JPS6383552A - Solar radiation energy collecting and transferring device as well as method and device for collecting heat - Google Patents

Solar radiation energy collecting and transferring device as well as method and device for collecting heat

Info

Publication number
JPS6383552A
JPS6383552A JP61227192A JP22719286A JPS6383552A JP S6383552 A JPS6383552 A JP S6383552A JP 61227192 A JP61227192 A JP 61227192A JP 22719286 A JP22719286 A JP 22719286A JP S6383552 A JPS6383552 A JP S6383552A
Authority
JP
Japan
Prior art keywords
light
solar
collector
radiant energy
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61227192A
Other languages
Japanese (ja)
Inventor
Masao Komatsu
小松 政雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIZEN KAGAKU KENKYUSHO KK
Original Assignee
SHIZEN KAGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIZEN KAGAKU KENKYUSHO KK filed Critical SHIZEN KAGAKU KENKYUSHO KK
Priority to JP61227192A priority Critical patent/JPS6383552A/en
Publication of JPS6383552A publication Critical patent/JPS6383552A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PURPOSE:To use natural solar white light as general illuminating light or the like and collect the heat of the same by combining it with a different heat collector, by a method wherein the constituent of the natural solar white light, consisting of not only solar direct light but also diffuse sky light within a specified zenithal angle or other wide range, is received as it is and is transferred by an inexpensive and genuine refraction type optical system. CONSTITUTION:A rotatable reflection mirror 1 is fixed onto an automatic sun tracking device, consisting of mutually orthogonal rotary shaft 9 (vertical shaft) and rotary shaft 10 (horizontal shaft) or the like, while the reflecting surface thereof is opposed to the sun at all times. A plurality of positive and negative Fresnel lenses 2 receives solar direct light as well as diffuse sky light within 30 deg. of zenithal angle, for example, or other wide range directly and through the reflection mirror 1. In order to transfer the received light beams effectively, the light beams are charged or cancelled respectively by a collector 2, a group 4 of collimator lenses, an objective lens system 5 and eyepiece system 6 while the accuracy of parallelism of a projected light from the eyepiece system 6 is corrected finally with respect to the optical axis of the light within a range having no trouble for the actual use thereof.

Description

【発明の詳細な説明】 (イ)発明の目的 (産業上の利用分野) この発明は、太陽放射エネルギーを主としてr光」とし
て捕捉し、太陽直射光のみならず、広範囲の天空散乱光
をも有効に併合して集光し、これを所望の地点まで伝達
し、一般照明光等として使用出来ると共に、その集光部
の一部を削除し、その主要部と別個の集熱器と結合させ
た、集熱装置としても使用できる、太陽放射エネルギー
収集・伝達装置及び集熱装置とその方法に関するもので
ある。
[Detailed description of the invention] (a) Purpose of the invention (industrial application field) This invention captures solar radiant energy mainly as r-light, and captures not only direct sunlight but also a wide range of sky scattered light. It is possible to effectively combine and collect light, transmit it to a desired point, and use it as general illumination light, etc., and also remove a part of the light collecting part and combine the main part with a separate heat collector. The present invention also relates to a solar radiation energy collecting and transmitting device, a heat collecting device, and a method thereof, which can also be used as a heat collecting device.

(従来の技術) 従来か−る目的を達するための、小規模、低価格、の装
置は殆んど見当たらず、僅かに実用化されたのは昭和6
1年2月4日21時8CHで放映された香港、上向銀行
ビル高層階の窓ガラス外部に、並列に多数の平面鏡を設
け、屋内吹抜は部にこれと対応し且つ、太陽追尾式(完
全自動追尾式ではないと思う)にこれと連動して受光用
平面鏡列を設けたもの(太陽熱で屋内が暑過ぎ現在使用
中止とのこと)や開特昭59−5223、又は開特昭5
9−15803゜昭53−18414、昭59−219
48、昭5f3−224804、昭60−〇4315、
等に於ける如く、太陽自動追尾装置に固定された1個又
は多数個のコレクターの夫々の太陽像点に、石英ガラス
製のライトガイド用ファイバー・バンドルの一端面を夫
々一致させて、所望の位置まで収集光を伝達するもの等
で、何れも大規模であり、且つ、太陽自動追尾機構やそ
の追尾精度維持に相当な重点が置かれており、従って高
価で一般的な普及実用化にはや一難点があった。
(Prior art) Until now, there were almost no small-scale, low-cost devices to achieve this purpose, and only a few were put into practical use in 1983.
Broadcast on 8CH February 4, 2019 at 21:00 in Hong Kong, a large number of plane mirrors were installed in parallel on the outside of the window glass on the upper floors of the Kamigou Bank Building, and the indoor atrium corresponded to this, and a solar tracking type ( (I don't think it's a fully automatic tracking type) with an array of plane mirrors for light reception (currently discontinued because it's too hot indoors due to solar heat), 1987-5223, or 1986 patent.
9-15803゜Sho 53-18414, Sho 59-219
48, Showa 5f3-224804, Showa 60-〇4315,
etc., one end face of a light guide fiber bundle made of quartz glass is aligned with each solar image point of one or multiple collectors fixed to an automatic solar tracking device, and the desired position is adjusted. They are all large-scale devices that transmit collected light to a specific location, and considerable emphasis is placed on automatic solar tracking mechanisms and maintaining their tracking accuracy. Therefore, they are expensive and difficult to put into widespread use. There was one problem.

更に今日では高精度の太陽自動追尾機構はそのコストさ
え無視すれば、製作は比較的容易であり、且つ太陽放射
エネルギー収集の目的の為には晴天時にはその集光効率
は頗る良好であるとはいえ、晴天田と於てさえその有効
集光時間は意外に長くなく、まして曇天日や降雨日には
その効果は更に少ないものである。
Furthermore, today, high-precision solar automatic tracking mechanisms are relatively easy to manufacture, even ignoring their costs, and their light collection efficiency is extremely good on clear skies for the purpose of collecting solar radiant energy. No, even in a sunny field, the effective light collection time is not surprisingly long, and the effect is even less on cloudy or rainy days.

(発明の解決しようとする問題点) 本発明はかへる実情に鑑み、一般的な太陽自動追尾機構
を基本とし、太陽直射光のみならず、天頂角±300以
内及び其他広範囲の天空散乱光をも常時有効に、且つ太
陽自然白色光をそのま翫の構成4分で受光し、その構成
4分を崩さずに、所望の地点まで伝達するのに、高価な
オプチカル・ファイバー・バンドルは使用せず、安価な
純屈折式光学系に依り、その伝達過程に於ける減衰率を
最少にし、以って小規模・低価格の太陽直射光及び広範
囲の天空散乱光の収集・伝達装置及びその集光部の一部
を削除し、その主要部のみで構成される集光部と集熱器
とを結合させてなる集熱装置とその方法を提供すること
を目的とするものである。
(Problems to be Solved by the Invention) In view of the current situation, the present invention is based on a general automatic solar tracking mechanism, and uses not only direct sunlight but also sky scattered light within a zenith angle of ±300 and other wide ranges. Expensive optical fiber bundles are used to receive natural white light from the sun at all times and transmit it to the desired point without changing the configuration. By using an inexpensive purely refractive optical system and minimizing the attenuation rate during the transmission process, we have developed a small-scale, low-cost collection and transmission device for direct sunlight and a wide range of sky-scattered light, and its use. It is an object of the present invention to provide a heat collecting device and a method thereof, in which a part of the light collecting part is removed and a heat collector is combined with a light collecting part consisting only of the main part thereof.

(ロ)発明の構成 (問題点を解決するための手段) 一般に太陽放射エネルギー利用の場合、問題となる点は
多々あるが、特にその装置の価格・大きさ及び利用効果
等に影響を及ぼす点は下記の諸点であらう。
(b) Structure of the invention (means for solving problems) Generally, there are many problems when using solar radiant energy, but especially those that affect the price, size, effectiveness of use, etc. of the device. is based on the following points.

(a)全地球表面に到達する太陽放射エネルギーの総量
は莫大なものであるが、単位時間内に、単位面積内に到
達する太陽放射エネルギーは極めて微弱なものであるこ
と。
(a) Although the total amount of solar radiant energy that reaches the entire earth's surface is enormous, the amount of solar radiant energy that reaches a unit area within a unit time is extremely weak.

(b)天候は時々刻々変化し、晴天日こ於てさえ。(b) Weather changes from moment to moment, even on sunny days.

太陽直射光が有効に受光できる時間は、意外に少ない。The amount of time that direct sunlight can be effectively received is surprisingly short.

(C)日出から日没まで、太陽は一定の軌道上を移動し
て停止することはない。
(C) From sunrise to sunset, the sun moves in a fixed orbit and never stops.

その軌道は季節に依り変化する。Its orbit changes depending on the season.

(d)地表面に到達する太陽放射エネルギーに含まれる
光の波長は、その利用効果から限定しても、約300n
mの近紫外域から、可視域を経て、約4000nmの中
間赤外域に至る非常に広範囲であること0等 以上を総合して、本邦部金地に密集している家屋には、
−年中日光のあたらない部屋も数多くあり、更に最近で
は日照権の問題がクローズアップされているにも拘らず
、一部太陽熱利用の温水器が普及している以外、太陽光
利用が予想外に普及しないのは、その装置の価格とその
利用効果がバランスしていないと考えられているためで
あらうが、価格と普及率は相間々係にある。
(d) The wavelength of light contained in the solar radiant energy that reaches the earth's surface is approximately 300 nm, even if it is limited by its utilization effect.
Taking into consideration the extremely wide range of radiation from the near-ultraviolet region of 500 m, through the visible region, to the mid-infrared region of approximately 4,000 nm, the houses that are concentrated in the gold fields of Japan have
-There are many rooms that do not receive sunlight all year round, and even though the issue of sunlight rights has recently been brought into focus, the use of sunlight is unexpected, with the exception of some solar water heaters that have become widespread. The reason why it has not become widespread is probably because the price of the device and the effectiveness of its use are thought to be unbalanced, but price and penetration rate are closely related.

自然界の現実として上記に掲げた約4項目はや一専門知
識であり、一般需要者には、むしろ全く関係のないこと
で、現実とは無関係に、特にその効果のあるものが要求
されるであらう。
The four items listed above as realities of the natural world are merely specialized knowledge, and are rather completely unrelated to general consumers, who require something that is particularly effective, regardless of reality. wash.

これ等の問題点を出来る限り解決しようとするのが、本
発明の一つの目的である。
One object of the present invention is to try to solve these problems as much as possible.

以下本発明を実施例について説明すると、 (第1図)
はその光学系に重点を詮いた縦断面則ち太陽を含む光学
系のメリディオナール断面に、代表的入射光束の光路を
併記したもので、■は相互に直交する回転軸■(鉛直軸
)、及び@l(水平軸)等に依り構成される、太陽自動
追尾装置上に固定され、その反射面が常に太陽に正対す
る如く回転可能な反射ミラー、■は太陽直射光及び天頂
角±300以内及び其他広範囲の天空散乱光を、直接及
び反射ミラー■を経由して受光する複数個の正負のフレ
ネル−レンズで構成され、その光軸は天頂に向かって固
定され、 有効入射全角w=600゜ 小型化のためその後群径を若干カットしであるが、ウィ
グネッテング零に設計し、全系の小型化のため第一レン
ズ径が必要以上大きくならないように、その入射瞳位置
をレンズ第一面近傍に設け、又その像面が余り大きくな
らなす、且つその入射光の如何に関せず、すべての入射
光束の主光線をその像面に垂直入射させるためにその射
出側をテレセントリックに設計し、特に最大入射光束(
入射角w=300)の広波長域に於ける色に依るコマ収
差及び像面湾曲収差等を重点的に補正した屈折型コレク
ター、■はその像面で、晴天時には太陽像及び天頂角±
300以内及び其他広範囲の天空散乱光像が全面的に結
像されており、曇天時には後者のみの像が全面的に結像
され、且つその各像点の構成に関与する光束の主光線は
、すべて像面に垂直となっており、晴天時にはこ−に太
陽像が結像するので、その像点は約数百度にも達するか
ら、像面の近傍には絶対部材を設けてはならず。
The present invention will be explained below with reference to embodiments (Fig. 1).
is a longitudinal section focusing on the optical system, i.e., a meridional section of the optical system including the sun, along with the optical path of a typical incident light beam. , and @l (horizontal axis), etc., is fixed on the automatic solar tracking device and is rotatable so that its reflecting surface always faces the sun, ■ is the direct sunlight and the zenith angle ±300 It is composed of a plurality of positive and negative Fresnel lenses that receive sky-scattered light directly and via a reflecting mirror (2), and its optical axis is fixed toward the zenith, and the effective angle of incidence w = 600.゜In order to make the system smaller, the diameter of the group was slightly cut, but in order to make the whole system smaller, the entrance pupil position was changed to It is installed near one surface, and its image surface is too large, and its exit side is made telecentric in order to make the chief ray of all the incident light beam perpendicular to the image surface, regardless of the incident light. designed, especially the maximum incident luminous flux (
A refractive collector that focuses on correcting comatic aberration and field curvature aberration due to color in a wide wavelength range with an incident angle w = 300).
Sky scattered light images within 300 degrees and other wide areas are formed on the entire surface, and only the latter image is formed on the entire surface when it is cloudy, and the chief ray of the light flux that is involved in the composition of each image point is All of them are perpendicular to the image plane, and since the image of the sun is formed here on a clear day, the image point reaches approximately several hundred degrees, so no members should be placed near the image plane.

■は像面■上に、全面的に結像されている各像点を、夫
々その焦点とし、且つその像点の結像に関与する有効全
光束を受容するだけの有効径を有し、像面■から一定の
相邑間隔をもって同一基板上に固定された。同一仕様の
コリメーター・レンズ群で1代表的像点に対応する有限
個数で構成され、コリメーター・レンズ群■の光軸は、
鉛直軸■と一致し、且つその基板は鉛直軸■に固定され
、太陽自動追尾機構上に於て反射ミラー■と同期して回
転するものとする。
(2) has each image point formed entirely on the image plane (2) as its focal point, and has an effective diameter sufficient to receive the total effective luminous flux involved in the image formation of that image point, They were fixed on the same substrate with a constant spacing from the image plane (2). Consists of a finite number of collimator lens groups with the same specifications that correspond to one representative image point, and the optical axis of the collimator lens group ■ is
It coincides with the vertical axis (2), and its substrate is fixed to the vertical axis (2) and rotates in synchronization with the reflecting mirror (2) on the automatic solar tracking mechanism.

従って像面■の代表的像点を構成するのに関与した有効
光束は、夫々これに対応するコリメータm−レンズを経
由して、近紫外域から中間赤外域に渉る広範囲の各波長
光は、慨ね夫々コレクターQ)の光軸に平行となって射
出される。
Therefore, the effective light beams involved in configuring the representative image point on the image plane (2) pass through the corresponding collimator m-lens, and each wavelength light from the near-ultraviolet region to the mid-infrared region is emitted. , are emitted generally parallel to the optical axis of the collector Q).

