JPS6385220A - Suction air device for engine provided with supercharger - Google Patents

Suction air device for engine provided with supercharger

Info

Publication number
JPS6385220A
JPS6385220A JP22683686A JP22683686A JPS6385220A JP S6385220 A JPS6385220 A JP S6385220A JP 22683686 A JP22683686 A JP 22683686A JP 22683686 A JP22683686 A JP 22683686A JP S6385220 A JPS6385220 A JP S6385220A
Authority
JP
Japan
Prior art keywords
control valve
supercharger
passage
air
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22683686A
Other languages
Japanese (ja)
Inventor
Seiji Tajima
誠司 田島
Haruo Okimoto
沖本 晴男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP22683686A priority Critical patent/JPS6385220A/en
Publication of JPS6385220A publication Critical patent/JPS6385220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Abstract

PURPOSE:To prevent the generation of an air flow noise in the case where the opening degree of a control valve is small by providing a throttle member between the control valve and the communication part to the suction side of a supercharger, in a device where a by-pass passage installed with a control valve is so provided as to by-pass the supercharger in a suction air passage. CONSTITUTION:An air cleaner 7, an airflow meter 8, a throttle valve 9, a mechanical supercharger 10, a surge tank 11 and a fuel injection nozzle 12 are provided, from the upper stream side, in a suction air passage 5. And a by-pass passage 16 which bypasses the supercharger 10 is provided. In this by-pass passage 16, a control valve 17 which controls the air quantity passing through the passage 16 is provided and a throttle part 22 for controlling the cross area of the by-pass passage 16 to expand or contract is provided in the specified position, on the supercharger suction side, of this control valve 17. And the opening/closing control of the control valve 17, that is, the control of the negative pressure introduction quantity to an actuator 18 by negative pressure adjusting valve 21 on a negative pressure introduction passage 19 is carried out, together with the control of a fuel injection quantity and others, by a controller 31.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸気通路に過給機が備えられた過給機付エン
ジンの吸気装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for a supercharged engine in which an intake passage is provided with a supercharger.

(従来の技術) 近年、燃焼室へのエア供給分を増大させて出力を向上さ
せるため、吸気通路に過給機を備えたエンジンが実用化
されているが、この過給機とじては、排気エネルギーを
利用する排気ターボ過給機と、エンジン出力軸により駆
動される機械式過給機とがある。
(Prior Art) In recent years, engines equipped with a supercharger in the intake passage have been put into practical use in order to increase the amount of air supplied to the combustion chamber and improve output. There are exhaust turbo superchargers that utilize exhaust energy and mechanical superchargers that are driven by the engine output shaft.

ところで、この種の過給機は、過給圧がエンジンの負荷
に応じて変化して、特に多量のエアが要求される高負荷
時に高い過給圧が得られるものであることが必要である
が、上記の機械式過給機は、エンジン出力軸により駆動
される関係で過給圧がエンジン回転数に依存し、必ずし
も高負荷時に十分な過給圧が得られるとは限らない。そ
こで、第8図に示すように吸気通路Aに過給機Bの吸入
側と吐′出側とを連通させるバイパス通路C@設け、該
バイパス通路Cに該通路を通過するエア量を制御する制
御弁りを備えると共に、この制御弁りの開度を調整する
ことにより負荷に応じて過給圧をυノ罪することが行わ
れる(実公昭61−14591号公報参照)。つまり、
低負荷時には上記制御弁りの開度を大きくして過給[8
の吐出側から吸入側へバイパス通路Cを還流するリリー
フエア吊を多くすることにより、不必要な過給圧の上昇
を抑制すると共に、高負荷時には上記制御弁りの開度を
小さくしてリリーフエアmを少なくし又は$制御弁りを
全開としてバイパス通路Cを遮断することにより、所要
の過給圧が得られるようにするのである。
By the way, in this type of supercharger, the boost pressure changes depending on the engine load, and it is necessary that high boost pressure can be obtained especially at high loads when a large amount of air is required. However, since the above-mentioned mechanical supercharger is driven by the engine output shaft, the supercharging pressure depends on the engine rotation speed, and sufficient supercharging pressure is not necessarily obtained under high load. Therefore, as shown in Fig. 8, a bypass passage C@ is provided in the intake passage A to communicate the suction side and the discharge side of the supercharger B, and the amount of air passing through the bypass passage C is controlled. A control valve is provided, and the boost pressure is adjusted according to the load by adjusting the opening degree of the control valve (see Japanese Utility Model Publication No. 14591/1983). In other words,
When the load is low, the opening of the control valve is increased to perform supercharging [8
By increasing the amount of relief air that flows back through the bypass passage C from the discharge side to the suction side, unnecessary increases in boost pressure can be suppressed, and at high loads, the opening degree of the control valve can be reduced to provide relief. By reducing the amount of air m or fully opening the $ control valve to block the bypass passage C, the required supercharging pressure can be obtained.

