities such as the discharge of liquid from Cubela and the dispensing of washing liquid than with conventional methods, ensuring that valuable samples are analyzed without wasting them. be able to.

また、遠心方式の自動分析装置の測光部に、特性吸収波
長の相違する吸光度検出器を設けることによって、異常
値が発生するに至る前に、キュベツトの排出路及び洗浄
液分注器の故障を発見でき゛ るので、従来の装置では
困難であったこれらの故障による分析結果への影響を、
簡単な装置で、未然に、しかも容易に防止できることに
なり、しか・も、信号処理によって、報知できるので、
遠心方式の分析装置の連続自動化に寄与するものである
In addition, by installing absorbance detectors with different characteristic absorption wavelengths in the photometry section of the centrifugal automatic analyzer, we can detect malfunctions in the cuvette discharge path and washing liquid dispenser before abnormal values occur. This makes it possible to eliminate the influence of these failures on analysis results, which was difficult with conventional equipment.
This means that it can be easily prevented with a simple device, and it can also be notified through signal processing.
This contributes to the continuous automation of centrifugal analyzers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の遠心方式の自動分析装置
の一例についての平面図である。第2図は、第1図に示
される実施例の異常検出用測定部を中心に示す概略の断
面図である。 図面の符号について、1は遠心方式の自動化学分析装置
、2は反応トレイ、3はキュベツト、4は試薬トレイ、
5は試薬瓶、6は第一の試薬瓶受け、7は第二の試薬瓶
受け、8は試料及び第一試薬分注位置、9はピペッタ、
10,11,12゜18.19.20,24.25及び
26は腕部材、13は試料トレイ、14は試料吸引位置
、15は試料容器、16,22及び29は洗浄液容器、
17は第一試薬分注器、21は第一試薬吸引位置、23
は第二試薬分注器、27は第二試薬吸引位置、28は第
二試薬分注位置、30は測定部、31及び37は洗浄水
分注位置、32及び38は洗浄水分注器、33及び39
は洗浄水容器、34は洗剤分注位置、35は洗剤分注器
、36は洗剤容器、40は純水分注位置、41は純水分
注器、42は純水容器、43は洗浄水分注位置又は試料
受は部、44は洗浄水分注器及び試薬受は部、45は洗
浄水溶器及び第二試薬受は部、46は反応兼測光部、4
7はサイホン管、48は測光用窓部、49は異常検出用
測定器、50は半透明鏡、51は参照光、52は検出光
である。
FIG. 1 is a plan view of an example of a centrifugal automatic analyzer according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view mainly showing the abnormality detection measuring section of the embodiment shown in FIG. 1. FIG. Regarding the symbols in the drawings, 1 is a centrifugal automatic chemical analyzer, 2 is a reaction tray, 3 is a cuvette, 4 is a reagent tray,
5 is a reagent bottle, 6 is a first reagent bottle receiver, 7 is a second reagent bottle receiver, 8 is a sample and first reagent dispensing position, 9 is a pipettor,
10, 11, 12゜18. 19. 20, 24. 25 and 26 are arm members, 13 is a sample tray, 14 is a sample suction position, 15 is a sample container, 16, 22 and 29 are cleaning liquid containers,
17 is the first reagent dispenser, 21 is the first reagent suction position, 23
27 is a second reagent suction position, 28 is a second reagent dispensing position, 30 is a measuring section, 31 and 37 are cleaning water injection positions, 32 and 38 are cleaning water dispensers, 33 and 39
is a washing water container, 34 is a detergent dispensing position, 35 is a detergent dispenser, 36 is a detergent container, 40 is a pure water injection position, 41 is a pure water dispenser, 42 is a pure water container, 43 is a washing water injection position 44 is a washing water dispenser and a reagent receiver, 45 is a washing water dispenser and a second reagent receiver, and 46 is a reaction and photometry section;
7 is a siphon tube, 48 is a photometric window, 49 is a measuring device for abnormality detection, 50 is a semi-transparent mirror, 51 is a reference light, and 52 is a detection light.