■は」;記コリメーターーレンズ群■に近接して設けら
れ且つ夫々より射出される平行光束群を、その入射光束
とし、接眼レンズ系■と共に、望遠鏡系を構成する対物
レンズ系で、■はミラーで壓これを透明窓部材と共に内
臓したへ光路変更器■を構成せしめ、[相]は必要に応
じ使用される中空光導管で、■は対物レンズ系■に近接
して設けらた防塵・防湿用の透明窓部材、■はその外側
が強い反射性を有する不透明部材、と内部に外光その他
の熱伝導を防止する空気層を介した不透明部材とで二重
に構成された本体で、その上部には反射ミラーの、水平
回転軸[株]、及び鉛直軸■が固定された水平回転基板
@ががん合し、更に反射ミラー■及び水平回転基板@の
運行に支障なく且つ太陽直射光及び天頂角±300以内
及び其他広範囲の天空散乱光の有効入射光を遮らず、他
の部分は強い反射性を有する不透明部材で外光を遮断し
である、一部透明の耐候性を有するカバー■が固定され
、反射ミラー■、コレクター■、コリメーター・レンズ
群■及び対物レンズ系0等集光用光学系は総て1本体0
、カバー〇及び防塵φ防湿用窓部材■で気密に収納され
て集光部が構成され、集光郡全体が、中央に収集光束を
遮えぎらぬだけの孔を設けた、丈夫な集光部基板■に取
付である。
■ is an objective lens system which, together with the eyepiece lens system ■, constitutes a telescope system, whose incident light beams are parallel light beam groups provided close to the collimator lens group ■ and emitted from each; is a mirror that is built in together with a transparent window member to form an optical path changer ■, [phase] is a hollow optical conduit that is used as necessary, and ■ is a dust-proofing device installed close to the objective lens system ■.・Moisture-proof transparent window material (■) is a double-layer main body consisting of an opaque material with strong reflectivity on the outside and an opaque material with an air layer inside to prevent outside light and other heat conduction. , The horizontal rotating board @ to which the horizontal rotating shaft [Co., Ltd.] and the vertical axis ■ of the reflecting mirror are fixed is firmly attached to the upper part of the reflecting mirror, and furthermore, the reflecting mirror ■ and the horizontal rotating board @ can be operated without any hindrance and are protected from the sun. It does not block effective incident light such as direct light and sky scattered light within ±300 of the zenith angle and other wide ranges of sky scattering light, while other parts are made of opaque material with strong reflectivity to block external light.It is partially transparent and weather resistant. The cover ■ is fixed, and the reflecting mirror ■, collector ■, collimator lens group ■, objective lens system, etc. are all in one body.
, cover〇 and dust-proof φ moisture-proof window member ■ form a light-condensing unit that is airtightly housed, and the entire condensing group is made of a durable light-condensing unit with a hole in the center that is large enough not to block the collected light flux. It is attached to the part board ■.

(第2図)は木造2階建家屋に対し、本発明の設置取付
方法を示す外観図で、■は充分採光比?゛だけの高さに
組立てられた架台で、集光部本体■はこの架台上に、光
路変更器■は所望の地点に応じ適当な位置に取付ける。
(Figure 2) is an external view showing the installation method of the present invention for a two-story wooden house. ■Is the lighting ratio sufficient? A pedestal is assembled to a height of ゛, and the light condensing unit body ① is mounted on this pedestal, and the optical path changer ② is mounted at an appropriate position according to the desired point.

さて本発明の一つの目的は、小型な装置で天候の如何に
関せず、出来るだけの大量の太陽直射光及び天頂角±3
00以内及び其他広範囲の天空散乱光を、然もその構成
4分を崩さず太陽自然白色光のま−で集光・伝達するこ
とであり、集光・伝達の過程に於てその伝達損失を最少
にするには(第1図)に於てその全光学系を経由し、最
終的には接眼レンズ系■より射出される広波長域に渉る
全波長光線の、その光軸に対する平行度が、充分な精度
を維持すれば良く、この場合極論すれば、所望の地点ま
での距離如何に関せず、中空光導管やファイバー・バン
ドル等の伝達用補助部材は一切必要としないことになる
One object of the present invention is to produce as much direct sunlight as possible and a zenith angle of ±3 with a small device, regardless of the weather.
The goal is to collect and transmit the sky scattered light within 0.00 and other wide ranges up to the natural white light of the sun without changing its composition, and to reduce the transmission loss in the process of light collection and transmission. In order to minimize (Fig. 1), the parallelism of all wavelengths of light over a wide wavelength range, which pass through the entire optical system and are finally emitted from the eyepiece system, to the optical axis. However, it is only necessary to maintain sufficient accuracy, and in this case, in the extreme, no auxiliary transmission members such as hollow light pipes or fiber bundles are required, regardless of the distance to the desired point. .

又受光された光束を有効に伝達するためには(第1図)
に於て、コレクター■コリメーター・レンズ群■対物レ
ンズ系■及び接眼レンズ系■等は、夫々が担当する性能
に於て、光学的諸収差が夫々個々に良好に補正されてい
ることが基本であるが、装置の低価格化は本発明の目的
であるため、これ等全光学系の素材、は長時間太陽光特
に紫外線照射に対しては耐久性のある光学樹脂材を採用
せざるを得なく、その結果素材は高々2〜3種に限定さ
れ、レンズ設計上諸政差の補正は一層困難となり、中で
も上記(d)項に記述した通りの、非常に広範囲の波長
域に対しては、太陽直射光のみならず、常に天頂角±3
00以内の天空散乱光をも有効に集光するためには、理
想的にはアポクロ級の色収差補正が望ましいのであるが
、アクロマート級の色収差補正すら殆んど不可能である
In addition, in order to effectively transmit the received luminous flux (Fig. 1)
In the performance of the collector, collimator lens group, objective lens system, eyepiece system, etc., it is essential that optical aberrations are well corrected individually. However, since the purpose of the present invention is to reduce the cost of the device, it is necessary to use an optical resin material that is durable against long-term sunlight, especially ultraviolet irradiation, as the material for the entire optical system. As a result, the number of materials is limited to two or three at most, making it even more difficult to compensate for various political differences in lens design. is not limited to direct sunlight, but always at the zenith angle ±3
In order to effectively condense even the sky scattered light within 0.00, it is ideal to correct chromatic aberration on an apochromatic level, but it is almost impossible to even correct chromatic aberration on an achromatic level.

か−る事情に依り、例えば(第1図)に於けるコレクタ
ー■の色に依るコマ収差や、コリメーター・レンズ群■
の夫々よりの射出光は広域全波長光に対し、収差補正上
、個々には必らずしも満足ウ 出来る良好な状態ではないが、それ等収差補正上充分な
点は、コレクター■、コリメーター〇レン群■、対物レ
ンズ系■及び接眼レンズ系■の夫々に分担・相殺せしめ
、最終的に接眼レンズ系■よりの射出光を、広域全波長
光に対し、その光軸に対し、実用上支障ない範囲内に、
平行精度を補正しである。
Due to these circumstances, for example, comatic aberration depending on the color of the collector (see Figure 1), collimator lens group, etc.
The light emitted from each of the above is not necessarily in a good condition that can be individually satisfactory in terms of aberration correction, compared to the wide range full wavelength light, but the points that are sufficient for correcting aberrations are the collector The meter lens group ■, the objective lens system ■, and the eyepiece system ■ share and cancel each other, and finally the light emitted from the eyepiece system ■ is converted into a wide range all wavelength light with respect to its optical axis for practical use. Within the range that does not cause any problems,
This is to correct parallelism accuracy.

これを本発明の実施例について、実数値で表示したのが
(第1表)(イ)、(ロ)、(ハ)であり。
(Table 1) (A), (B), and (C) show this as a real value for the embodiments of the present invention.

夫々コレクター■に対する入射角が、w=300゜20
0、及び10Gの場合のもので、 (第3表)に於ける
各記号は、接眼レンズ系■の有効径を240mmとした
場合の、全光学系の有効径−杯を通過する、広域全波長
光に対し、夫々下記通りの意味である。
The angle of incidence on each collector is w=300°20
0 and 10G, and each symbol in (Table 3) indicates the effective diameter of the entire optical system - the wide area that passes through the cup, assuming that the effective diameter of the eyepiece system (■) is 240 mm. The meanings for each wavelength of light are as follows.

EP:コレクター■の入射瞳面上を通過する各波長光の
高さの割合、 (上限を+1、下限を−1とした場合のもの)YO:コ
レクター■の第一面を通過する夫々のEPに対応する各
波長光の高さ。
EP: Height ratio of each wavelength of light passing on the entrance pupil plane of the collector ■ (when the upper limit is +1 and the lower limit is -1) YO: Each EP passing through the first surface of the collector ■ The height of each wavelength of light corresponding to.

Yl:接眼レンズ系■の最終面を通過する夫々のEPに
対応する各波長光の高さ、 yz:t*眼レしズ系■の最終面から3Mの距離に設け
た仮想面を通過する夫々のEPに対応する各波長光の高
さ、 ε :夫々のEPに対応する各波長光の、接眼レンズ系
■よりの射出角(度表示) (第1表)に於て、正号、負号は夫々光軸に対し、上方
及び下方を意味する。
Yl: Height of each wavelength light corresponding to each EP passing through the final surface of the eyepiece system ■, yz: t* Passing through a virtual surface set at a distance of 3M from the final surface of the eye lens system ■ Height of each wavelength light corresponding to each EP, ε: Emission angle (in degrees) of each wavelength light corresponding to each EP from the eyepiece system ■ (Table 1), positive sign, The negative sign means above and below, respectively, with respect to the optical axis.

然るに一般的な無機光学ガラスに対し、本発明に採用し
である耐候性光学樹脂材の分光透過性は、近紫外部は良
好、又近赤外部も可なるも、中間赤外部は良好でなく、
(第3図)は一般的なアクリル樹脂の分光透過率を示し
たもの、(第4図)は本発明の実施例に採用した、アク
リペット#001の赤外部に於ける分光透過率を示した
もの、(第5図)は本発明の実施例に於けるカバー〇に
採用したポリカーボネートの分光透過率を示したもので
、これ等の事実から(第1表)に於ては、2000nm
以上の中間赤外域は無視する。
However, compared to general inorganic optical glass, the spectral transmittance of the weather-resistant optical resin material used in the present invention is good in the near-ultraviolet region, good in the near-infrared region, but not good in the mid-infrared region. ,
(Figure 3) shows the spectral transmittance of general acrylic resin, and (Figure 4) shows the spectral transmittance in the infrared region of Acrypet #001, which was adopted in the example of the present invention. (Fig. 5) shows the spectral transmittance of the polycarbonate adopted for the cover 〇 in the example of the present invention. Based on these facts (Table 1), 2000 nm
The above mid-infrared region is ignored.

さて、 (第1表)(イ)、(ロ)、(ハ)に於て、特
に波長2000nm以上を無視すると、射出角はすべて
微小角であり、も     \。
Now, in (Table 1) (a), (b), and (c), if we ignore wavelengths of 2000 nm or more, all the emission angles are infinitesimal angles.

今仮に接眼レンズ系■の直後から、所望の位置までの距
離を3Mとし、こ−に適当なミラー等を設けそ照明光と
して使用する場合、この間を仮に接際レズ系■の有効径
と同経の中空光導管[相]で伝達表船場合、 (第1表
)に於てIY21>120なる射出光線のみが、中空光
導管の内壁で反射し、lY21’&120なる射出光線
は中空光導管[相]の内部を素通りして、照明光として
使用される。
If we assume that the distance from immediately after the eyepiece system ■ to the desired position is 3M, and that a suitable mirror is installed here and used as illumination light, the distance between this distance is the same as the effective diameter of the eyepiece lens system ■. In the case of a transmission vessel with a hollow light pipe [phase] of 200 mm, in (Table 1), only the emitted light ray with IY21>120 is reflected by the inner wall of the hollow light pipe, and the emitted light ray with lY21'& 120 is transmitted through the hollow light pipe. It passes through the inside of the [phase] and is used as illumination light.

この場合中空光導管[相]の内径が小さい程、射出角ε
が大きい程、射出光の中空光導管[相]の内壁での反射
回数は急速に増大する。
In this case, the smaller the inner diameter of the hollow light pipe [phase], the smaller the exit angle ε
The larger the value, the more rapidly the number of reflections of the emitted light on the inner wall of the hollow light pipe [phase] increases.

この間の模様を、光導管長10M当りの反射回数グラフ
表示したのが(第6図)で、中空光導管[相]の内径を
φで表示してあり、比較参考の為広く使用されている、
直径0.5mmのオプティカル・ファイバーに於ける全
反射回数を表示したのが(第7図)である。
The pattern during this period is shown as a graph of the number of reflections per 10 m of light pipe length (Figure 6), and the inner diameter of the hollow light pipe [phase] is indicated by φ, which is widely used for comparative reference. ,
Figure 7 shows the number of total reflections in an optical fiber with a diameter of 0.5 mm.

この場合、中空光導管0の内部を射出光が伝達される場
合の伝達損失は、一般に吸収損失と反射損失の合計であ
るが、光導管り東の内部は空気であるので、理論的には
吸収損失はない。
In this case, the transmission loss when the emitted light is transmitted inside the hollow light pipe 0 is generally the sum of absorption loss and reflection loss, but since the inside of the light pipe east is air, theoretically There are no absorption losses.

一方空気と光沢面との境界にある反射面に、入射した光
量に対し反射した光量の比、即ち反射重工を空気(n=
1.0)及びガラス備= 1 、5)なる場合の、入射
角との関係でグラフ表示したのが(第8図)であり、比
較のため鉄、銀の反射率も併記した。
On the other hand, on the reflective surface at the boundary between the air and the glossy surface, the ratio of the amount of light reflected to the amount of light incident, that is, the reflective heavy
1.0) and glass = 1, 5), the relationship with the incident angle is shown in a graph (Fig. 8), and for comparison, the reflectances of iron and silver are also shown.

nは屈折率であり、一般に吸収の少ない物質ではその屈
折率Iは I= (n−1)’ / (n+1)2 X100%従
って屈折率に依り、反射率は変化し、(第1表)以下、
従って中空光導管q■の内壁への入射角をiとすればi
 = 900−ε、故にi>86.50従って(第8図
)に於ても明らかな通り、中空光導管q9の内壁を充分
滑面に製作すれば、中空光導管[株]の内壁に対する反
射回数は(第6図)通りで極く少ないので、反射損失は
微量で、従って本発明に於ては伝達損失は軽微となる。
n is the refractive index, and generally for a substance with low absorption, its refractive index I is I = (n-1)' / (n+1)2 X100% Therefore, the reflectance changes depending on the refractive index (Table 1) below,
Therefore, if the angle of incidence on the inner wall of the hollow light pipe q■ is i, then i
= 900-ε, therefore i>86.50 Therefore, as is clear from (Fig. 8), if the inner wall of the hollow light pipe q9 is made sufficiently smooth, the reflection on the inner wall of the hollow light pipe q9 will be reduced. Since the number of times is extremely small as shown in FIG. 6, the reflection loss is very small, and therefore, in the present invention, the transmission loss is small.

この場合、所望の地点までの距離が短かい場合又は使用
目的によっては、中空光導管[相]は全く使用する必要
のないこともあり、反射損失は勿論皆無となる。
In this case, if the distance to the desired point is short or depending on the purpose of use, there may be no need to use the hollow light pipe at all, and there will of course be no reflection loss.

これに反し、」二記で述べた通り、コレクター+21に
より集光された光束を、オプティカルφファイバー又は
フィバ−・バンドルを通して伝達する考案も提案されて
おり、又光通信上の必要等で、非常に透明な石英ガラス
の開発成功も報告されているが、これはコアー材として
その含有する不純物を、殆んど完全に近く除去すること
に成功した為と考えられるが、オプティカル・ファイバ
ーの製造工程を思うとき、これをクラツド材で覆い、そ
の全反射損失を現レベルより、格段に少なくすることは
、不純物除去より遥かに難事と想像される。
On the other hand, as mentioned in Section 2, it has been proposed to transmit the light beam collected by the collector +21 through an optical φ fiber or a fiber bundle. The success of developing transparent quartz glass has also been reported, and this is thought to be due to the fact that the impurities contained in it as a core material were almost completely removed. When thinking about this, it can be imagined that covering this with a cladding material and reducing the total reflection loss to a much lower level than the current level is far more difficult than removing impurities.

一方オブティカル・ファイバーはその全反射率や波長に
伴う1通常の光学系とはかなり異る特異な角度特性があ
り、光軸近傍の光束の伝達効率は良好であるが、その入
射角が増加するに従って、その伝達損失は激増する。
On the other hand, optical fibers have unique angular characteristics that are quite different from normal optical systems due to their total reflectance and wavelength, and although the transmission efficiency of the light beam near the optical axis is good, the angle of incidence increases. As the transmission loss increases, the transmission loss increases dramatically.