(発明が解決しようとする問題点) ところで、上記のように過給41 Bの吸入側と吐出側
とを連通させるバイパス通路Cに制御弁りを設け、該弁
りを負荷に応じて開閉制御するようにした場合、次のよ
うな不具合が発生する。
(Problems to be Solved by the Invention) By the way, as described above, a control valve is provided in the bypass passage C that communicates the suction side and the discharge side of the supercharger 41B, and the valve is controlled to open and close according to the load. If you do so, the following problems will occur.

つまり、エンジンが中負荷ないし高負荷状態にあって、
上記制御弁りの開度が小さい時に、バイパス通路Cにお
いては、制御弁1〕の過給機吐出側C1の圧力が高く、
過給機吸入側C2の圧力が低くなって、制御弁りの両側
の圧力差が大きくなり、そのため該制御弁りによって狭
くされた通路を通ってエアが過給機吐出側C1から吸入
側C2へ大きな流速で流れ、この時に耳障りな気流音が
発生するのである。
In other words, when the engine is under medium or high load,
When the opening degree of the control valve is small, in the bypass passage C, the pressure on the supercharger discharge side C1 of the control valve 1 is high;
The pressure on the turbocharger suction side C2 becomes low, and the pressure difference on both sides of the control valve increases, so that air flows from the turbocharger discharge side C1 to the suction side C2 through the passage narrowed by the control valve. The air flows at a high velocity, and at this time a harsh airflow noise is generated.

また、上記制御弁りの開度が例えば全閉状態がら全開状
態へ或いは全開状態から全開状態へというように急変し
た場合には、バイパス通路Cにおける過給機吸入側C2
に大きな正圧波又は負圧波が発生し、これに伴って吸気
通路Aにおける過給機Bの上流側に圧力変動が生じるこ
とになる。そのため、第8図に鎖線で示すように、吸気
通路Aの上流部に燃料供給母の制御に必要とされるエア
吸入量を検出するエア70−メータEが設置されている
場合に、上記の圧力変動がこのエアフローメータEに影
響を及ぼして該メータEを誤動作させ、燃料供給mの制
御に狂いを生じさせるのである。
In addition, when the opening degree of the control valve suddenly changes, for example from a fully closed state to a fully open state, or from a fully open state to a fully open state, the supercharger suction side C2 in the bypass passage C
A large positive pressure wave or negative pressure wave is generated, and accordingly, a pressure fluctuation occurs in the intake passage A on the upstream side of the supercharger B. Therefore, as shown by the chain line in Fig. 8, when an air 70-meter E is installed upstream of the intake passage A to detect the air intake amount required for controlling the fuel supply base, the above-mentioned The pressure fluctuations affect the air flow meter E, causing it to malfunction and causing a disturbance in the control of the fuel supply m.

本発明は、従来における上記のような不具合に対処する
もので、吸気通路における過給機の吸入側と吐出側とを
連通させるバイパス通路に制御弁が備えられた過給機付
エンジンにおいて、上記υ制御弁の開度が小さい時の気
流音の発生を防止もしくは低減し、また該弁の開度の急
変時におけるエアフローメータの誤動作を防止すること
を目的とする。
The present invention addresses the above-mentioned conventional problems, and provides a supercharged engine in which a control valve is provided in a bypass passage that communicates the suction side and discharge side of a supercharger in an intake passage. The purpose of this invention is to prevent or reduce the generation of air flow noise when the opening degree of a υ control valve is small, and to prevent malfunction of an air flow meter when the opening degree of the valve suddenly changes.

(問題点を解決するための手段) 即ち、本発明に係る過給機付エンジンの吸気装置は、吸
気通路における過給機の吸入側と吐出側とを連通させる
バイパス通路に該通路を通過するエア量を制御する制御
弁を備えると共に、該バイパス通路における制御弁と過
給機吸入側への連通部との間に絞り部材を設けたことを
特徴とする。
(Means for Solving the Problems) That is, in the intake system for a supercharged engine according to the present invention, the intake passage passes through a bypass passage that communicates the suction side and the discharge side of the supercharger in the intake passage. The present invention is characterized in that it includes a control valve that controls the amount of air, and that a throttle member is provided between the control valve and the communication portion to the supercharger suction side in the bypass passage.

この絞り部材は、バイパス通路の通路断面積を固定的に
絞縮するものでもよく、また必要に応じて絞りを解除で
きるようにしたものとしてもよい。
This restricting member may be one that restricts or reduces the passage cross-sectional area of the bypass passage in a fixed manner, or may be one that can release the restriction as necessary.

尚、上記制御弁の開度はエンジンの負荷に応じて調整さ
れて、低負荷時にはバイパス通路を過給機吐出側から吸
入側へ流れるリリーフエア量を増大させ、高負荷時には
該リリーフエア量を減少させるようになっているが、過
給機が作動しないエンジンのアイドル時等においては、
該制御弁は全開とされて、バイパス通路を過給機吸入側
から吐出側へエアを通過させる。
The opening degree of the control valve is adjusted according to the engine load, and when the load is low, the amount of relief air flowing through the bypass passage from the turbocharger discharge side to the suction side is increased, and when the load is high, the amount of relief air is increased. However, when the engine is idling when the supercharger is not operating,
The control valve is fully opened to allow air to pass through the bypass passage from the supercharger suction side to the discharge side.