Claims (2)

【特許請求の範囲】[Claims] (1)遠心力の作用下に、キュベット内で試料と試薬を
混合して反応させ、その反応生成物を測定し、次いで反
応液をキュベット外に排出し、洗浄して、連続して分析
を行う遠心方式の連続分析方法において、キュベット洗
浄段階で、キュベットについて該液の特性吸収波長の光
の吸光度を測定して、キュベット内の液の存否を検出す
ることを特徴とする遠心方式の連続分析方法。
(1) Under the action of centrifugal force, the sample and reagent are mixed and reacted in a cuvette, the reaction product is measured, and then the reaction solution is drained out of the cuvette, washed, and analyzed continuously. A continuous centrifugal analysis method in which the presence or absence of a liquid in the cuvette is detected by measuring the absorbance of light at a characteristic absorption wavelength of the liquid in the cuvette washing step. Method.
(2)キュベット取付部を有するロータ、該ロータ周囲
を囲む排出液路並びに該ロータの周囲に設けられる試料
注入器、試薬注入器、測光器及び洗浄液注入器を備える
遠心方式の連続自動分析装置において、液の特性吸収波
長領域の波長の光を含有する光源及び測光器がキュベッ
ト取付部を挟んで設けられていることを特徴とする遠心
方式の連続自動分析装置。
(2) In a centrifugal continuous automatic analyzer equipped with a rotor having a cuvette attachment part, a discharge liquid path surrounding the rotor, a sample injector, a reagent injector, a photometer, and a cleaning liquid injector provided around the rotor. A centrifugal type continuous automatic analyzer, characterized in that a light source containing light with a wavelength in a characteristic absorption wavelength region of a liquid and a photometer are provided with a cuvette attachment part sandwiched therebetween.
JP23244286A 1986-09-30 1986-09-30 Method and device for centrifugal type continuous analysis Pending JPS6385429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23244286A JPS6385429A (en) 1986-09-30 1986-09-30 Method and device for centrifugal type continuous analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23244286A JPS6385429A (en) 1986-09-30 1986-09-30 Method and device for centrifugal type continuous analysis

Publications (1)

Publication Number Publication Date
JPS6385429A true JPS6385429A (en) 1988-04-15

Family

ID=16939333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23244286A Pending JPS6385429A (en) 1986-09-30 1986-09-30 Method and device for centrifugal type continuous analysis

Country Status (1)

Country Link
JP (1) JPS6385429A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064923A (en) * 2005-09-02 2007-03-15 Matsushita Electric Ind Co Ltd Optical analyzing apparatus
JPWO2006107016A1 (en) * 2005-04-01 2008-09-25 株式会社三菱化学ヤトロン Biological sample complex automatic analyzer, automatic analysis method, and reaction cuvette

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006107016A1 (en) * 2005-04-01 2008-09-25 株式会社三菱化学ヤトロン Biological sample complex automatic analyzer, automatic analysis method, and reaction cuvette
JP4712033B2 (en) * 2005-04-01 2011-06-29 三菱化学メディエンス株式会社 Biological sample complex automatic analyzer, automatic analysis method, and reaction cuvette
JP2007064923A (en) * 2005-09-02 2007-03-15 Matsushita Electric Ind Co Ltd Optical analyzing apparatus
JP4665673B2 (en) * 2005-09-02 2011-04-06 パナソニック株式会社 Optical analyzer

Similar Documents

Publication Publication Date Title
EP1293781B1 (en) Transfer unit and automatic analyzing apparatus having such transfer unit
US7341691B2 (en) Automatic analyzing apparatus
JPH01219669A (en) Detecting method of liquid sample vessel according to assortment
WO2007129741A1 (en) Automatic analyzer
JPH01141357A (en) Sample partial injection method for automatic analyzing device
JP2011163909A (en) Automatic analyzer and washing method for dispensing means
JPS6385429A (en) Method and device for centrifugal type continuous analysis
JPS6327661B2 (en)
JP2867670B2 (en) Automatic chemical analysis method and apparatus
US20020144747A1 (en) Liquid sample dispensing methods for precisely delivering liquids without crossover
JP5606843B2 (en) Automatic analyzer
JP2596029B2 (en) Chemical analysis method and apparatus
JP7054616B2 (en) Automatic analyzer
JPH1073601A (en) Autoanalyzer
WO2019176298A1 (en) Automatic analysis device
CA1293679C (en) Diluent carryover control
JPH09292398A (en) Automatic chemical analyzer
JP7002669B2 (en) Automatic analyzer
JPH085562A (en) Automatic analytic method
JPH01277761A (en) Automatic apparatus for chemical analysis
JPS62229066A (en) Centrifugal chemical analysis and apparatus therefor
EP1293782B1 (en) Automatic analyzing apparatus
JP2004361396A (en) Analyzer with built-in centrifuge
JPH10185928A (en) Analyzer
JPH01127960A (en) Automatic chemical analysis apparatus