その模様の一部をグラフ表示したのが(第9図)(イ)
、 (ロ)であり、 (第9 図) (イ)は全反射率
al、  a2、a3.a4と入射角が、その射出光強
度に如何に関係するか、即ち伝達効率に甚大な慈影響を
及ぼすかを示したもので、(第9図)(ロ)は同じく波
長と入射角が射出光強度を激しく減衰させる状況を示し
たもので、al=0.99993.a2=0.9999
゜a3=0.99988 、a4=o 、99986;
又 入1=398nm、入2=461nm。
A part of the pattern is shown graphically (Figure 9) (a)
, (b), (Fig. 9) (b) is the total reflectance al, a2, a3. This figure shows how a4 and the incident angle are related to the intensity of the emitted light, that is, they have a tremendous effect on the transmission efficiency. This shows a situation where the light intensity is severely attenuated, al=0.99993. a2=0.9999
゜a3=0.99988, a4=o, 99986;
Also, input 1 = 398 nm, input 2 = 461 nm.

入3=535nm、入4=605nm。Input 3 = 535 nm, Input 4 = 605 nm.

入5=667nm、  を夫々示し、 全反射率の借手の差異が、入射角の増大と共に、その光
束伝達効率を想像外に低下させるもので。
Input 5 = 667 nm, respectively, and the difference in total reflectance causes the luminous flux transmission efficiency to decrease unexpectedly as the incident angle increases.

その真因は、 (第6図)、 (第7図)に示した通り
、その直径が細くなるにつれ、全反射回数が幾何級数的
に増大する為であらう。
The real reason for this is that, as shown in Figures 6 and 7, as the diameter becomes thinner, the number of total reflections increases exponentially.

さて(第10図)(イ)はある地点、ある季節。Now (Figure 10) (a) is a certain point and a certain season.

ある時刻に於ける、太陽を含むコレクター伐)のメリデ
ィオナール断面図で、反射ミラー■とその回転軸q■、
コレクター■の一部とその光軸■を含むもので、コレク
ター■の中心をO1太陽直射光の入射角をW′(太陽高
度角で水平方向より時計方向に計る)、反射ミラー■の
仰角をθ(太陽高度角と同様)、コレクター■の最犬人
射刺光束(入射角w=30’)(入射角Wは水平方向に
対し直交する光軸に対する角度)が反射ミラー■経由で
、その反射光が、第一面に入射する点を夫々A及びBと
すれば(第1表)(イ)のd。
A meridional cross-sectional view of the collector section (including the sun) at a certain time, showing the reflecting mirror ■ and its rotation axis q■,
It includes a part of the collector ■ and its optical axis ■, and the center of the collector ■ is O1.The incident angle of direct solar light is W' (solar altitude angle, measured clockwise from the horizontal direction), and the elevation angle of the reflecting mirror ■ is θ (same as the solar altitude angle), the most incident light flux (incident angle w = 30') of the collector ■ (incident angle W is the angle with respect to the optical axis perpendicular to the horizontal direction) passes through the reflecting mirror ■, If the points where the reflected light enters the first surface are A and B, respectively (Table 1), d in (a).

C光線等のYO値より、 0A=86.8、0B=158.1、従ってAB=24
4.9mm  となり、入射角W′なる太陽直射光束の
上光線、下光線が反射ミラー■木入射する点を夫々A/
 B:とする場合、これ等の入射光束が反射後1、その
上光線、下光線が夫々A点及びB点に入射し且つ常に 乙A’AB=600  (当然KA/I3′B)従って
コレクター■に対する入射角が常にw= 300 とな
る如く、反射ミラー■の仰角θを定めるには。
From the YO value of C ray etc., 0A=86.8, 0B=158.1, therefore AB=24
4.9 mm, and the points where the upper and lower rays of the direct sunlight flux with the incident angle W' are incident on the reflecting mirror ■tree are A/
B: In the case of 1, after these incident light beams are reflected, the upper ray and lower ray enter the point A and the point B, respectively, and always A'AB=600 (naturally KA/I3'B), so the collector To determine the elevation angle θ of the reflecting mirror (2) so that the angle of incidence with respect to (2) is always w=300.

(第1θ図)(イ)から容易に 600+θ+(θ−w)=180’ 従って θ=600 +v//2−−−−−− (1)
本邦に於ける日南中最高々度は約890であるから  
   OO≦W′≦890 従って600≦θ≦104.50 且つ、太陽直射光束の入射角Wが変化すると。
(Fig. 1θ) From (a), it is easy to obtain 600+θ+(θ-w)=180' Therefore, θ=600 +v//2−−−−−−− (1)
The highest temperature in Japan is approximately 890.
OO≦W′≦890 Therefore, 600≦θ≦104.50 And when the incident angle W of the direct sunlight beam changes.

反射ミラー■の仰角θの600に対する増分は、入射角
W′の変化量の半分ず覧が、加減されることが分かる。
It can be seen that the increment of the elevation angle .theta. of the reflecting mirror (2) relative to 600 is adjusted by half the amount of change in the incident angle W'.

即ち 一方南北に長い本邦に於ては、その緯度、季節及び時刻
等により変化し、日南中最品々度は慨ね下表の通りであ
る。
On the other hand, in Japan, which is long from north to south, the quality of products varies depending on the latitude, season, time of day, etc., and the best quality products in Japan, South and Central Japan are generally as shown in the table below.

又体験に依れば1本邦に於ては特に秋分から冬至を経て
翌年の春分までが、光と熱の要求されるシーズンである
ので、太陽直射光は最大限有効に受光・伝達したい。
Also, according to my experience, in Japan, especially from the autumn equinox through the winter solstice until the spring equinox of the following year, is the season when light and heat are required, so we want to receive and transmit direct sunlight as effectively as possible.

幸い上表に依れば、この間の日南中最高々度は約600
 と見做し得るので、上記(1)式に於てO≦W′≦6
00、従って600≦θ≦900 と限定すれば、この
期間の太陽直射光は、すべて反射ミラー■経由で、コレ
クター■の受容可能な最大入射斜光束として受光φ結像
され、且つ反射ミラー■と、コリメータm−しンズ群■
が同期しつ覧追尾するので、受光・結像された太陽直射
光束を継承するコリメーター・レンズは時刻の変化に拘
らず、常に特定の一個で、その受光・伝達効率は高水準
で且つ一定となる。(詳細後述)上記の如く、反射ミラ
ー■の仰角0の回転遅動の上限を900 とすることは
、これを覆うカバー〇の小型化の為にも明らかに有利で
、(第1θ図)(ロ)、(ハ)は夫々太陽直射光入射角
w’=o。
Fortunately, according to the table above, the highest temperature during this period was approximately 600.
Therefore, in the above equation (1), O≦W′≦6
00, therefore, if we limit 600≦θ≦900, all the direct sunlight during this period will be received and imaged as the maximum incident oblique light flux that can be accepted by the collector ■, via the reflecting mirror ■, and will be imaged by the reflecting mirror ■. , collimator m-shins group ■
Since the lenses are synchronized and tracked, the collimator lens that inherits the received and imaged direct sunlight beam is always a specific one, regardless of changes in time, and its light reception and transmission efficiency remains high and constant. becomes. (Details will be described later) As mentioned above, setting the upper limit of the rotational delay of the reflection mirror (■) at an elevation angle of 0 to 900 is clearly advantageous for downsizing the cover (〇) that covers it (Fig. 1θ) ( (b) and (c) are the incident angle of direct sunlight w'=o, respectively.

(日出)及びw= 600の場合を示し、入射角W′が
600以下の場合、太陽直射光は常に反射ミラー■経由
のみでコレクター■に入射受光され、この場合太陽直射
光が直接コレクター■に入射受光されることはないが、
この場合といえども、直接コレクター■へは天頂角±3
00以内および其他広範囲の天空散乱光は、晴雨に拘ら
ず、常に有効に併合加算されて受光・伝達されている。
(sunrise) and w = 600. When the incident angle W' is less than 600, direct sunlight is always incident on the collector ■ only via the reflecting mirror ■; in this case, the direct sunlight is directly received by the collector ■. Although the incident light is not received by
Even in this case, the zenith angle to the collector ■ is ±3.
Sky scattered light within 0.00 and other wide ranges are always effectively combined and added and received and transmitted regardless of whether it is rain or shine.

(第10図)(イ)、(ロ)、(ハ)に於て。(Figure 10) In (a), (b), and (c).

AB=244.9mmであるから、反射ミラー■の回転
軸の中心をT、且つTはコレクター■の第一面の延長線
上OT=170mmにあると仮定すれば(斯様に限定す
る必要はない) (第10図)(ハ)に於てAT=256.8mm故にT
に=ATXt an600=444.79Q同様にTB
%20.61mm、従って入射角、J=600の場合の
必要なる反射ミラー■の有効長はlB’tx424.1
8mm、一方(第10図)(ロ)に於てTに−TA= 
256 、8mm。
Since AB = 244.9 mm, if we assume that the center of the rotation axis of the reflecting mirror ■ is T, and that T is on the extension line of the first surface of the collector ■, OT = 170 mm (there is no need to limit it in this way) ) (Figure 10) In (c), AT = 256.8mm, so T
to = ATXt an600 = 444.79Q as well as TB
%20.61mm, therefore, the effective length of the necessary reflecting mirror ■ when the incident angle and J=600 is lB'tx424.1
8mm, on the other hand (Fig. 10) (b) to T -TA=
256, 8mm.

−TB’=TB=11.9mm   従ってこの場合の
反射ミラー■の必要有効長は244.9mmとなり、結
局 00≦W′≦600  間に於ける反射ミラーθ)
の必要有効長は432.89mmとなり、 (第10図
)(ロ)の場合は反射ミラー■の一部のみを使用してい
る如く見えるが、それは太陽直射光のみに限定した場合
のことで、本図の場合に於ても、又(10図)(ハ)の
場合に於ても反射ミラー■の有効長(有効面)は反射ミ
ラー■に正対する方向でコレクターQ)の有効入射角以
内の天空散乱光の受光に全面有効に活用されており、こ
れ等の事情は、 (第11図)に図示した通りである。
-TB'=TB=11.9mm Therefore, the required effective length of the reflecting mirror (■) in this case is 244.9mm, and after all, the reflecting mirror θ between 00≦W'≦600)
The required effective length is 432.89 mm. (Figure 10) In the case of (b), it appears that only a part of the reflecting mirror ■ is used, but this is only when the light is limited to direct sunlight. In the case of this figure as well as in the case of (c) in Figure 10, the effective length (effective surface) of the reflecting mirror ■ is within the effective incidence angle of the collector Q) in the direction directly facing the reflecting mirror ■. The system is fully utilized to receive sky-scattered light, and these circumstances are as illustrated in (Figure 11).

即ち0=600の場合は、太陽自動追尾機構に依り1反
射ミラー■の反射面は常に太陽に正対しているので、晴
天時は太陽直射光はに述した通り有効に受光・伝達でき
ると共に、晴雨に拘らずその方向の入射角00≦ジ≦6
00間の天空散乱光をも、反射ミラー■を介し、その反
射光を有効に集光・伝達できること−なるも、この際反
射面として使用される反射ミラー■の面積は入射角W′
と共に変化する。
In other words, in the case of 0=600, the reflection surface of the 1 reflection mirror (■) always faces the sun due to the automatic solar tracking mechanism, so when the sky is clear, direct sunlight can be effectively received and transmitted as described in 2. Regardless of whether it is rain or shine, the angle of incidence in that direction is 00≦J≦6
It is possible to effectively condense and transmit the reflected light from the sky through the reflecting mirror (2), even for the sky scattered light between
change with.

」―記の事項を総合すれば(第10図)(ロ)即ち反射
ミラー■の仰角0=sooの場合は、太陽を含むコレク
ター@のメリディオナール面内に於て、晴天時は太陽直
射光は勿論、雨天、更には厚い雲に覆われた曇天田こも
、この面内に於けるその方向のOO≦W′≦600間の
天空散乱光は反射ミラー■を介し、その反射光はコレク
ター■に対し、有効に入射し、受光・伝達されると共に
天頂角±300の天空散乱光は、(但し反射ミラー■の
背後方向よりのちを除く)常に直接コレクター倶)に有
効に入射し、これ等すべての光線が併合加算されて受光
・伝達されることになる。
” - If we take the above into account (Figure 10) (b), that is, if the elevation angle of the reflecting mirror ■ is 0=soo, then in the meridional plane of the collector @ including the sun, the sun will directly hit the sun on a clear day. Not only light, but also rainy weather, even cloudy fields covered with thick clouds, scattered light in the sky between OO≦W'≦600 in that direction within this plane passes through a reflecting mirror ■, and the reflected light is collected by a collector. In contrast to ■, the sky scattered light that is effectively incident, received and transmitted, and has a zenith angle of ±300, is always effectively incident directly on the collector (excluding from behind the reflecting mirror ■), and this All light rays such as

又(10図)(ハ)の場合も一部の天空散乱光は反射ミ
ラー■を介し、その反射光が有効に受光・伝達されるが
、入射角がOO≦W′≦600間の天空散乱光が、反射
ミラー■で反射して、コレクター■の有効径内に入射し
ても、その反射光のコレクター■に対する入射角はすべ
てw>300となり、コレクター■の受容角を超えて受
光・伝達されず、その入射角が600≦W≦900間の
天空散乱光のみが、有効に受光・伝達され、コレクター
■に直接入射する天頂角±300以内の天空散乱光と一
部併合加算されて受光・伝達されることになる。
Also, in the case of (c) in Figure 10, some of the sky scattered light is effectively received and transmitted via the reflecting mirror ■, but the sky scattering occurs when the incident angle is between OO≦W'≦600. Even if the light is reflected by the reflecting mirror ■ and enters the effective diameter of the collector ■, the angle of incidence of the reflected light on the collector ■ is all w > 300, and the light is received and transmitted beyond the acceptance angle of the collector ■. Only the sky scattered light whose incident angle is between 600≦W≦900 is effectively received and transmitted, and is partially merged with the sky scattered light within ±300 of the zenith angle that directly enters the collector ■.・It will be communicated.

次に(第12図)(第13図)は(第1図)に於ける反
射ミラー■及びその回転軸[株]を含む春分頃の像面■
の光線入射側より見た平面図及びコレクター■像面■と
コリメーター・レンズ群■のその共通光軸■と太陽を含
む縦断面図で、(第12図)に於てその中心をO1反射
ミラー■の回転軸[株]と直交し且つ中心をOを通る直
線をXYとすれば、太陽自動追尾装置の作動に依り、X
Yを含むコレクター■のメリデオナール面内に、常に、
太陽は存在するので、(第1O図)(ロ)から(第1O
図)(ハ)に至る間、即ち太陽直射光の入射角がQO≦
w5sooの間に於ては、太陽直射光はすべて反射ミラ
ー■に入射し、上述した通り、本実施例に於ては、その
反射光はコレクター■に対し、常にその入射角w= 3
00になる如く反射ミラー■の仰角θが作動するので、
コレクター■を経由後、太陽像は像面■上の0を中心と
する一定円ら周C3上を、日出位置から日没位置ま −
で移動することになる。
Next, (Figure 12) (Figure 13) shows the image plane ■ around the vernal equinox, which includes the reflecting mirror ■ and its rotation axis in (Figure 1).
A plan view as seen from the ray incidence side of the collector, and a vertical cross-sectional view including the common optical axis of the collector, the image plane, and the collimator lens group, and the sun. If XY is a straight line that is perpendicular to the rotation axis of the mirror ■ and passes through O through the center, then depending on the operation of the automatic solar tracking device,
Always within the meridional plane of the collector ■ including Y,
Since the sun exists, from (Figure 1O) (B) to (Figure 1O)
Figure) Until (c) is reached, that is, the incident angle of direct sunlight is QO≦
During w5soo, all direct solar light enters the reflecting mirror ■, and as mentioned above, in this embodiment, the reflected light always has an incident angle w = 3 with respect to the collector ■.
Since the elevation angle θ of the reflecting mirror ■ operates so that it becomes 00,
After passing through the collector ■, the sun image moves along a constant circle C3 centered at 0 on the image plane ■ from the sunrise position to the sunset position.
You will have to move.