(作   用) 上記の構成によれば、高負荷時等においてバイパス通路
上の制御弁の開度が小さくされ、これに′伴って該通路
の過給機吐出側の圧力が高く、過給機吸入側の圧力が低
くなっている時に、上記制御弁とその過給機吸入側に設
けられた絞り部材との間に中間圧力の領域が形成される
ことになり、制御弁の両側で圧力差が小さくなる。その
ため、該制御弁を通って過給機吐出側から吸入側へ流れ
るリリーフエアの流速が低下し、これに伴って気流音が
低減されることになる。
(Function) According to the above configuration, the opening degree of the control valve on the bypass passage is reduced at times of high load, etc., and the pressure on the turbocharger discharge side of the passage is accordingly high, causing the turbocharger to When the pressure on the suction side is low, an intermediate pressure region is formed between the control valve and the throttle member provided on the suction side of the supercharger, resulting in a pressure difference on both sides of the control valve. becomes smaller. Therefore, the flow velocity of the relief air flowing from the supercharger discharge side to the suction side through the control valve is reduced, and air flow noise is accordingly reduced.

また、制御弁の開度の急変時において、該制御弁の過給
機吸入側に正圧波又は負圧波が生じても、これらの圧力
波が上記絞り部材によって減衰されることになり、該圧
力波に起因して吸気通路の過給機上流側に大きな圧力変
動が発生することが防止される。従って、吸気通路の上
流部°にエア70−メータが備えられている場合に、上
記圧力変動による該メータの誤動作が防止されることに
なる。
In addition, even if positive pressure waves or negative pressure waves occur on the supercharger suction side of the control valve when the opening degree of the control valve suddenly changes, these pressure waves are attenuated by the throttle member, and the pressure is reduced. This prevents large pressure fluctuations from occurring on the upstream side of the supercharger in the intake passage due to waves. Therefore, when an air meter is provided in the upstream portion of the intake passage, malfunction of the air meter due to the above-mentioned pressure fluctuations can be prevented.

(実  施  例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

第1図に示すように、エンジン1には吸、排気弁2.3
を介して燃焼室4に夫々連通された吸気通路5及び排気
通路6が設けられていると共に、吸気通路6には上流側
からエアクリーナ7、エア70−メータ8、スロットル
バルブ9、過給va10、サージタンク11及び燃料噴
射ノズル12が配設され、また排気通路6には、図示し
ないが、触媒装置や消音器が配設されている。
As shown in Fig. 1, the engine 1 includes intake and exhaust valves 2.3.
An intake passage 5 and an exhaust passage 6 are provided which communicate with the combustion chamber 4 through the intake passage 6, and in the intake passage 6, from the upstream side, an air cleaner 7, an air 70-meter 8, a throttle valve 9, a supercharging VA 10, A surge tank 11 and a fuel injection nozzle 12 are provided, and the exhaust passage 6 is provided with a catalyst device and a muffler, although not shown.

上記過給機10は、エンジン1の出力軸13によりチェ
ーンもしくはベルト等を用いた伝動機構14を介して駆
動される機械式過給機であって、その駆動経路の途中に
は電磁クラッチ15が介設されている。また、上記吸気
通路5の過給機10の吸入側におけるスロットルバルブ
9の下流部と、該過給機10の吐出側におけるサージタ
ンク11との間には、該過給機10をバイパスするバイ
パス通路16が設けられていると共に、該バイパス通路
16上には該通路16を通過するエア量をIIJ御する
制御弁・17が備えられており、またこの制御弁17の
開度をiil!!1する負圧ダイヤフラム式のアクチュ
エータ18が備えられている。このアクチュエータ18
は、バイパス通路16における過給機吸入側への連通部
近傍から分岐された負圧通路19により逆止弁20及び
負圧調整弁21を介して導入される吸気負圧により作動
され、上記負圧調整弁21によって調整される負圧導入
量の増大に従って上記制御弁17の開度を大きくするよ
うに動作する。そして、本発明の特徴部分として、バイ
パス通路16における制御弁17の過給機吸入側の所定
位置には、該通路16の断面積を絞縮する絞り部22が
設けられている。
The supercharger 10 is a mechanical supercharger that is driven by the output shaft 13 of the engine 1 via a transmission mechanism 14 using a chain or belt, and an electromagnetic clutch 15 is provided in the middle of the drive path. Intervention is provided. Further, a bypass that bypasses the supercharger 10 is provided between the downstream part of the throttle valve 9 on the suction side of the supercharger 10 of the intake passage 5 and the surge tank 11 on the discharge side of the supercharger 10. A passage 16 is provided, and a control valve 17 is provided above the bypass passage 16 to control the amount of air passing through the passage 16, and the opening degree of this control valve 17 is controlled by IIJ! ! A negative pressure diaphragm type actuator 18 is provided. This actuator 18
is actuated by the intake negative pressure introduced through the check valve 20 and the negative pressure regulating valve 21 by the negative pressure passage 19 branched from the vicinity of the communication part to the supercharger suction side in the bypass passage 16, and The opening of the control valve 17 is increased in accordance with the increase in the amount of negative pressure introduced by the pressure regulating valve 21. As a feature of the present invention, a throttle section 22 is provided in the bypass passage 16 at a predetermined position on the supercharger suction side of the control valve 17 to narrow the cross-sectional area of the passage 16.