(第12図)を春分頃の日南中時の位置とし、この場合
の太陽高度角が600以内であれば、その時の太陽像点
は(第12図)に於けるXYと03との交点F3となり
、その日の日出時及び日没時の太陽像点を夫々R,Sと
すれば、これ等は同一円周C3上にあり、時刻の経過に
従って太陽像はC3上をRからF3を経てSまで移動し
、この場合反射ミラー■の回転軸はdより[株]位置を
経由してO) //まで移動することは明らかである。
(Fig. 12) is the position of midday around the vernal equinox, and if the solar altitude angle in this case is within 600, the solar image point at that time is the intersection of XY and 03 in (Fig. 12). If the sun image points at sunrise and sunset on that day are R and S, respectively, they are on the same circumference C3, and as time passes, the sun image changes from R to F3 on C3. It is clear that in this case, the rotation axis of the reflecting mirror (2) moves from d to O) // via the [stock] position.

即ち本邦に於て秋分から春分までの間に於ては、晴天口
の太陽像は、03円周上弧RF3S上以外には存在しな
いことになる。
That is, in Japan, from the autumnal equinox to the vernal equinox, the sun image at the clear sky exit does not exist anywhere other than on the upper arc RF3S of the 03 circumference.

太陽直射光以外、有効に受光されている天空散乱光も、
像面0103円周内に全面的に結像されており、それ等
無数の像点も、コレクター■へ直接入射、結像する天頂
角±300以内の天空散乱光の像点を除けば日出から日
没まで /RO3だけ像面■上に於て同心的に回転移動
することは明らかである。
In addition to direct sunlight, the sky scattered light that is effectively received is also
The image is entirely formed within the circumference of the image plane 0103, and there are countless image points, except for the image point of the sky scattered light within ±300 of the zenith angle, which directly enters and forms an image on the collector ■. It is clear that the image rotates concentrically by /RO3 from to sunset on the image plane ■.

さて像面■上に無数に結像されている各像点の、結像に
関与したすべての光線を、結像後すべて平行光線として
射出させるには、無数の像点(正確には同一平面上には
必ずしもない)を夫々その焦点とする、無数の微小なレ
ンズ、即ちコリメーターφレンズ群を、その像面に近接
配列させる、所謂蝿の目レンズを設ける以外に方法はな
いが、像面■上の弧RF3S上には太陽像が結像され、
その像点は約5〜60♂Cにも達するので、像面■付近
には特に示透明部材は絶対近接できず、更に本発明に於
ける実施例ではその光学系に耐候性光学樹脂を採用しで
あるので、コリメーターφレンズ群■は像面■から相当
離して設けなければならず、その間隔は各像点の構成に
関与した全光束の内、その有効光束を受容するだけの有
効径を。
Now, in order to make all the rays involved in the image formation of each of the countless image points formed on the image plane ■ emit as parallel rays after image formation, it is necessary to There is no other way than to provide a so-called fly's eye lens, in which countless minute lenses, that is, collimator φ lens groups, are arranged close to the image plane, each with its focal point at a point (not necessarily above). A solar image is formed on the arc RF3S on the surface ■,
Since the image point reaches approximately 5 to 60♂C, a transparent member in particular cannot be brought close to the image plane (■), and furthermore, in the embodiment of the present invention, a weather-resistant optical resin is used for the optical system. Therefore, the collimator φ lens group (■) must be placed at a considerable distance from the image plane (■), and the distance between them is sufficient to receive the effective luminous flux out of the total luminous flux involved in the formation of each image point. diameter.

夫々のコリメータm−レンズに付与せしめると同時に、
受光された広域全波長光が全光学系を経由後、最終的に
接眼しンズ系■よりの射出角εが、各部分構成光学系と
共に実用上支障のない範囲内に補正できる条件等で決定
しである。
At the same time as applying it to each collimator m-lens,
After the received wide-range all-wavelength light passes through the entire optical system, the exit angle ε from the eyepiece system ■ is finally determined under conditions that allow it to be corrected within a range that does not cause any practical problems along with each partial optical system. It is.

従って各コリメーター・レンズは成程度の大きさを有す
ることになり、コリメーターΦレンズ群■は以下述べる
ような代表的像点に夫々対応する有限個で構成されるこ
とになり、その模様を入射方向より見た平面図が(第1
4図)である。
Therefore, each collimator lens has a certain size, and the collimator Φ lens group ■ is composed of a finite number of lenses corresponding to the representative image points as described below. The plan view seen from the direction of incidence is (first
Figure 4).

(第12図)に於てコレクター■に対し入射角w= 3
00の光束はすべて03円周上に結像し、同様にしてw
= 200及びw= 100の入射光束が像面■上で結
像する円周を夫々C2、C1とすれば、明らかにこれ等
はOを中心とする同心円であり、これ等同心円とXYの
交点を夫々図示通りF3、F2、Fl及びFl’、  
F2’、F3’とし、(第14図)に於てこれ等の像点
に対応するコリメーター・し、ンズを夫々L3、F2.
Ll及びLl、 F2でL3’とすれば、コレクター■
はその射出側が高精度のテレセントリックに設計されて
いるので、(第13図)にも明示されている通り、各像
点の構成に関与する光束の主光線は、すべて、像面■及
びコリメーター・レンズ群■の基板に対し、垂直である
から、(第14図)に於てびLl、Ll等の中心が存在
する円周は、夫々(第12図)の同心円C3、C2及び
C1と一致する。
(Fig. 12), the angle of incidence w = 3 with respect to the collector ■
All the light beams of 00 are imaged on the circumference of 03, and in the same way w
If the circumferences at which the incident light beams of = 200 and w = 100 form images on the image plane ■ are C2 and C1, respectively, these are clearly concentric circles centered on O, and the intersection of these concentric circles and XY F3, F2, Fl and Fl', respectively, as shown.
F2', F3' (Fig. 14), the collimators corresponding to these image points are L3, F2.
If Ll and Ll, F2 are L3', the collector ■
Since the exit side of the is designed to be highly precise telecentric, as is clearly shown in Figure 13, the principal rays of the light beams involved in the configuration of each image point are all directed to the image plane ■ and the collimator.・Since it is perpendicular to the substrate of lens group (■), the circumferences around which the centers of Ll, Ll, etc. in (Fig. 14) exist are the same as the concentric circles C3, C2, and C1 in (Fig. 12), respectively. Match.

さて(第12図)に於て、太陽直射光の入射角がO≦肴
’5600間にある場合は二上記で説明した通り、太陽
像は03円周上に於て、日出時のR点より、南中時のF
3点を経由して、日没時の8点まで移動するが、本邦に
於ては、日南中最高々度は緯度により異り、約890 
(コレクター■に対する入射角はw=lO)まで高くな
り、入射角W′力(=600を超え890間に於ては、
本発明の実施例に於ては、反射ミラー■の仰角はθ=9
00に固定される如く太陽自動追尾装置が設計されてお
り、その為、その入射角が600≦W′≦890間のも
のは、反射ミラー■経由でその反射光のコレクター■に
対する入射角はすべてw= 300となり、コレクター
■に対し有効に受光・伝達される。
Now (Fig. 12), if the incident angle of direct sunlight is between O≦5600, then the sun image will be on the 03 circle and R at sunrise. From the point, F at south central time
It travels through 3 points to 8 points at sunset, but in Japan, the highest altitude in the middle of Japan varies depending on the latitude, and is about 890 points.
(The angle of incidence on the collector ■ increases to w = lO), and the angle of incidence W' force (= exceeds 600 and is between 890 and
In the embodiment of the present invention, the elevation angle of the reflecting mirror (2) is θ=9.
The automatic solar tracking device is designed so that the angle of incidence is fixed at 00, so if the incident angle is between 600≦W'≦890, the incident angle of the reflected light to the collector ■ is all w = 300, and the light is effectively received and transmitted to the collector ■.

例えば日南中高度がw’=700の時はコレクター■に
対する入射角はw= −200となり、この場合の太陽
像は明らかに(第12図)のF2となり、全く同様にw
’=800の時は、w=−100となり、この場合の太
陽像は(l−2図)のFlとなり、これ等には夫々コリ
メーター・レンズL2及びLlが対応する。
For example, when the Nichinan mid-height is w' = 700, the angle of incidence on the collector ■ is w = -200, and the solar image in this case is clearly F2 (Fig. 12), which is exactly the same as w.
When '=800, w=-100, and the solar image in this case is Fl in (Figure 1-2), to which collimator lenses L2 and Ll correspond, respectively.

一方太陽直射光の入射角Wが600を超えた瞬間からコ
レクター■に対する入射角Wは300以下となり、w’
=600の場合太陽直射光は直接コレクター■に、有効
に入射し受光・伝達され、この時の太陽像はF3の直径
的対点F3となる。
On the other hand, from the moment the incident angle W of direct solar light exceeds 600, the incident angle W to the collector ■ becomes less than 300, and w'
=600, direct sunlight directly enters the collector (2) and is effectively received and transmitted, and the solar image at this time becomes the diametrical opposite point F3 of F3.

更に例えば日南中高度がw’=700 、800の場合
はw=200 、 100 、となるから、この場なり
、コリメーター・レンズL2及びLlがこれ等に対応す
ることになり、且つ、これ等の像点はすべて時刻の推移
と共に日出から日没までの間に太陽自動追尾装置の作動
に依りLaO2だけクロックワイズに像面■上を回転移
動する。
Furthermore, for example, if the Nichinan altitude is w' = 700, 800, then w = 200, 100, so in this case, the collimator lenses L2 and Ll will correspond to these. All image points such as 1 and 2 rotate clockwise by LaO2 on the image plane 2 between sunrise and sunset as time passes due to the operation of the automatic solar tracking device.

そこで、コリメーター・レンズ群■の基板を、(第12
図)、 (第14図)を図示通りのま−重ね合せた位置
で、その鉛直軸■に固定し、太陽自動追尾機構の作動に
依り、反射ミラー■とコリメーター・レンズ群→)を、
同期φ回転させると、太陽像点F3、F2、Fl、Fl
’、F2’、F3′等に対応するコリメーター・レンズ
は、時刻の推移にか−わらず、常に特定のF3、F2、
Ll、Ll’、F2.F3に限定される。
Therefore, the substrate of the collimator lens group (12th
(Fig.) and (Fig. 14) are fixed on their vertical axes (■) in the overlapping position as shown in the figure, and the reflection mirror (■) and the collimator lens group (→) are fixed by the operation of the automatic solar tracking mechanism.
When synchronously rotated φ, the solar image points F3, F2, Fl, Fl
Collimator lenses corresponding to ', F2', F3', etc. are always specific F3, F2,
Ll, Ll', F2. Limited to F3.

この場合、コリメーター・レンズ群■を、反射ミラー■
とは同期させず、固定状態のま覧にしておけば、太陽像
は(第1シ図)上の同心円C3、C2、CIJ、を回転
移動するので、当然それ等の太陽像に対応する(第14
図)上の、同心円C3゜C2、C1上に配列された、多
数のコリメーター・レンズに、(図示せず)次々と継承
されてゆくことになる。
In this case, replace the collimator lens group with the reflecting mirror
If you keep the view in a fixed state without synchronizing with the sun image, the sun image will rotate around the concentric circles C3, C2, and CIJ on (Figure 1), so naturally it will correspond to those sun images ( 14th
This is successively inherited by a large number of collimator lenses (not shown) arranged on concentric circles C3°C2 and C1 in the upper part of the figure.

然し太陽は停止しないので、成る時刻の太陽像点の構成
に関与する有効全光束を、それに対応するコリメーター
・レンズが、完全に受光拳伝達できるのは、理論上は一
瞬間であるのに反し、次々のコリメーターφレンズに継
承されてゆく中間状態の時間は、非常に長く、この間に
於ける受光・伝達効率の低下は、側底無視出来ない。
However, since the sun does not stop, it is theoretically possible for the corresponding collimator lens to completely transmit the effective total luminous flux involved in the formation of the solar image point at a given time, even though it is theoretically possible to transmit it completely in one instant. On the other hand, the time period in which the intermediate state is inherited by successive collimator φ lenses is extremely long, and the decrease in light reception and transmission efficiency during this time cannot be ignored.

又太陽の極く近傍の天空散乱光は、−・般的には、特に
強いので、これ等は有効に受光・伝達すべきで、そのた
めコレクター■に於ては、スキュー・レイも特に考察補
正しであるので、(第14図)に於て、同心円C3、C
2、C1上に夫々L3゜F3 、F2、F2:Ll、L
Lに近接して、同一仕様のコリメーターφレンズL31
.L32、L31.L32、;L21、L22、L21
゜L22.Lll、L12.Lll、L12を配置すれ
ば、これ等18個のコリメーター・レンズは。
In addition, the sky scattered light in the vicinity of the sun is generally particularly strong, so it should be received and transmitted effectively. Therefore, in the collector, skew rays should also be considered and corrected. Therefore, in (Fig. 14), concentric circles C3 and C
2.L3°F3, F2, F2: Ll, L on C1 respectively
Close to L, collimator φ lens L31 with the same specifications
.. L32, L31. L32, ;L21, L22, L21
゜L22. Lll, L12. If Lll and L12 are placed, these 18 collimator lenses.

夫々太陽像が、F3、F3. F2、F2、Fl。The sun images are F3, F3. F2, F2, Fl.

Flにある場合、太陽直射光及び太陽の極〈近傍の弘−
い天空散乱光を、極力有効に、且つその受光・伝達効率
を、高水準に一定に維持する為の、本実施例に於ける最
大個数であり、この場合、コリメーター・レンズの有効
径を小さくし、その個数を増すことは、これを高温の像
面に接近させることにもなり、又製作誤差も加算され、
受光量は却って減少する。
If it is in Fl, direct sunlight and solar poles (nearby Hiroshi)
This is the maximum number in this example in order to make the sky scattered light as effective as possible and maintain the light reception and transmission efficiency at a constant high level.In this case, the effective diameter of the collimator lens is Making it smaller and increasing its number also means bringing it closer to the high-temperature image plane, and manufacturing errors will also be added.
On the contrary, the amount of light received decreases.

又(第14図)に画かれている複数個のコリメーター・
レンズの上にも、又それ以外の余白部にも。
Also, the multiple collimators shown in (Figure 14)
On top of the lens and in other margins.

全面に、広範囲の天空散乱光が結像しているので、これ
等結像に関与している全有効光束を、極力有効に受光φ
伝達する為、同心円C3、C2,C1上には、全く同一
仕様のコリメーター・レンズを、出来るだけ多く配置し
である。
Since a wide range of sky scattered light is imaged on the entire surface, the total effective light flux involved in image formation is received as effectively as possible.
In order to transmit the light, as many collimator lenses with exactly the same specifications as possible are placed on the concentric circles C3, C2, and C1.

以上を綜合し、本邦四季を通じ、日出から日没までの間
の、像面■上に於ける太陽像の位置の変化並びにそれ等
の像点に対応するコリメーターΦレンズ名等を、その日
の日南中高度を800 と仮定し、(第12図)、(第
14図)上の呼称を用いて整理し、実数値を用いて表示
したものが、CtlS 、2°表)で、又この場合反射
ミラー■の仰角である。
By integrating the above, we will calculate changes in the position of the sun image on the image plane from sunrise to sunset throughout the four seasons in Japan, as well as the names of collimator Φ lenses corresponding to these image points, etc., for each day. Assuming that the mid-day altitude is 800, CtlS (2° table) is organized using the names above (Fig. 12) and (Fig. 14) and displayed using real values. In this case, it is the elevation angle of the reflecting mirror ■.

(第2表)に於て、夫々の横欄の数値及び呼称は、日出
から日没までの間に、波線で表示しである通り、夫々往
復推移するものであり、太陽像は常に、時刻の推移と共
に回転する(第12図)上の直径F3.F3上にあり、
これ以外には存在しない。
In (Table 2), the numbers and names in each horizontal column change back and forth between sunrise and sunset, as shown by the wavy lines, and the solar image is always The upper diameter F3. rotates with the passage of time (Fig. 12). Located on F3,
Nothing else exists.

(第3表)でこれ等天空散乱光入射の可能性を図示し、
(第3表)の理解を容易にしたのが(第15図)である
(Table 3) illustrates the possibility of the incidence of sky scattered light,
(Figure 15) makes it easier to understand (Table 3).