一方、このエンジン1には、上記燃料噴射ノズル12に
よる燃料噴射機の制御と、上記過給様10の駆動経路上
に介設された電磁クラッチ15の断接制御と、上記負圧
導入通路19上の負圧調整弁21によるアクチュエータ
18への負圧導入量の制御、即ち制御弁17の開閉制御
とを行うコントローラ31が備えられており、このコン
トローラ31に上記エアフローメータ8からのエア吸入
°量信号aと、スロットルバルブ9の開度を検出するセ
ンサ32からのスロットル開度信号すと、エンジン出力
軸13の回転数を検出するセンサ33からのエンジン回
転数信号Cと、エンジン冷却水の温度を検出するセンサ
34からの水温信号dとが入力されるようになっている
On the other hand, this engine 1 includes control of a fuel injector by the fuel injection nozzle 12, control of connection/disconnection of an electromagnetic clutch 15 interposed on the drive path of the supercharging member 10, and control of the negative pressure introduction passage 19. A controller 31 is provided that controls the amount of negative pressure introduced into the actuator 18 by the negative pressure regulating valve 21 above, that is, controls the opening and closing of the control valve 17. The amount signal a and the throttle opening signal from the sensor 32 that detects the opening of the throttle valve 9, the engine rotational speed signal C from the sensor 33 that detects the rotational speed of the engine output shaft 13, and the engine cooling water A water temperature signal d from a sensor 34 that detects temperature is input.

そして、該コントローラ31は、上記燃料噴射量制御と
、電磁クラッチ15の断接制御と、負圧調整弁21ない
し開閉弁17の制御とを、夫々次のように行う。つまり
、燃料噴射量制御については、上記エア吸入量信号aと
エンジン回転数信号Cとに基づいて燃焼室4への1サイ
クル当りのエア吸入mを求め、この吸入量に応じた燃料
供給量を検出すると共に、これを水温信9dが示すエン
ジン1の暖機状態に応じて補正し、このようにして1r
Iられた噴射■となるように燃料噴射ノズル12に燃料
制御信号eを出力する。また、電磁クラッチ15の断接
制御については、第2図に示すようにエンジン回転数と
スロットル開度とをパラメータとするエンジンの全運転
領域中に予めアイドル領域Oを設定しておくと共に、上
記スロットル開度信号すとエンジン回転数信号Cとに基
づいて現在のエンジン運転状態がアイドル領域O内にあ
るか否かを判定し、アイドル領域Oにある場合は電磁ク
ラッチ15を切断するように、アイドル領域0にない場
合、即ち通常の運転領域にある場合は該クラッチ15を
接続するようにクラッチ制御信号tを出力する。
The controller 31 performs the fuel injection amount control, the connection/disconnection control of the electromagnetic clutch 15, and the control of the negative pressure regulating valve 21 to the opening/closing valve 17, respectively, as follows. In other words, regarding fuel injection amount control, the air intake m per cycle into the combustion chamber 4 is determined based on the air intake amount signal a and the engine speed signal C, and the fuel supply amount is determined according to this intake amount. At the same time, it is detected and corrected according to the warm-up state of the engine 1 indicated by the water temperature signal 9d.
A fuel control signal e is outputted to the fuel injection nozzle 12 so that the injection (i) is achieved. Regarding the connection/disconnection control of the electromagnetic clutch 15, as shown in FIG. It is determined whether the current engine operating state is within the idle region O based on the throttle opening signal and the engine rotation speed signal C, and if the current engine operating state is within the idle region O, the electromagnetic clutch 15 is disconnected. If the engine is not in the idle region 0, that is, if it is in the normal operating region, a clutch control signal t is output to connect the clutch 15.