この(第15図)でも明らかに分る通り、この集光部に
有効に入射する、散乱光の光束の大きさ即ち光量は、反
射ミラー■経由で、又は直接コレクター■に入射する場
合もその入射角誓に応じて夫々異るが、太陽直射光の入
射の場合は(第10図)(イ)に於て反射ミラー■の仰
角が600≦θ≦900間に於ては、これが反射ミラー
■経由でコレクター■に入射する場合は、太陽直射光の
光束の大きさ即ち光量は、常に一定であることは容易に
証明出来る。
As can be clearly seen in this figure (Fig. 15), the size of the scattered light flux, that is, the amount of light that is effectively incident on this condensing part, is the same whether it is incident via the reflecting mirror (■) or directly on the collector (■). Although it differs depending on the angle of incidence, in the case of direct sunlight incidence (Fig. 10) (a), if the elevation angle of the reflecting mirror ■ is between 600≦θ≦900, this is the reflecting mirror. It can be easily proven that the magnitude of the luminous flux of direct solar light, that is, the amount of light, is always constant when it enters the collector (2) via (2).

以上の説明に依り、天候により太陽が雲に隠れたり出た
りすることが繰り返えされるような場合は、(第2表)
と(第3表)の状態が重合されたり(第3表)の状態だ
けになったりの縁返犬しとなり、 (第2表)だけの状
態が継続されることはあり得す、常に広範囲の天空散乱
光が同時に併合・加算されて受光・伝達されることが分
かる。
Based on the above explanation, if the sun repeatedly hides and appears behind clouds due to the weather, (Table 2)
It is possible that the conditions shown in Table 3 and (Table 3) may be polymerized or become only the conditions shown in Table 3, and that the condition shown in Table 2 may continue. It can be seen that the sky-scattered light of

次に望遠鏡系を構成している対物レンズ系■及び接眼レ
ンズ系■を検討するに、その倍率をm、対物レンズ系■
えの入射光をΩとすれば、接眼レンズ系■の射出角は(
第1表)(イ)、(ロ)、(ハ)によりεであるから m=(tanε)/(tanΩ) 即ち B =tan’ (m−tanΩ)然るに対物レ
ンズ系林の入射角Ωは各コリメーター〇レンズ群■より
の射出角であり、これ等を表示したのが(第4表)(イ
)、(ロ)、(ハ)であり、本発明に於ける実施例では
m5e2.8xであり、 (第!陸)(イ)、(ロ)、
(ハ)のε値を通覧しても、その値は平均的に上式より
算出されるε値の概ね2分の1以下であり、これは対物
レンズ系■及び接眼レンズ系■に複数面の非球面を採用
し、その射出角が実用上支障ない程度以内に補正しであ
るからであるが、その倍率がm>3xとなると接眼レン
ズ系■よりの射出角は、大きくなり、補正は困難となる
Next, considering the objective lens system (■) and eyepiece system (■) that make up the telescope system, the magnification is m, and the objective lens system (■) is
If the incident light is Ω, the exit angle of the eyepiece system ■ is (
Table 1) Since ε is determined by (a), (b), and (c), m = (tan ε) / (tan Ω), that is, B = tan' (m - tan Ω).However, the incident angle Ω of the objective lens system is This is the exit angle from the collimator lens group ■, and these are shown in (a), (b), and (c) of Table 4. In the embodiment of the present invention, m5e2.8x And (No.! Land) (a), (b),
Even if you look at the ε value in (c), the value is on average less than half of the ε value calculated from the above formula, and this means that there are multiple planes in the objective lens system ■ and eyepiece system ■. This is because the aspherical surface of the eyepiece system is used and the exit angle is corrected to within a practical degree, but when the magnification becomes m > 3x, the exit angle from the eyepiece system ■ becomes large and the correction is necessary. It becomes difficult.

又対物レンズ系■と接眼レンズ系■との間隔は、一般的
には成る程度の取付精度が要求されるのは当然であるが
1例えば(第2図)の如き本実施例の取付施行に於て、
その両者の間隔に対する高い取付精度を要求するのは無
理であるので、本実施例に於ては、その取付間隔に対す
る許容誤差は、±250mm程度で使用可能となること
を配慮して全光学系の設計がなされている。
Although it is natural that a certain degree of mounting accuracy is generally required for the distance between the objective lens system (■) and the eyepiece system (■), the distance between the objective lens system (■) and the eyepiece system (■) must be maintained at a certain level. At that,
Since it is impossible to require high mounting accuracy for the distance between the two, in this embodiment, the entire optical system is designed with a tolerance of approximately ±250 mm for the mounting distance. has been designed.

即ち以上述べた本実施例に於て、実数値で表示されてい
るものは、すべて(標準型木造2階建て家屋−一地上か
ら棟まで約81m−−に対し)対物レンズ系■と接眼レ
ンズ系■との間隔が5500mmの場合のもので、これ
に対し、両者の間隔が″”6000mmの場合の接眼レ
ンズ系■からの、広域全波長光の射出角をε′とすると
き、七の値を表示したのが(第5表)(イ)、(ロ)、
(ハ)であり、近紫外線部、実用上支障の少ない僅かな
光線を除けば、(第1表)(イ)、(ロ)、(ハ)のε
値と比較して、充分使用可能範囲内の値であることが、
容易に理解できる。
In other words, in this embodiment described above, everything shown in real numbers (for a standard wooden two-story house - approximately 81m from the ground to the ridge) is the objective lens system ■ and the eyepiece lens. This is for the case where the distance from the eyepiece system ■ is 5500 mm.On the other hand, when the distance between the two is ``''6000 mm, and the exit angle of the wide-range full wavelength light from the eyepiece system ■ is ε', then The values are shown in (Table 5) (a), (b),
(C), and excluding the near ultraviolet region and a small amount of light rays that pose little practical problem, (Table 1) ε of (A), (B), and (C)
The value must be within the usable range compared to the
Easy to understand.

又本発明に於ては、非常に広範囲波長域の太陽自然光を
、その構成4分を崩さず、極力そのま賢で受光・伝達す
ることを目的とするが、太陽は生物の発生より遥かに太
古より存在し、生物の生存のために創られたものではな
いから、一部生物に有害な波長光を含むとしても不思議
ではないが、天然現象として天候は時々刻々に変化し、
幸にも晴曇のサイクルは適当で、又晴天時に於ける直達
日射量も必ずしも一定でなく、更に太陽光が大気圏を通
過すると、水蒸気、炭酸ガス、オゾン等の吸収や大気の
散乱などにより、特に人体に有害とされている遠紫外域
の光線は地表面には到達しない等々の理由で、人類発生
以来、太陽自然光が人類の死亡率を高めたという実績は
なく、逆に太陽自然光に最も近いとされている人工の太
陽燈(カーボン使用のアーク燈)を用いる光線療法さえ
実用化されており、その効果も認められている現状でも
あり、光に敏感な人も、鈍感な人も居り、晴天時、裸で
長時間日光浴をするようなことさえ避け、通常の生活を
する限り、人体に大きな支障はない筈で、要は光の強さ
と照射時間さえ制御すればよいことである。
In addition, the present invention aims to receive and transmit natural sunlight in a very wide wavelength range as wisely as possible without changing its composition, but the sun is much more sensitive than the generation of living things. Since it has existed since ancient times and was not created for the survival of living things, it is not surprising that it contains wavelengths of light that are harmful to some living things, but as a natural phenomenon, the weather changes from moment to moment.
Fortunately, the cycle of clear skies and clouds is appropriate, and the amount of direct solar radiation during clear skies is not necessarily constant.Furthermore, when sunlight passes through the atmosphere, it absorbs water vapor, carbon dioxide, ozone, etc., and is scattered by the atmosphere. For reasons such as the fact that rays in the far ultraviolet range, which are considered particularly harmful to the human body, do not reach the earth's surface, there has been no evidence that natural sunlight has increased the mortality rate of humans since the beginning of mankind. Even phototherapy using artificial solar light (arc light using carbon), which is said to be similar, has been put into practical use and its effectiveness is recognized, and there are people who are sensitive to light and people who are insensitive to light. As long as you avoid sunbathing naked for long periods on sunny days and lead a normal life, there shouldn't be any major harm to the human body.The key is to control the intensity and duration of the light.

又長波長光に較べ、短波長光の屈折率はその波長に逆比
例して急増し、従ってその屈折力も強まり可視域を基準
として設計された光学系に於ては、その有効径を通過す
る光線は、長波長域の光線に対し、短波長域の光線は有
効径外にはみ出し、ずっと少くなり、その結果は(第1
表)(イ)。
Also, compared to long wavelength light, the refractive index of short wavelength light increases rapidly in inverse proportion to the wavelength, and therefore its refractive power becomes stronger, so that in optical systems designed with the visible range as a standard, light passes through its effective diameter. Compared to the light rays in the long wavelength range, the light rays in the short wavelength range protrude outside the effective diameter and become much smaller, and the result is (first
table) (a).

(ロ)、(ハ)に明白に現われており、更に樹脂レンズ
を使用するカメラ製造に於ては、カラー・バランスが若
干不具合となる理由で、特注して紫外線吸収剤を混入し
ない素材を使用するが、それ以外の場合、一般市販され
ている光学樹脂材にt4、すべて UV−ABSORB
ERが混入されており、中でも本実施例にも採用したC
 I BA−GE I GY製チヌビンP、326゜3
27.320.等に於ては、その混入量を加減すれば、
約350nm以下の紫外域を殆んど完全に吸収すること
が発表されている。
(B) and (C) clearly appear, and furthermore, when manufacturing cameras that use resin lenses, custom-made materials that do not contain UV absorbers are used because the color balance may be slightly defective. However, in other cases, all commercially available optical resin materials include T4 and UV-ABSORB.
ER is mixed in, especially C, which was also adopted in this example.
I BA-GE I GY Tinuvin P, 326°3
27.320. etc., if the amount of mixture is adjusted,
It has been announced that it almost completely absorbs the ultraviolet region of about 350 nm or less.

か−る実情もあり、太陽自然光の集光・伝達の過程に於
て、特定の波長を制御し、その構成4分のバランスを崩
すと、むしろその用途は限定され、人体に有害とされて
いる紫外域は、上記の通り必然的にコントロールされて
いるので、本発明に於ては残余の広波長帯の構成4分は
極力崩さず、そのまへ集光・伝達すること工し、使用目
的に応じ、適当なフィルター等を使用するか、照射時間
を加減すればよい。
Due to this fact, in the process of concentrating and transmitting natural sunlight, if a specific wavelength is controlled and the balance of its constituent four parts is disturbed, its use will be limited and it will be harmful to the human body. As mentioned above, the ultraviolet region in which the light is transmitted is necessarily controlled, so in the present invention, the remaining 4 components of the wide wavelength band are condensed and transmitted as much as possible without disturbing them. Depending on the purpose, an appropriate filter or the like may be used or the irradiation time may be adjusted.

例えば本邦に於ける比較的短かい猛暑中は、広域赤外カ
ットφフィルターを適用し、 r涼しい光jを作れば、
照明光としても使用出来るであらう。
For example, during a relatively short heatwave in Japan, if you apply a wide-range infrared cut filter and create cool light,
It can also be used as illumination light.

さてご覧までの説明通り1本発明の実施例は太陽放射エ
ネルギーを主としてr光1として捕捉し太陽直射光のみ
ならず、同時に広範囲の天空散乱光(地表面からの反射
光の再反射光も含む)をも有効に併合して集光し、これ
を所望の地点まで伝達し、一般照一光等として使用する
ものであるが、出来得れば、晴天時、太陽直射光と共に
、天空散乱光を余すことなく有効に受光φ伝達したい。
As explained above, the embodiment of the present invention captures solar radiant energy mainly as r-light 1, and captures not only direct sunlight but also a wide range of sky scattered light (including re-reflected light from the ground surface). ) to effectively combine and collect light, transmit it to a desired point, and use it as general illumination, etc. However, if possible, it is possible to combine it with direct sunlight on a clear day, as well as sky-scattered light. We want to effectively transmit the received light φ without leaving anything behind.

そこで、地表で捕捉し得る太陽放射エネルギーは。So, how much solar radiation energy can be captured on the earth's surface?

概ね水平面に入射する直達日射量と天空散乱日射量との
総和であるとすれば、即ち水平面に入射する太陽直射光
と、天空散乱光を余すことなく有効に併合集光したもの
と見做し得るが、これに対し本実施例の諸機能を一部変
更し晴天時には自動追尾装置が作動して、太陽直射光を
有効に受光し、曇れば直ちに自動追尾装置は停止し、同
時に、反射ミラー■の仰角は、θ= 600 に復帰固
定し又はθ=900に復帰固定し 又は600≦θ≦900間を往復運動し又晴れ−ば再び
自動追尾装置が作動するものとすれば、(本実施例の機
能10下表の通りとなる。
If it is the sum of the amount of direct solar radiation incident on a horizontal surface and the amount of solar radiation scattered in the sky, it can be considered that the direct sunlight incident on a horizontal surface and the scattered light in the sky are effectively combined and concentrated. However, by changing some of the functions of this embodiment, the automatic tracking device operates when the sky is clear and effectively receives direct sunlight, and when it becomes cloudy, the automatic tracking device immediately stops, and at the same time the reflective mirror Assuming that the elevation angle (2) is returned to and fixed at θ = 600, returned to and fixed at θ = 900, or moves back and forth between 600≦θ≦900, and if the weather is fine, the automatic tracking device will operate again (in this implementation). Example function 10 is as shown in the table below.

晴天時= (自動追尾中) ■、太陽直射光             受光同時に II 、コレクター有効入射角600以内の太陽方向の
天空散乱光            受光■、天頂角±
300以内の天空散乱光   受光■、太陽方向のみの
、コレクター有効入射角600以内の、天頂角±300
以内の天空散乱光受光 曇天時; (追尾停止) θ=600固定の場合: ■、天頂角±300以内の天空散乱光   受光(光量
約50%) II 、天頂角±300以外の、停止方向のみの、コレ
クター有効入射角60G  以内の天空散乱光    
           受光θ=900固定の場合; 工、天頂角±300以内の天空散乱光   受光(僅少
) II 、天頂角±300以外の天空散乱光 受光せずθ
=600〜900間連続往復運動中の場合;1、天頂角
±300以内の天空散乱光   受光(光量約50〜7
0%) II 、天頂角±300以外の天空散乱光受光したり、
受光しなかったり 以上を集約すれば、晴天時は自動追尾装置が作動して、
太陽直射光を有効に受光すると同時に、かなり広範囲の
天空散乱光が有効に受光され曇天時には直ちに、例えば
θ=600に復帰、固定し、追尾装置が停止する場合を
考えると、この場合も上記通り相当に広範囲の天空散乱
光が有効に受光されるので、これでも本発明の主目的は
達しているもの覧、J二記通り、晴天時及び曇天時とも
Clear weather = (during automatic tracking) ■, Direct solar light received at the same time II, Sky scattered light received in the direction of the sun within the collector's effective incident angle of 600 ■, Zenith angle ±
Sky scattered light reception within 300°, solar direction only, collector effective incident angle within 600°, zenith angle ±300
(Tracking stopped) When θ=600 fixed: ■, Sky scattered light received within zenith angle ±300 (light intensity approx. 50%) II, Only in stopping direction other than zenith angle ±300 Sky scattered light within the collector effective incident angle of 60G
When light reception θ is fixed at 900; θ, Sky scattered light within zenith angle ±300 is received (slightly); II, Sky scattered light outside zenith angle ±300 is not received θ
= During continuous reciprocating motion between 600 and 900; 1. Receiving sky scattered light within ±300 of the zenith angle (light intensity approximately 50 to 7
0%) II, receiving sky scattered light at a zenith angle other than ±300,
If no light is received or more light is collected, the automatic tracking device will operate on clear skies.
If we consider a case where direct sunlight is effectively received, and at the same time a fairly wide range of sky scattered light is also effectively received, and when it is cloudy, the tracking device immediately returns to and fixes θ = 600, for example, and stops the tracking device, the same applies to this case as well. Since sky scattered light over a fairly wide range is effectively received, the main purpose of the present invention is still achieved, both in clear weather and in cloudy weather, as described in J.2.