更に、制御弁17の開閉制御については、第2図に示す
上記のエンジン全運転領域中に、低スロツトル開度側か
ら上記アイドル領域0を含む低負荷領域工と、中負荷領
域■と、高負荷領域■とを設定すると共に、上記スロッ
トル開度信号すとエンジン回転数信号Cとに基づいて現
在の運転状態がいずれの領域にあるかを判定する。そし
て、低負荷領域工にある時はアクチュエータ18に負圧
を十分導入するように、高負荷領域■にある時はアクチ
ュエータ18への負圧の導入を遮断する(大気を導入す
る)ように、また中負荷領域■にある時は負荷に応じて
負圧を導入するように、夫々負圧調整弁21に負圧制御
信号9を出力し、これにより、低負荷領域工では制御弁
17を全開とし、高負荷領域■では該弁17を全閉とし
、また中負荷領域■では負荷の増大に従って制御弁17
の開度を小さくするように制御する。
Furthermore, regarding the opening/closing control of the control valve 17, in the entire engine operating range shown in FIG. In addition to setting the load range (2), it is determined in which range the current operating state is based on the throttle opening signal and the engine rotational speed signal C. Then, when in the low load region, sufficient negative pressure is introduced into the actuator 18, and when in the high load region, the introduction of negative pressure to the actuator 18 is cut off (atmosphere is introduced). In addition, when in the medium load area ■, a negative pressure control signal 9 is output to each negative pressure regulating valve 21 so as to introduce negative pressure according to the load, and this causes the control valve 17 to be fully opened in low load area work. In the high load area (■), the valve 17 is fully closed, and in the medium load area (■), the control valve 17 is closed as the load increases.
control to reduce the opening degree.

次に、上記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

エンジン1がアイドル領域O以外の通常の運転領域にあ
る場合は、吸気通路5に設けられた過給機10がエンジ
ン出力軸13により伝動機構14及び電磁クツラッチ1
5を介して回転駆動されることにより、エアクリーナ7
からスロットルバルブ8を介して吸入されたエアが上記
過給機10により加圧された上でサージタンク11から
燃焼室4に圧送供給されるのであるが、この時、燃焼室
4に供給されるエアの圧力、即ち過給圧は負荷に応じて
次のように調整される。即ち、高い過給圧を必要としな
い低負荷領域工においては、コントローラ31からの負
圧制御信号gで作動される負圧調整弁21を介してアク
チュエータ18に負圧が十分導入されて、バイパス通路
16上の制御弁17が全開とされることにより、上記過
給機1゜から吐出されたエアのかなりの部分がリリーフ
エアとしてサージタンク11から上記バイパス通路16
を通って過給機10の吸入側に還流され、過給圧が必要
以上に高くなることが防止されるのである。また、中負
荷領域■においては、上記信号gにより負圧調整弁21
及びアクチュエータ18を介して制御弁17の開度が負
荷の増大に応じて小さくされることにより、バイパス通
路16によって過給110の吐出側から吸入側へ還流さ
れるリリーフエア量が負荷の増大に従って減少され、過
給圧が負荷の増大に従って高くされるのである。
When the engine 1 is in a normal operating range other than the idle range O, the supercharger 10 provided in the intake passage 5 is connected to the transmission mechanism 14 and the electromagnetic shoe latch 1 by the engine output shaft 13.
5, the air cleaner 7
The air sucked in through the throttle valve 8 is pressurized by the supercharger 10 and then supplied under pressure from the surge tank 11 to the combustion chamber 4; The air pressure, that is, the supercharging pressure, is adjusted as follows depending on the load. That is, in low-load area work that does not require high boost pressure, sufficient negative pressure is introduced into the actuator 18 via the negative pressure regulating valve 21 operated by the negative pressure control signal g from the controller 31, and the bypass is activated. By fully opening the control valve 17 on the passage 16, a considerable portion of the air discharged from the supercharger 1° is transferred from the surge tank 11 to the bypass passage 16 as relief air.
This prevents the supercharging pressure from becoming higher than necessary. In addition, in the medium load region (■), the negative pressure regulating valve 21 is
By reducing the opening degree of the control valve 17 via the actuator 18 in accordance with the increase in load, the amount of relief air recirculated from the discharge side to the suction side of the supercharger 110 through the bypass passage 16 decreases in accordance with the increase in load. The boost pressure is increased as the load increases.

そして、高負荷領域■においては、上記制御弁17が全
開とされることにより、バイパス通路16が遮断されて
リリーフエア量が零とされ、過給圧が所要の高圧とされ
るのである。このようにしてエンジン負荷に応じて過給
圧が制御され、これに伴って燃焼室4に供給されるエア
量も負荷に応じて必要とされる固にコントロールされる
ことになる。
In the high load region (2), the control valve 17 is fully opened, thereby blocking the bypass passage 16, reducing the amount of relief air to zero, and raising the boost pressure to the required high pressure. In this way, the boost pressure is controlled according to the engine load, and accordingly, the amount of air supplied to the combustion chamber 4 is also precisely controlled according to the load.

尚、アイドル領域Oにおいては電磁クラッチ15が切断
されて過給機10が停止されるのであるが、この場合、
上記制御弁17が全開とされて、アイドル運転に必要な
エアがバイパス通路16を通って燃焼室4に供給される
In addition, in the idle region O, the electromagnetic clutch 15 is disconnected and the supercharger 10 is stopped, but in this case,
The control valve 17 is fully opened, and air necessary for idle operation is supplied to the combustion chamber 4 through the bypass passage 16.