天空散乱光の一部は受光されず、全天空散乱光受光・伝
達の希望は完全には果していない。
A portion of the sky scattered light is not received, and the hope of receiving and transmitting the entire sky scattered light has not been completely fulfilled.

再び太陽放射エネルギー収集装置として、最も望ましい
条件を整理すれば、晴天時は太陽直射光を自動追尾しつ
−これを有効に受光し、同時に、天空散乱光をも余すこ
となく有効に、併合受光し、曇天時は天空散乱光のみを
、余すことなく有効に受光し、且つ、その入射角の如何
に関せず、すべての入射光束の主光線が、結像に際しそ
の像面に対し、垂直入射し、晴曇が繰り返される場合は
、速やかに上記通りの機能に応答出来ることであらう。
Once again, as a solar radiant energy collection device, if we sort out the most desirable conditions, we can automatically track and effectively receive direct sunlight on clear skies, and at the same time effectively receive all of the sky scattered light, combining it. However, when it is cloudy, only the sky scattered light is effectively received, and regardless of the incident angle, the principal ray of all incident light beams is perpendicular to the image plane when forming an image. In the event of repeated clear and cloudy weather, the above functions should be able to respond promptly.

こへに於て、広範囲の天空散乱光受光を重視する理由は
長期に渉る測定並びに目視に依る体験によるもので、天
頂角±300以外の天空散乱光は、天候によって無視出
来ないことが、経験されており、要は曇天時にも最大限
の光量を収集したいためであり、斯くすることに依り、
収集される太陽放射エネルギーの総量を考えるとき、太
陽自動追尾機構の追尾精度や晴曇が縁・り返えされる場
合等に於ける太陽自動追尾機構の応答速度等は成程度緩
和されると考えられる。即ち太陽放射エネルギー収集装
置として最も望ましい条件を満足せしむる一つの確実な
手段は、(第1図)の如き本実施例の集光部を一つのユ
ニッ)(Ul)とし、これと(Ul)より自動追尾装置
と、スリップ・リング機構を削除し、昼間は反射ミラー
■の連続回転(水平面内)専用ユニツ)(U2)とを併
用することであり、(Ul)、(U2)に付与する機能
及びこれと関連する反射ミラー■の仰角θの姿勢等に依
る分類を表示したのが(第6表)であり、(第6表)に
於てU2シリーズ相互間の組合せを除きこれ等を一例と
して2ユニツト以下の範囲内で、すべての可能な組合せ
を表示し、各組合せに於ける機能を定性的に採点したも
のが(第 7表)で、使用効果の面から見たその評価値
は、(第7表)から明白であるが、千変万化する天候に
対し、幾つかの仮定を前提とすることでもあり、又季節
、緯度、時刻等の要素も関連し、最も優れた組合せを断
定することは一概には困難であるも、安価な小さな装置
で、地表で捕捉し得られる太陽放射エネルギーの殆んど
すべてである、晴天時は太陽直射光と同時に余すことな
く天空散乱光を、又曇天時にも、天空散乱光を余すこと
なく、有効に受光し得る組合せが(第7表)の内に含ま
れていることは確かである。
Here, the reason why we place importance on receiving sky-scattered light over a wide range is based on long-term measurement and visual experience, and it is clear that sky-scattered light outside the zenith angle ±300 cannot be ignored depending on the weather. The reason is that we want to collect the maximum amount of light even on cloudy days, and by doing this,
When considering the total amount of solar radiant energy collected, it is assumed that the tracking accuracy of the automatic solar tracking mechanism and the response speed of the automatic solar tracking mechanism in cases where clear and cloudy conditions change, etc. will be moderated to a certain extent. It will be done. In other words, one sure way to satisfy the most desirable conditions for a solar radiant energy collecting device is to make the light collecting part of this embodiment as one unit (Ul) as shown in FIG. ), the automatic tracking device and the slip ring mechanism are removed, and during the day, a unit dedicated to the continuous rotation (in the horizontal plane) of the reflecting mirror (U2) is used in conjunction with (U2), which is given to (Ul) and (U2). (Table 6) shows the classification according to the functions to be used and the attitude of the elevation angle θ of the reflecting mirror (■) related to this. As an example, Table 7 shows all possible combinations within the range of 2 units or less, and qualitatively scores the functions of each combination. As is clear from Table 7, the values are based on several assumptions due to the ever-changing weather, and factors such as season, latitude, and time are also relevant, and the best combination is determined. Although it is difficult to make a definitive statement, a small, inexpensive device can capture almost all of the solar radiant energy that can be captured on the earth's surface, and on clear skies it captures all the sky-scattered light at the same time as the direct sunlight. It is certain that combinations (Table 7) that can effectively receive all of the sky scattered light even on cloudy days are included.

即ちui、u2シリーズに於て、U2シリーズ相互間の
組合せを除き、可能なすべての組合せに於て、複数個の
装置を併合し、夫々の収集する太陽放射エネルギーを1
重合させ、又は単独に、又は重合・単独を混用し、夫々
収集光を所望の地点まで伝達すればよく、使用目的に依
り、通出なものを(第7表)の中から選定すればよい。
In other words, in the ui and u2 series, in all possible combinations, excluding combinations between the U2 series, multiple devices are combined and the solar radiant energy collected by each is reduced to 1.
It is sufficient to transmit the collected light to the desired point by polymerizing, alone, or in combination with polymerizing and singly, and depending on the purpose of use, the approved ones may be selected from those listed in Table 7. .

又(第7表)(7)No、1O−iaの如< (U2)
シリーズに関する組合せに於ては、反射ミラー■現象と
なるので、読書や細かい手仕事等に対する照明光として
は、不適当な場合もあるが、本発明の目的の一つである
太陽放射エネルギー利用の集熱装置に転用する場合は、
全く視覚には関係がないので、有効に効果を発揮する。
Also (Table 7) (7) No, 1O-ia < (U2)
In combinations related to the series, a reflective mirror phenomenon occurs, so it may be inappropriate as illumination light for reading or detailed handicrafts, etc. However, it is not suitable for the use of solar radiant energy, which is one of the purposes of the present invention. When converting to a heat collection device,
Since it has nothing to do with vision, it is effective.

(第7表)の2ユニツトを組合せた慟、4〜18に於て
、2つのユニットで夫々受光し、平行光束として射出さ
れた太陽光を一つの平行光束として合成して伝達する場
合の、光学系に重点を置いた、外観図が(第16図)で
あり、(第7表)に於て、その計画値の高そうなNo、
13;  Ul2、U21.で図示しであるが、他の組
合せでも全く同様であり、24は光合成器である。
In cases 4 to 18 that combine the two units in (Table 7), when the two units each receive light and the sunlight emitted as a parallel beam is combined and transmitted as one parallel beam, (Figure 16) is an external view that focuses on the optical system, and in (Table 7), No.
13; Ul2, U21. Although this is illustrated in the figure, other combinations are also the same, and 24 is a photosynthesizer.

又(第16図)に於て、ユニットU12、U21は必ず
しも同一平面上に設ける必要はない。
Furthermore, in (FIG. 16), the units U12 and U21 do not necessarily need to be provided on the same plane.

さて太陽放射エネルギーを「光」として太陽自然光の構
成4分のま−で捕捉し、晴天時には直達日射量と同時に
、天空散乱日射量を併合して有効に収集し、曇天時には
天空散乱日射量を余すことなく受光すれば、これ等の日
射量の総和は、地表で捕え得る太陽放射エネルギーの殆
んど総べてと見1次し得られ、且つその入射角の如何に
関せず、すべての入射光束が結像に際し、夫々の結像に
関与するすべての有効入射光束の主光線が、夫々その像
面に対し、垂直入射することは、太陽放射エネルギーを
熱エネルギーに変換するための5最も望ましい優れた前
提条件であり、(第7表)に表示しである例えば2ユニ
ツト以下のすべての組合せは勿論、Ul、U2シリーズ
に於てU2シリーズ相互間の組合せを除き、可能なすべ
ての組合せに於て、それ等複数個の装置を併合すれば、
その受光日射量に夫々若干の差異はあるもの\、総てこ
の条件を満たすものである。
Now, solar radiant energy is captured as "light" in the 4th minute of the solar natural light, and on clear days it is effectively collected by merging the sky scattered solar radiation with the direct solar radiation, and on cloudy days the sky scattered solar radiation is collected effectively. If all of the light is received, the total amount of solar radiation can be regarded as almost all of the solar radiation energy that can be captured on the earth's surface, and regardless of the angle of incidence, all of the solar radiation is When an incident light beam of This is the most desirable prerequisite, and all possible combinations shown in Table 7, for example, 2 units or less, as well as combinations between U2 series in the Ul and U2 series. In a combination, if you combine multiple devices,
Although there are some differences in the amount of solar radiation received, all of them satisfy this condition.

そこでユニッ トU1.U2シリーズに於て、夫々その
集光部より、コリメーター・レンズ群■対物レンズ系■
及び接眼レンズ系■)を削除し、その主要部である反射
ミラー■とコレクター■のみで、新しい集熱器用集光部
ユニットVl、V2シリーズ即t、Vll、Vl2.V
l3.V21.V22゜V23を夫々構成せしめ、これ
等に対し、これ等大々のコレクター■の像面(′りの近
傍に、集熱板を位置せしめ得る、別個の1例えば平板型
集熱器を結合させたVl、■2シリーズに於て、v2シ
リーズ相互間の組合せを除き、可能なすべての組合せに
於て、それ等複数個の装置を併用すれば集熱量に夫々若
干の差異のある集光式平板型集熱器となり、この場合集
熱器は個々別々でも、又一体化してもよく、又その熱媒
体循環系も個々別々でも、又連結しても、又一体化して
もよく、これは集光式であるから、当然その集光比は大
きく、更に、その入射角の如何に関せず、すべての入射
光束の主光線は、その像面である集熱板全面に対し、す
べて垂直入射するから、同一性能の集熱板に対しては一
般的な平板型集熱器より、相当に集熱効率はよく、集熱
板の温度はそれだけ高い。
Therefore, unit U1. In the U2 series, each collimator lens group ■Objective lens system■
and eyepiece system (■), and only the main parts, the reflecting mirror (■) and the collector (■), are used to create a new condenser unit for the heat collector Vl, V2 series, Vll, Vl2. V
l3. V21. V22 and V23, respectively, and a separate heat collector, for example, a flat plate type, in which a heat collecting plate can be placed is coupled to these in the vicinity of the image plane (') of these large collectors. In all possible combinations of the Vl and ■2 series, except for combinations between the v2 series, if multiple devices are used together, the amount of heat collected will be slightly different. It is a flat plate type heat collector, in which case the heat collectors may be separate or integrated, and the heat medium circulation system may be separate, connected, or integrated. Since it is a condensing type, the condensing ratio is naturally large.Furthermore, regardless of the angle of incidence, the principal rays of all incident light beams are all perpendicular to the entire surface of the heat collector plate, which is the image plane. Because the heat is incident on the heat collector plate, the heat collection efficiency is considerably better than that of a general flat plate heat collector with the same performance, and the temperature of the heat collector plate is correspondingly higher.

(第17図)はVl、 V2、シリーズに於て、2ユニ
ツトだけを組合せ併用し、屋上に取付けた場合の、一部
断面を含む外観図で1代表として合で、[相]は集熱器
本体、[相]は選択吸収集熱板、Oは熱媒体循環系、■
は広波長域光の透過性がよく、且つ長波長域の赤外線の
透過防止処理がなされた透明窓部材で◎Oは夫々給水管
と排水管であり、貯水槽と蓄熱槽は図示してない。
(Fig. 17) is an external view including a partial cross section of the Vl, V2 series, when only two units are used in combination and installed on the roof. The main body of the vessel, [phase] is the selective heat absorption/collection plate, O is the heat medium circulation system, ■
◎ O is a water supply pipe and a drain pipe, respectively, and the water storage tank and heat storage tank are not shown. .

又(7表)のユニッ)Ul 、U2.シリーズに於て、
夫々その集光部より、対物レンズ系■及び接眼レンズ系
■を削除し、その主要部である反射ミラー■コレクター
■及びコリメーター・レンズ群■のみで、新しい集熱用
集光部ユニッ)Wl 。
Also, the units in (Table 7) Ul, U2. In the series,
By removing the objective lens system (■) and the eyepiece system (■) from the respective condensing parts, and using only the main parts of the reflecting mirror (collector) and collimator lens group (■), a new condensing unit for heat collection is created. .

W2シリーズ、即ちWll、Wl2.Wl3゜W21 
、W22 、W23 、を夫々構成せしめ、これ等に 
対し、これ等大々のコリメーター・レンズ群■より、装
置全体が余り大型にならない範囲内で、任意の距離を保
って、集熱板を位置せしめ得る。別個の例えば平板型集
熱器を結合させ、夫々を(第7表)の如く組合せると、
これ等も又集熱量に夫々若干の差異ある集光式平板型集
熱器となり、それ等複数個の組合せの併用に於て、集熱
器は個々別々でも、又・体化してもよく、又その熱媒体
循環系も個々別々でも又連結しても、又一体化してもよ
く、これ等の集光比は、Vl。
W2 series, namely Wll, Wl2. Wl3゜W21
, W22 , W23 , respectively, and
On the other hand, the heat collecting plate can be positioned at an arbitrary distance from such a large collimator/lens group (2) without making the entire device too large. When separate, for example, flat plate type heat collectors are combined and each is combined as shown in (Table 7),
These are also concentrating flat plate type heat collectors each with a slightly different amount of heat collected, and in the combination of multiple such heat collectors, the heat collectors may be used individually or integrated. Also, the heat medium circulation system may be separate, connected, or integrated, and the light concentration ratio of these systems is Vl.

v2シリーズよりや一小さいが、それでも相当に大きく
、更にその入射角の如何に関せず、すべての入射光束は
、結像後、夫々のコリメーター・レンズに依り、再びエ
ネルギーの濃縮された平行光束として射出され、これ等
平行光束群がすべて、集熱板面に垂直入射し、これ又集
熱効率の頗る良好な集光式平板型集熱器であり、才色物
面鏡等を(第18図)は、Wl、W2シリーズに於て、
3ユニツトだけを組合せ併用し、屋上に取付けた場合の
、一部断面を含む外観図で、代表としてWl2.W21
.W21を用い、集熱器と熱媒体m環系は、一体化した
場合で為る。
Although it is slightly smaller than the v2 series, it is still quite large, and regardless of the angle of incidence, after imaging, all the incident light beams are converted into parallel, energy-concentrated beams again by the respective collimator lenses. It is emitted as a light beam, and all of these parallel light beams are perpendicularly incident on the surface of the heat collecting plate. Figure 18) is in the Wl and W2 series,
This is an external view, including a partial cross section, of a case where only three units are used in combination and installed on the roof.Wl2. W21
.. W21 is used, and the heat collector and the heat medium m-ring system are integrated.

Wl2は自動追尾式であるから、直射光受光に邪魔にな
らぬよう、3ユニツトは一直線上に配列する必要はない
Since Wl2 is an automatic tracking type, there is no need to arrange the three units in a straight line so as not to interfere with direct light reception.

VシリーズとWシリーズ及びUシリーズ等の組合せも当
然応用できる。
Naturally, combinations of the V series, W series, U series, etc. can also be applied.

更に又、(7表)のユニツ)Ul、U2シリーズに於て
、U2シリーズ相互間の組合せを除き。
Furthermore, in (Units) Ul and U2 series in (Table 7), combinations between U2 series are excluded.

可能なるすべての組合せに於て、それ等複数個の装置を
併用し、夫々の収集する太陽エネルギーを、重合させ、
又は単独に、又は重合・単独を混用し、必要あらば光路
変更器又は中空光導管等を経由し、所望の地点まで伝達
し、この地点に集熱板を有する集熱器を設置すれば、そ
の入射光の入射角の如何に関せず、すべての入射光束が
エネルギーの濃縮された平行光束として射出され、これ
等がす一ズ及びWl、W2シリーズの場合と異り、屋上
まで配管等をする必要はなく1例えば、地上で温水を造
ることも可能となる。
In all possible combinations, multiple devices are used together to polymerize the solar energy collected by each device,
Or, if necessary, it can be transmitted to the desired point via an optical path changer or hollow light pipe, etc., and a heat collector with a heat collecting plate is installed at this point, Regardless of the incident angle of the incident light, all the incident light beams are emitted as parallel light beams with concentrated energy, and unlike in the case of the Suichizu, Wl, and W2 series, these beams are connected to the rooftop by piping, etc. For example, it is possible to generate hot water on the ground.

又この場合、接眼レンズ系■よりの、射出平行光束の光
路に、光路変更器を移動可能に取付ければ、これは集光
器としてへ、一般照明用としても又は両者を併用して使
用することも出来る。
In this case, if an optical path changer is movably attached to the optical path of the emitted parallel light beam from the eyepiece system (■), it can be used as a condenser, for general illumination, or for a combination of both. You can also do that.

又この場合は、集熱器の状態は目視し易いので、冬期に
於ける熱媒体循環系内部の凍結防止対策や空だき防止対
策も、これが屋上に設置されている場合より、より正確
φ迅速に対処できることは明らかである。
In this case, the condition of the heat collector can be easily checked visually, so measures to prevent freezing and drying inside the heat medium circulation system in winter can be taken more accurately and quickly than if it were installed on the roof. It is clear that this can be addressed.

又(第・7表)のUl、U2シリーズに於て、例えば反
射ミラー■の仰角が共に600に固定されているUll
、U21なる組合せを、比較的太陽高度の低い、秋分か
ら春分間は使用し太陽高度が高くなる夏期には、必要あ
らば、両方共又はでもあり、これはそのま−1Vl、V
2及びWl、W2シリーズにも適用できる。
In addition, in the Ul and U2 series (Table 7), for example, the elevation angle of the reflecting mirror ■ is both fixed at 600.
, U21 are used during the autumn and spring equinoxes when the solar altitude is relatively low, and in the summer when the solar altitude is high, if necessary, both or U21 are used.
2, Wl, and W2 series.

(第49図)(イ)(ロ)(ハ)は太陽放射エネルギー
収集・伝達装置、Ul、U2シリーズに於て、例えばそ
の2ユニツトの組合せに於て、夫々→側面図及び正面鴫
、の、光学系に重点を、置いた代表的配置の、一部断面
を含む外観図で、照明専用の場合は、目的によっては、
Ull、U12゜tJ13相互間の組合せが有利であり
、又季節により、UllとU12を切換えるも良く、又
集熱専用の場合は、晴天時短時間に比較的多量の温水を
得るためにUll、U12.tJ13相互間の組合せで
よく、又季節に依ってはUll、U12゜U13.と、
021.U22.U23との任意の組合せの方が有利な
場合もあり、この組合せに於ても、使用目的に依っては
、季節・時刻等に依り反射ミラーの仰角を切換えた方が
有利である。
(Fig. 49) (A), (B), and (C) are solar radiant energy collection and transmission devices, Ul, U2 series. , an external view including a partial cross-section of a typical arrangement with emphasis on the optical system, depending on the purpose if it is used exclusively for lighting.
The combination of Ull and U12゜tJ13 is advantageous, and it is also good to switch between Ull and U12 depending on the season, and if it is only for heat collection, Ull and U12 can be used to obtain a relatively large amount of hot water in a short time on sunny days. .. It may be a combination between tJ13 and Ull, U12°U13, depending on the season. and,
021. U22. Any combination with U23 may be more advantageous, and even in this combination, depending on the purpose of use, it may be advantageous to switch the elevation angle of the reflecting mirror depending on the season, time of day, etc.

又地上集熱用(第19図)(イ)(ロ)(ハ)等の場合
、集熱板上には、有効入射光束がエネルギーの濃縮され
た平行光束として、これに垂直入射しているから集熱板
の上方に、集熱板上に結像する如きコリメーター・レン
ズを設ければ、このUlシリーズとこのコリメーター・
レンズの結合ユニットは、恰も(第171図)に於ける
如き、Vシリーズ型の集光式集熱器と同性能となり、即
ち地上に於ける高速温水器となる。
In addition, in the case of ground heat collection (Fig. 19) (a), (b), and (c), the effective incident light flux is perpendicularly incident on the heat collection plate as a parallel light flux with concentrated energy. If you install a collimator lens above the heat collecting plate to form an image on the heat collecting plate, you can combine this Ul series with this collimator lens.
The lens combination unit has the same performance as the V-series type concentrating heat collector as shown in Figure 171, that is, it becomes a high-speed water heater on the ground.

さて以上の説明で理解出来る通り1本発明に於ける集光
式集熱器:中でもVl 、V2シリーズの複数個の組合
せ、例えば(第171図)Vl2.V21の組合せ等は
、その集熱板に全天空散乱光の焦点が合致し、且つ入射
角の如何に関せず、すべての入射光束のエネルギーが、
集熱板上の微小面積内に、集中し且つ、垂直に入射する
ので、集熱板が相当な高温となる、所謂「高速温水器j
の条件を満たしており、従って短時間内に相当量の温水
が得られる。
Now, as can be understood from the above explanation, a concentrating heat collector according to the present invention: Among them, a combination of a plurality of Vl, V2 series, for example (Fig. 171) Vl2. In combinations such as V21, the focus of the entire sky scattered light matches the heat collecting plate, and regardless of the incident angle, the energy of all the incident light flux is
Because the heat is concentrated and perpendicularly incident on a small area on the heat collecting plate, the heat collecting plate becomes extremely high temperature.
Therefore, a considerable amount of hot water can be obtained within a short period of time.

例えば、この組合せを豪雪地帯の家屋に適用し、降雪時
には、この2ユニツトの中間に大きなファンを設けてこ
れを回転させ、両ユニットの透明カバー■を充分にクリ
アーする如くし、且つ温水排水管を棟の中央に設け、温
水を屋根の双方に分配すれば、 r雪おろし1作業をセ
ーブすることも可能で、熱媒体循環系の冬期の凍結防止
対策は充分配慮する必要があり、又この場合の温水温度
は平均的地下水温の100c以下でなければ充分役立つ
筈である。
For example, this combination can be applied to a house in an area with heavy snowfall, and when it snows, a large fan is installed between the two units and rotated to fully clear the transparent covers of both units, and the hot water drain pipe is It is possible to save one task of removing snow by installing a heater in the center of the building and distributing hot water to both sides of the roof.In this case, it is necessary to take measures to prevent the heat transfer system from freezing in winter. It should be useful as long as the hot water temperature is below the average groundwater temperature of 100C.

(ハ)発明の効果 以上詳述した通り、本発明に依れば、小型・安価な装置
で、非常に広波長域に渉る、太陽自然光の構成々分を崩
さず、そのまへで、太陽直射光は勿論有効に受光出来る
と同時に広範囲の天空散乱光をも受光でき、更に、この
装置と、その一部を変更した装置とを、複数個組合せ併
用すれば地上で捕捉し得られる太陽放射エネルギーの殆
んどすべである、全天空散乱日射量が収集でき、且つ従
来の太陽放射エネルギー収集装置では実現し得行光束と
して射出され、これを光導補助部材は全く使用せず、必
要あらば、吸収・反射損失等は殆んど無視出来る中空光
導管や光路変更器等を経由し、所望の地点までこれを伝
達し、これを一般照光等として使用出来ると同時に、こ
の地点に集熱板を位置せしめ得る集熱器を設ければ、屋
上に配管工事等−切せず、その場で温水が得られ、又上
記の複数個組合された太陽放射エネルギー収集−伝達装
置に於て、その集光部よりその一部を削除し、その主要
部のみよりなる集熱用集光部と。
(c) Effects of the Invention As detailed above, according to the present invention, with a small and inexpensive device, the components of natural sunlight over a very wide wavelength range are not destroyed. Not only can it effectively receive direct sunlight, but it can also receive a wide range of sky-scattered light.Furthermore, if this device and a partially modified device are used in combination, the sun can be captured on the ground. Almost all of the radiant energy, which is the amount of scattered solar radiation in the sky, can be collected, and is emitted as a gain beam, which could not be achieved with conventional solar radiant energy collection devices. For example, the light can be transmitted to a desired point via a hollow light conduit or optical path changer, etc., where absorption and reflection losses are almost negligible, and it can be used for general illumination, etc., and at the same time, heat can be collected at this point. If a heat collector on which a plate can be placed is installed, hot water can be obtained on the spot without having to disconnect piping on the rooftop, and in the solar radiation energy collection and transmission device that is a combination of multiple pieces, A part of the light collecting part is removed from the light collecting part, and the light collecting part consists of only the main part.

集熱器を結合すれば、上記同様、その入射角の如何に関
せず、すべての有効入射光束のエネルギーが、常にその
集熱板に垂直入射する、即ち、すべての入射光束の直達
日射量がそのま覧受光出来る、従来の集熱器では実現不
可能であった、集熱効率の良い、集光式集熱器となる等
の効果がある。
If heat collectors are connected, as above, regardless of the angle of incidence, the energy of all effective incident light beams will always be perpendicularly incident on the heat collector plate, that is, the direct solar radiation amount of all incident light beams. It has effects such as being able to see and receive light directly, and becoming a concentrating type heat collector with good heat collection efficiency, which was not possible with conventional heat collectors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例の太陽を含むメリデオナール断面図 第2図は本実施例を木造家屋の屋上に取付けた取付施行
外観図 第3図はアクリル樹脂の分光透過率 第4図はアクリベラ)#OO1の赤外域分光透過率 第5図はポリカーボネートの分光透過率第6図は中空光
導管に於ける入射角対比反射回数          
 (10m当たり)第7図はオプチカル・ファイバーに
於ける入射角対比全反射回数  (10m当たり)第8
図は入射角対比反射率 第9図(イ)はオプチカル・ファイバーに於ける入射角
・全反射率対比射出光強度 第9図(ロ)はオプチカル・ファイバーに於ける入射角
・波長対比射出光強度 第10図(イ)は本実施例の反射ミラー及びコレクタ一
部の太陽を含むメリディオナール断面 太陽直射光入射角W/、反射ミラー 仰角θの場合 第10図(ロ)は第10図(イ)に於てW/ = QO
θ冨600の場合 第10図(ハ)は第10図(イ)に於てw/=6000
=900の場合 第11図は第10図(ロ)(ハ)に於ける天空散乱光の
説明図   (θ=600の場合)第12図は本実施例
に於ける像面の平面図第13図は本実施例に於ける集光
部の光路間第14図は本実施例のコリメーターΦレンズ
群の平面図 第15図は第3表の説明図 第16図は第7表に於ける代表的2ユニツトを併用し、
屋上に取付けた場合の外観図 第17図は本実施例 Vシリーズの代表的2ユニツ ト
を併用し、屋上に取付けた場合の外観図 第18図は本実施例Wシリーズの代表的3ユニツトを併
用し、屋上に取付けた場合の 外観図 第18図(イ)は未実施例Ulシリーズ2ユニットを併
用し、地上集熱専用とした場合の外観図 第18図(ロ)は未実施例Ulシリーズ2ユニットを併
用し、地上集熱兼照明用とした 場合の外観図 第18図(ハ)は未実施例Ulシリーズ2ユニットを併
用し、2ケ所又は1ケ所集中照明専用とした場合の外観
図に、地上集熱専用切換図を併記したもの (正面図及び側面図) 1・・・反射ミラー   2・・・コレクター3・・・
像   面   4・・・コリメーター・レンズ群5・
・・対物レンズ系  6・・・接眼レンズ系7・・・ミ
 ラ −   8・・・透明窓部材9・・・鉛直軸 1
0・・・水平軸 11・・・木   体  12・・・水平回転基板13
・・・カ バ −  14・・・中空光導管15・・・
集光部基板  16・・・光路変更器17・・・架  
 台  18・・・集熱器本体19・・・集 熱 板 
 20・・・熱媒体循環系21・・・透明板 22・・
・給水管 23・・・排 水 管  24・・・光 合成器第2表 第3表 、第6表 第7表 図面の浄書 走り虹 第4図 )二1 」L天J− 第6図 、90−δ べ一匹→【) 五jIL        Δ遣」− 第18図(ロ) 手続補正書(方式) %式% 1、事件の表示 昭和61年特許願第61−22719
2号2、発明の名称 太陽放射エネルギー収集・伝達装
置及び集熱装置とその方法 3、補正する者 事件との関係 特許出願人
Figure 1 is a sectional view of Merideonal including the sun in this example. Figure 2 is an external view of this example installed on the roof of a wooden house. Figure 3 is the spectral transmittance of acrylic resin. Figure 4 is Acrybella. Figure 5 shows the infrared spectral transmittance of OO1, and the spectral transmittance of polycarbonate Figure 6 shows the number of reflections relative to the angle of incidence in the hollow light pipe.
(Per 10m) Figure 7 shows the number of total reflections (per 10m) compared to the incident angle in optical fiber.
The figure shows the reflectance versus incident angle.Figure 9 (a) shows the incident light intensity versus total reflectance in the optical fiber.Figure 9 (b) shows the output light intensity versus the incident angle and wavelength in the optical fiber. Intensity Fig. 10 (a) shows the meridional cross section of the reflecting mirror and collector of this example, including part of the sun, when the incident angle of direct solar light is W/, and Fig. 10 (b) shows the case where the reflecting mirror elevation angle is θ. In (a) W/ = QO
In the case of θ-depth 600, Fig. 10 (c) is w/=6000 in Fig. 10 (a).
When θ=900, Figure 11 is an explanatory diagram of the sky scattered light in Figures 10 (B) and (C). (When θ = 600) Figure 12 is a plan view of the image plane in this example. Figure 14 is a plan view of the collimator Φ lens group in this example. Figure 15 is an explanatory diagram of Table 3. Figure 16 is an illustration of Table 7. Using two representative units together,
Figure 17 is an external view when installed on a rooftop, and Figure 18 is an external view when two representative units of the V series of this example are used together, and Figure 18 is an external view when installed on a rooftop, and three representative units of the W series of this example are used together. Fig. 18 (a) is an external view of the case where the unimplemented Ul series 2 units are used together and is installed on the rooftop. Figure 18 (c) is an external view when series 2 units are used together for above-ground heat collection and lighting. Figure 18 (c) is an appearance when unimplemented Ul series 2 units are used together and used for concentrated lighting at two or one place. The figure also includes a switching diagram for ground heat collection (front view and side view) 1...Reflection mirror 2...Collector 3...
Image surface 4... Collimator lens group 5.
...Objective lens system 6...Eyepiece system 7...Mirror - 8...Transparent window member 9...Vertical axis 1
0...Horizontal axis 11...Wooden body 12...Horizontal rotating board 13
... Cover - 14 ... Hollow light pipe 15 ...
Light collecting unit board 16... Optical path changer 17... Frame
Stand 18... Heat collector body 19... Heat collection plate
20... Heat medium circulation system 21... Transparent plate 22...
・Water supply pipe 23...Drain pipe 24...Light combiner Table 2 Table 3, Table 6 Table 7 Drawings with a rainbow (Figure 4) 21''L sky J- Figure 6, 90-δ one animal → [) 5jIL Δtransfer” - Figure 18 (b) Procedural amendment (method) % formula % 1. Indication of the case 1985 Patent Application No. 61-22719
No. 2 No. 2, Title of the invention Solar radiant energy collecting and transmitting device and heat collecting device and its method 3. Relationship with the amended person's case Patent applicant

Claims (1)