然して、上記のように過給機1oの吐出エアの一部をバ
イパス通路16により制御弁17を介して過給機10の
吸入側へ還流させる場合、特に上記制御弁17の開度が
小さい場合には、第3図に示すようにバイパス通路16
における過給機吐出側通路(サージタンク11側)16
1の圧力P1が高く、過給機吸入側通路(スロットルバ
ルブ9側)162の圧力P2が低くなって大きな圧力差
JP (−P+−P2)が生じることになる。しかし、
上記制御弁17の過給機吸入側には絞り部22が設けら
れているため、該制御弁17と絞り部22の中間部16
3に、上記圧力P1.P2の中間の圧力P3となる領域
が形成されて、制御弁17の両側における圧力差ΔP′
が上記圧力差ΔPより小さくなる。そのため、この圧力
差JP/ないし第3図に示す圧力変化の勾配に対応する
制御弁17を通過するエアの流速V′が、従来の圧力差
Apの場合における流速■に比較して小さくなり、これ
によりリリーフエアが制御弁17を通過する際の気流音
が低減されることになる。尚、絞り部22を設けたこと
によってその両側に新たな圧力差ΔP”  (−P3−
P2)が生じることになるが、この圧力差Ap”も上記
圧力差ΔPより小さいので、気流音を発生させることは
ない。
However, when part of the air discharged from the supercharger 1o is recirculated to the suction side of the supercharger 10 through the control valve 17 through the bypass passage 16 as described above, especially when the opening degree of the control valve 17 is small. In this case, a bypass passage 16 is provided as shown in FIG.
Turbocharger discharge side passage (surge tank 11 side) 16 in
1 is high, and the pressure P2 of the supercharger suction side passage (throttle valve 9 side) 162 is low, resulting in a large pressure difference JP (-P+-P2). but,
Since a throttle section 22 is provided on the supercharger suction side of the control valve 17, an intermediate section 16 between the control valve 17 and the throttle section 22
3, the above pressure P1. A region having a pressure P3 between P2 and P2 is formed, and the pressure difference ΔP' on both sides of the control valve 17 is
becomes smaller than the pressure difference ΔP. Therefore, the flow velocity V' of the air passing through the control valve 17 corresponding to the pressure difference JP/ or the gradient of pressure change shown in FIG. This reduces air flow noise when the relief air passes through the control valve 17. In addition, by providing the constriction part 22, a new pressure difference ΔP" (-P3-
P2) will occur, but since this pressure difference Ap'' is also smaller than the pressure difference ΔP, no airflow noise will be generated.

また、例えば低負荷領域工と高負荷領域■との間での運
転領域の移行時において制御弁17の開度が全閉状態か
ら全開状態へ或いはその逆方向に急激に変化した場合、
バイパス通路16における該制御弁17の過給機吸入側
に第4図に示すような圧力波Xoが発生し、これが吸気
通路5の過給機上流側(吸入側)へ伝播する。その場合
に、この圧力波Xoの伝播経路には上記絞り部22が設
けられているため、第4図に符号×1で示す絞り部が設
けられていない場合に比較して減衰率が大きくなり、吸
気通路5側に伝播された時点では著しく小さな圧力波X
1’となる。従って、この圧力波Xoに起因して生じる
吸気通路5の上流部における圧力変動も弱いものとなる
。これにより、吸気通路5の上流部に設置されたエア7
0−メータ8が大きな圧力変動により誤@−作するとい
った不具合が防止され、該エアフローメータ8からのエ
ア吸入組信号aに基づく燃料噴射ffi M I20が
正しく行われることになる。
Furthermore, if the opening degree of the control valve 17 suddenly changes from a fully closed state to a fully open state or in the opposite direction, for example, at the time of transition of the operating region between the low load region and the high load region (2),
A pressure wave Xo as shown in FIG. 4 is generated on the supercharger suction side of the control valve 17 in the bypass passage 16, and this wave propagates to the supercharger upstream side (suction side) of the intake passage 5. In that case, since the constriction section 22 is provided on the propagation path of this pressure wave Xo, the attenuation rate becomes larger compared to the case where the constriction section shown by the symbol x1 in FIG. 4 is not provided. , a significantly small pressure wave X when propagated to the intake passage 5 side.
It becomes 1'. Therefore, pressure fluctuations in the upstream portion of the intake passage 5 caused by this pressure wave Xo are also weak. As a result, the air 7 installed in the upstream part of the intake passage 5
This prevents a malfunction in which the 0-meter 8 is erroneously operated due to large pressure fluctuations, and the fuel injection ffi MI20 based on the air intake group signal a from the air flow meter 8 is performed correctly.

ここで、第5図に示すように、バイパス通路16′にお
ける制御弁17′と絞り部22′との間に拡張空23′
を設ければ、上記の如き圧力波が一層効果的に減衰され
ることになり、エアフローメータの誤動作をより確実に
防止することができるJ:うになる。
Here, as shown in FIG. 5, an expansion space 23' is provided between the control valve 17' and the throttle part 22' in the bypass passage 16'.
By providing this, pressure waves such as those described above will be more effectively attenuated, and malfunctions of the air flow meter can be more reliably prevented.

尚、以上の実施例は、バイパス通路16.16′にその
通路断面積を固定的に絞縮する絞り部22.22’を設
けたものであるが、第6図に示すように、上記絞り部2
2.22’ に代えて絞り量可変の絞り部材22″を設
けてもよい。つまり、この絞り部材22″は、負圧調整
弁21″によって負荷に応じて調整された負圧が導入さ
れるアクチュエータ24″により作動され、第、7図に
示すように制御弁17″と同様に負荷の増大に応じて開
度が小さくなるように(絞り量が大ぎくなるように)制
御されるようになっている。従って、この絞り部材22
″ににれば、中負荷ないし高負荷領域においては所要の
絞り作用が得られて、上記実施例と同様に気流音が低減
され、また圧力波ないし圧力変動によるエアフローメー
タの誤動作が防止されると共に、制御弁17が全開とさ
れる低負荷flA域においては、該絞り部材22″も全
開もしくは略全開とされて、リリーフ能力が向上される
ことになる。
In the above embodiment, the bypass passage 16.16' is provided with a constriction part 22.22' that fixedly constricts the cross-sectional area of the passage, but as shown in FIG. Part 2
2.22' may be replaced by a throttle member 22'' with a variable throttle amount.In other words, a negative pressure adjusted according to the load is introduced into this throttle member 22'' by a negative pressure regulating valve 21''. It is actuated by the actuator 24'', and as shown in FIG. 7, similarly to the control valve 17'', it is controlled so that the opening degree becomes smaller (the amount of throttling becomes larger) as the load increases. Therefore, this aperture member 22
'', the necessary throttling action can be obtained in the medium to high load range, air flow noise is reduced as in the above embodiment, and malfunction of the air flow meter due to pressure waves or pressure fluctuations is prevented. At the same time, in the low load flA region where the control valve 17 is fully open, the throttle member 22'' is also fully opened or approximately fully open, improving the relief ability.

(発明の効果) 以上のように本発明によれば、吸気通路における過給機
吸入側と吐出側とを連通させるバイパス通路に制御弁を
備え、該制御弁の開度を調整することにより負荷に応じ
た過給圧が得られるようにした過給機付エンジンの吸気
装置において、上記バイパス通路における制御弁と過給
機吸入側への連通部との間に絞り°部材を設ける構成と
したから、上記制御弁の開度が小さいエンジンの高負荷
時等に該制御弁の両側の圧力差が小さくなって該弁を通
過するリリーフエアの流速が遅くされ、これにより該リ
リーフエアが制御弁を高速で通過することによる気流音
の発生が防止もしくは低減されることになる。また、上
記制御弁の開度の急変時に大きな圧力波が発生しても、
この圧力波が上記絞り部によって減衰されて吸気通路の
過給機上流側に圧力変動を発生させることが防止される
。これにより、吸気通路の上流部にエアフローメータが
設置されている場合に、該メータが上記圧力変動により
誤動作することが防止され、このエア70−メータの出
力信号に基づいて燃料噴射最の制御が精度良く行われる
ことになる。
(Effects of the Invention) As described above, according to the present invention, a control valve is provided in the bypass passage that communicates the supercharger suction side and the discharge side in the intake passage, and the load is increased by adjusting the opening degree of the control valve. In the intake system for a supercharged engine, which is configured to obtain a supercharging pressure corresponding to Therefore, when the opening degree of the control valve is small and the engine is under high load, the pressure difference between both sides of the control valve becomes small, and the flow velocity of the relief air passing through the valve is slowed down. This will prevent or reduce the generation of air flow noise caused by passing at high speed. In addition, even if a large pressure wave occurs when the opening of the control valve mentioned above suddenly changes,
This pressure wave is attenuated by the throttle portion, thereby preventing pressure fluctuations from occurring on the upstream side of the supercharger in the intake passage. As a result, when an air flow meter is installed upstream of the intake passage, the meter is prevented from malfunctioning due to the pressure fluctuation, and fuel injection control is performed based on the output signal of this air 70-meter. This will be done with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は本発明に係る吸気装置の第1実施例を示す
もので、第1図は該吸気装置の制御システム図、第2図
は制御弁の制御領域を示す領域図、第3.4図は作用を
示すバイパス通路における各部の圧力分布図、及び圧力
波の減衰状態の説明図である。また、第5図は本発明の
第2実滴例を示す要部構成図、第6図は第3実施例を示
す要部構成図、第7図は第3実施例における制御弁と絞
り部材の開閉特性図である。更に第8図は従来例として
示す吸気装置の概略図である。 5・・・吸気通路、1o・・・過給機、16.16’・
・・バイパス通路、17.17’ 、17″・・・制御
弁、22.22’ 、22”・・・絞り部材。
1 to 4 show a first embodiment of the intake device according to the present invention, FIG. 1 is a control system diagram of the intake device, FIG. 2 is a region diagram showing the control region of the control valve, and FIG. Figure 4 is a pressure distribution diagram at each part in the bypass passage showing the effect, and an explanatory diagram of the attenuation state of pressure waves. Furthermore, FIG. 5 is a block diagram of main parts showing a second example of actual droplets of the present invention, FIG. 6 is a block diagram of main parts showing a third embodiment, and FIG. 7 is a control valve and throttle member in the third embodiment. FIG. Further, FIG. 8 is a schematic diagram of an intake device shown as a conventional example. 5...Intake passage, 1o...Supercharger, 16.16'.
...Bypass passage, 17.17', 17''...control valve, 22.22', 22''...throttle member.

Claims (1)

【特許請求の範囲】[Claims] (1)吸気通路に過給機が備えられたエンジンの吸気装
置であつて、上記吸気通路における過給機の吸入側と吐
出側とを連通させるバイパス通路を設けると共に、該バ
イパス通路上に該通路内を通過するエア量を制御する制
御弁を備え、且つ該通路における制御弁と過給機吸入側
への連通部との間に絞り部材を設けたことを特徴とする
過給機付エンジンの吸気装置。
(1) An intake system for an engine equipped with a supercharger in an intake passage, wherein a bypass passage is provided in the intake passage to communicate the suction side and the discharge side of the supercharger, and a bypass passage is provided on the bypass passage. A supercharged engine comprising a control valve that controls the amount of air passing through a passage, and a throttle member provided between the control valve and a communication part to the suction side of the supercharger in the passage. intake device.
JP22683686A 1986-09-25 1986-09-25 Suction air device for engine provided with supercharger Pending JPS6385220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22683686A JPS6385220A (en) 1986-09-25 1986-09-25 Suction air device for engine provided with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22683686A JPS6385220A (en) 1986-09-25 1986-09-25 Suction air device for engine provided with supercharger

Publications (1)

Publication Number Publication Date
JPS6385220A true JPS6385220A (en) 1988-04-15

Family

ID=16851331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22683686A Pending JPS6385220A (en) 1986-09-25 1986-09-25 Suction air device for engine provided with supercharger

Country Status (1)

Country Link
JP (1) JPS6385220A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469641U (en) * 1990-10-25 1992-06-19
US5291871A (en) * 1991-01-18 1994-03-08 Aisin Seiki Kabushiki Kaisha Supercharged diesel engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137604B2 (en) * 1972-04-03 1976-10-16
JPS6162257A (en) * 1984-09-03 1986-03-31 Nec Corp Repeater
JPS61189380A (en) * 1985-02-16 1986-08-23 Miyoshi Valve Kk Constant flow rate valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137604B2 (en) * 1972-04-03 1976-10-16
JPS6162257A (en) * 1984-09-03 1986-03-31 Nec Corp Repeater
JPS61189380A (en) * 1985-02-16 1986-08-23 Miyoshi Valve Kk Constant flow rate valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469641U (en) * 1990-10-25 1992-06-19
US5291871A (en) * 1991-01-18 1994-03-08 Aisin Seiki Kabushiki Kaisha Supercharged diesel engine

Similar Documents

Publication Publication Date Title
JPH05288123A (en) Exhaust gas circulation apparatus for internal combustion engine
JPH03229947A (en) Engine control device
JPH02191818A (en) Control device for engine with supercharger
JPH06257519A (en) Exhaust reflux device of engine with turbo supercharger
JPH03229948A (en) Fuel control device for engine
JPS61265331A (en) Control device for supercharging pressure of internal combustion engine
JPS6385220A (en) Suction air device for engine provided with supercharger
WO2002061251A1 (en) Passive engine exhaust flow restriction arrangement
JP3054430B2 (en) Engine intake system
JPH0953470A (en) Exhaust brake device of diesel engine with turbocharger
JPH08177597A (en) Exhaust gas recirculation control device for engine with supercharger
JP2011052587A (en) Control device for air bypass valve of diesel engine
JPH03199627A (en) Intake air device for engine
JPH07233761A (en) Exhaust reflux device for engine
JPH03115735A (en) Controller of engine with supercharger
JPH0329547Y2 (en)
JP2770861B2 (en) Control device for engine with turbocharger
JPS61277820A (en) Engine equipped with exhaust turbosupercharger
JPH09112285A (en) Boost pressure control device for internal combustion engine
JP2605053B2 (en) Engine boost pressure control device
JPH0242131A (en) Exhaust structure for engine with exhaust turbosupercharger
JPH0242168A (en) Intake structure for engine with supercharger
JPS59105955A (en) Exhaust-gas recirculating apparatus for diesel-engine
JPH02136512A (en) Intake air system for engine with supercharger
JPH0424535B2 (en)