【特許請求の範囲】 (1)水平軸に対し、回転可能に取付けられた反射ミラ
ーを、鉛直軸に固定された水平回転基板に取付け、コレ
クターと、その像面の下方に、像面上全面に結像する各
像点を、夫々その焦点とし、夫々の像点結像に関与する
有効光束を、受容するだけの有効径を有する、代表的な
有限個数のコリメーター・レンズを一つの透明基板上に
、 同心円周上に配置し、更にその下に、これらすべてのコ
リメーター・レンズ群よりの射出平行光束を、すべて入
射光として受容できるだけの有効径を有する対物レンズ
系を設け、これ等集光用光学系をすべて、鉛直軸と一致
した共通光軸上に配置してなる集光部を、その外側が強
い反射性を有する不透明部材と、内部に外光その他の熱
伝導を防止する空気層を介した不透明部材とで二重に構
成された本体と、本体上部に、回転可能にかん合された
水平回転基板、及び、反射ミラーの運行に支障なく、且
つ有効入射光は遮らず、その他の部分は強い反射性を有
する不透明部材で、外光を遮断してある、一部透明の対
候性を有するカバーと、本体下部に、防塵・防湿性にか
ん合された、対候性を有する透明窓部材とで、気密に収
納し、更にその光軸上に、対物レンズ系と共に、望遠鏡
系を構成する接眼レンズ系を配し、収集光を平行光束と
して射出し、又必要あらば、ミラーを防塵・防湿性に内
臓した光路変更器、又は中空光導管等に依り、所望の地
点まで収集光を伝達する装置に於て、反射ミラーと、水
平回転基板を、夫々、前記相互に直交する軸のまわりに
回転させる、太陽自動追尾機能を有することを特徴とす
る、太陽放射エネルギー収集・伝達装置。 (2)、第1項記載の太陽放射エネルギー収集伝達装置
に於て、晴天時は太陽自動追尾機能が作動するも、曇れ
ば直ちに、反射ミラーの仰角が60°位置に復帰・固定
し、(この装置をU11とす)又は90°位置に復帰・
固定し、(この装置をU12とす)又は60°〜90°
間を連続往復運動をし、(この装置をU13とす)且つ
太陽自動追尾機能は停止するも、再び晴れゝば、太陽自
動追尾機能が復活することを特徴とする、特許請求の範
囲、第1項に記載の太陽放射エネルギー収集・伝達装置
。(これらの装置群をU1シリーズとす)(3)第2項
記載の装置U11、U12、U13に於て、装置U11
、U12、U13の可能なすべての組合せに於て、それ
等複数個の装置を併用し、夫々の装置が収集する太陽放
射エネルギーを、重合させ、又は単独に、又は重合・単
独を混用し、夫々収集光を伝達することを特徴とする、
特許請求の範囲、第1項及び第2項に記載の太陽放射エ
ネルギー収集・伝達装置。 (4)第1項記載の装置より、太陽自動追尾機構を削除
し反射ミラーの仰角を60°位置に固定させ、(この装
置をU21とす)又は90°位置に固定させ(この装置
をU22とす)又は60°〜90°間を連続往復運動さ
せ、(この装置をU23とす)(これ等の装置群をU2
シリーズとす)且つ夫々反射ミラーを、鉛直軸のまわり
に、連続回転させる場合、U1シリーズ装置(U11、
U12、U13)と、U2シリーズ装置(U21、U2
2、U23)に於て、(U2シリーズ)装置U21、U
22、U23相互間のみのすべての組合せを除き、可能
なすべての組合せに於て、複数個の装置を併用し、夫々
の収集する太陽放射エネルギーを、重合させ、又は単独
に、又は重合・単独を混用し、夫々収集光を伝達するこ
とを特徴とする、特許請求の範囲、第1項、及び第2項
に記載の太陽放射エネルギー収集・伝達装置。 (5)第3項及び第4項記載の、すべての可能な装置の
組合せに於て、緯度・季節・時刻等に依り、使用目的に
応じて、機能面に於て、反射ミラーの仰角等が、切換え
可能であることを特徴とする、特許請求の範囲第1項、
及び第2項、第3項、第4項のいずれかに記載の太陽放
射エネルギー収集・伝達装置。 (6)第2項第3項及び第4項記載のすべての装置群、
即ちU1シリーズとU2シリーズの合計である、(これ
をUシリーズとす) U11、U12、U13、U21、U22、U23に於
て、その各々より、コリメーター・レンズ群、対物レン
ズ系及び接眼レンズ系を削除し、その主要部である、反
射ミラー及びコレクターのみよりなる装置群を、(これ
をVシリーズとす)V11、V12、V13、V21、
V22、V23とし、第3項及び第4項記載の可能なる
すべての、Uシリーズに於ける組合せに、対応するVシ
リーズの組合せに於て、これ等と、夫々のコレクターの
像面の近傍に、その集熱板を位置せしめ得る、別個の集
熱器とを結合させ、これ等複数個の装置を併用し、夫々
の収集する太陽放射エネルギーを、重合させ、又は単独
に、又は重合・単独を混用し、夫々収集熱を提供する、
太陽放射エネルギー収集・伝達装置の主要部が、その入
射光の入射角の如何に関せず、すべての入射光束が、受
光・結像に際し、結像に関与した、すべての有効光束の
主光線が、すべて集熱板に垂直入射し、集光比が頗る大
きい集熱効率のよい、太陽放射エネルギー集熱装置とし
ても、共用できることを特徴とする、特許請求の範囲、
第2項、第3項、第4項及び第5項の何れかに記載の、
太陽放射エネルギー集熱装置。 (7)第2項、第3項、及び第4項記載のすべての装置
群Uシリーズに於て、その各々より、対物レンズ系及び
接眼レンズを削除し、その主要部である、反射ミラー、
コレクター、及びコリメーター・レンズ群のみよりなる
装置群(これをWシリズとす)を、W11、W12、W
13、W21、W22、W23とし、第3項び第4項記
載の、可能なるすべての、Uシリーズに於ける組合せに
、対応するWシリーズの組合せに於て、これ等と、夫々
のコリメーター・レンズ群より、(装置全体が余り大型
にならない範囲内で、)任意の間隔を保つて、その集熱
板を位置せしめ得る、別個の集熱器とを結合させ、これ
等複数個の装置を併用し、夫々の収集する太陽放射エネ
ルギーを、重合させ、又は単独に、又は重合単独を混用
し、夫々収集熱を提供する、太陽放射エネルギー収集・
伝達装置の主要部が、その入射光の入射角の如何に関せ
ず、すべての入射光束が、受光・結像後、コリメーター
・レンズ群に依り、夫々エネルギーが濃縮された平行光
線として射出され、且つ、射出される平行光束群が、す
べてその集熱板に垂直入射し、集熱効率のよい太陽放射
エネルギー集熱装置としても、共用出来ることを特徴と
する、 特許請求の範囲、第2項、第3項、第4項及び第5項の
何れかに記載の太陽放射エネルギー集熱装置。 (8)第2項、第3項及び第4項記載のすべてのUシリ
ーズ装置に対し、第3項及び第4項記載の、可能なるす
べての組合せに於て、これ等複数個の装置を併用し、夫
々の収集する太陽放射エネルギーを、重合させ、又は単
独に、又は重合・単独を混用し、必要あらば、光路変更
器又は中空光導管等を経由し、その収集された太陽放射
エネルギーを、所望の地点まで伝達し、この地点に集熱
板を有する集熱器を設置すれば、その入射光の入射角の
如何に関せず、すべての入射光束が、エネルギーの濃縮
された平行光束群として射出され、これ等がすべて集熱
板に垂直入射する、集熱効率の良い集熱器となり太陽放
射エネルギー収集・伝達装置がそのまゝ、太陽放射エネ
ルギー集熱装置の主要部としても転用できる(且つ屋上
までの配線工事等は全く不要で、地上でも温水が得られ
る等の)ことを特徴とする、特許請求の範囲、第1項、
第2項、第3項、第4項、及び第5項の何れかに記載の
太陽放射エネルギー集熱装置。 (9)反射ミラーと、共通光軸上に配置された、コレク
ター、コリメーター・レンズ群、対物レンズ系、接眼レ
ンズ系及び、太陽自動追尾機構とを組合せた、太陽放射
エネルギー収集・伝達装置に於ける、反射ミラーへの入
射光高度の追尾方法に於て、コレクターの有効入射全角
を2w、入射光の入射角(高度角)をw′、反射ミラー
の仰角をθとするとき、0°≦w′≦60°なるときは
常にθ=45°+(w+w′)÷2 を満足するように、換言すれば、入射角wで、反射ミラ
ーに入射したすべての反射光は、常にコレクターに対す
る入射角がwで入射するように、即ち、常にコレクター
の有効最大斜光束として入射するように 又特に、2w=60°の場合 0°≦w′≦60°なるときは 常にθ=60°+w÷2 60°≦w≦89°なるときは 常にθ=90° を満足するように、反射ミラーの入射光の高度を追尾す
ることを特徴とする、太陽放射エネルギー収集・伝達装
置に於ける、太陽自動追尾機構の太陽高度駆動方法。 (10)反射ミラーと、共通光軸上に配置された、コレ
クター、コリメーター・レンズ群、対物レンズ系、接眼
レンズ系及び太陽自動追尾機構とを組合せた、太陽放射
エネルギー収集・伝達装置に於ける、太陽自動追尾機構
とコリメーター・レンズ群との相関々係に於て、コリメ
ーター・レンズ群基板を、その鉛直軸に固定し、太陽自
動追尾機構の作動に依り、コリメーター・レンズ群と反
射ミラーが、常に同期して、鉛直軸のまわりに回転し、
特定の入射角で入射する有効光束の、受光・伝達を担当
するコリメーター・レンズが、常に特定のものである如
くし、似て、その受光・伝達効率を、高水準に、且つ一
定に保持することを特徴とする、太陽放射エネルギー収
集・伝達装置に於ける、太陽自動追尾機構とコリメータ
ー・レンズ群の同期方法。 (11)反射ミラーと、共通光軸上に配置された、コレ
クター、コリメーター・レンズ群、対物レンズ系、接眼
レンズ系及び太陽自動追尾機構とを組合せた、太陽放射
エネルギー収集・伝達装置に於ける、入射光の結像に際
し、その入射角の如何に関せず、すべての入射光束の主
光線が、像面に対し、すべて垂直入射し、その受光・伝
達効率を低下させないようにするため、コレクターの射
出側を、テレセントリックにすることを特徴とする、太
陽放射エネルギー収集・伝達装置に於ける、すべての入
射光束の主光線の、像面に対する入射角の制御方法。 (12)反射ミラーと、共通光軸上に配置された、コレ
クター、コリメーター・レンズ群、対物レンズ系、接眼
レンズ系、及び、太陽自動追尾機構とを組合せた、太陽
放射エネルギー収集・伝達装置の、収集・伝達用光学系
の構成に於て、その光軸が天頂に向けて固定され、且つ
、その射出側が、テレセントリックであるコレクター、
反射ミラー経由で入射する太陽直射光は、常にコレクタ
ーの有効最大斜光束として入射する如くし、コレクター
の光学的諸収差は、その有効最大斜光角で重点的に補正
し、これを受光・伝達するコリメーター・レンズには高
次の非球面を採用し、その射出光束の平行度に高度の精
度を付与せしめ、以て、特に太陽直射光の受光・伝達効
率を、常に、高く、一定に保持せしめ、コリメーター・
レンズ群よりの射出平行光束群を、すべて入射光とする
、望遠鏡系で、収集された太陽放射エネルギーを、更に
濃縮すると同時に、広波長域の太陽自然光の構成々分の
まゝ、これ等すべての波長光を、高精度の平行光束とし
射出する、太陽放射エネルギー収集・伝達装置に於ける
、収集・伝達用光学系の構成並びに射出平行光束の制御
方法。
[Scope of Claims] (1) A reflecting mirror rotatably attached to a horizontal axis is attached to a horizontal rotating substrate fixed to a vertical axis, and a collector and an image plane are provided below the image plane. A representative finite number of collimator lenses each having an effective diameter large enough to receive the effective light beam involved in the imaging of each image point are each focused on one transparent lens. The objective lens system is arranged concentrically on the substrate, and further below it is provided with an objective lens system having an effective diameter large enough to receive all of the parallel light beams emitted from all of these collimator lens groups as incident light. The light condensing part is made up of all the light condensing optical systems arranged on a common optical axis that coincides with the vertical axis, and the outside of the condensing part is made of an opaque material with strong reflectivity, and the inside is made of an opaque material that prevents external light and other heat conduction. The main body is made up of a double body consisting of an opaque member with an air layer in between, a horizontal rotating substrate rotatably fitted to the upper part of the main body, and a reflecting mirror that does not interfere with the movement of the mirror and does not block the effective incident light. , the other parts are made of opaque material with strong reflectivity to block external light, and a partially transparent weatherproof cover is fitted to the bottom of the main body to ensure dust and moisture resistance. It is housed airtight with a transparent window member that has a magnetic field, and furthermore, an eyepiece system that constitutes a telescope system is arranged along with an objective lens system on the optical axis, and the collected light is emitted as a parallel light beam. For example, in a device that transmits collected light to a desired point using an optical path changer incorporating a dust-proof and moisture-proof mirror, or a hollow optical conduit, etc., the reflecting mirror and the horizontal rotating board are connected to each other. A solar radiant energy collecting and transmitting device characterized by having an automatic solar tracking function that rotates around an axis perpendicular to the . (2) In the solar radiant energy collection and transmission device described in item 1, the solar automatic tracking function operates when the sky is clear, but as soon as it becomes cloudy, the elevation angle of the reflecting mirror returns to and fixes at the 60° position. This device is referred to as U11) or returns to the 90° position.
Fixed (this device is called U12) or 60° to 90°
(This device is referred to as U13) and the automatic solar tracking function is stopped, but when the weather clears again, the automatic solar tracking function is restored. The solar radiant energy collection and transmission device according to item 1. (These device groups are referred to as the U1 series) (3) In the devices U11, U12, and U13 described in item 2, the device U11
In all possible combinations of , U12, and U13, a plurality of these devices are used together, and the solar radiant energy collected by each device is polymerized, or used alone, or in a mixture of polymerization and individual use, characterized by transmitting collected light, respectively;
A solar radiant energy collection and transmission device according to claims 1 and 2. (4) From the device described in paragraph 1, the automatic solar tracking mechanism is removed and the elevation angle of the reflecting mirror is fixed at a 60° position (this device is referred to as U21) or fixed at a 90° position (this device is designated as U22). ) or continuous reciprocating movement between 60° and 90° (this device is referred to as U23) (these devices are referred to as U2).
U1 series device (U11,
U12, U13) and U2 series devices (U21, U2
2, U23), (U2 series) devices U21, U
22. In all possible combinations, except for all combinations between U23 only, multiple devices are used together and the solar radiant energy collected by each is polymerized or singly, or polymerized and singly. The solar radiant energy collecting and transmitting device according to Claims 1 and 2, characterized in that the solar radiation energy collection and transmission device uses a combination of the following and transmits the collected light, respectively. (5) In all possible combinations of devices described in paragraphs 3 and 4, depending on the latitude, season, time, etc., and the purpose of use, the elevation angle of the reflecting mirror etc. Claim 1, characterized in that is switchable;
and the solar radiant energy collection and transmission device according to any one of the second, third, and fourth terms. (6) All device groups described in Section 2, Section 3 and Section 4,
In other words, it is the sum of the U1 series and the U2 series (this is referred to as the U series).In U11, U12, U13, U21, U22, and U23, each of them has a collimator lens group, an objective lens system, and an eyepiece lens. The main parts of the system, consisting only of the reflecting mirror and the collector, were replaced by V11, V12, V13, V21 (this is referred to as the V series).
V22, V23, and all possible combinations in the U series described in paragraphs 3 and 4, and in the corresponding combination of the V series, with these and in the vicinity of the image plane of the respective collectors. , and a separate heat collector in which the heat collecting plate can be placed, and these devices are used in combination to collect the solar radiation energy respectively, polymerized or singly, or polymerized and singly. are used together to provide collected heat, respectively.
The main part of the solar radiant energy collecting and transmitting device is that regardless of the angle of incidence of the incident light, all the incident light beams are received and imaged, and the principal ray of all the effective light beams involved in image formation is is incident perpendicularly to the heat collecting plate, the light collecting ratio is large, the heat collecting efficiency is high, and the solar radiant energy can also be used as a heat collecting device.
As set forth in any of paragraphs 2, 3, 4, and 5,
Solar radiant energy collector. (7) In all U series device groups described in paragraphs 2, 3, and 4, the objective lens system and the eyepiece lens are removed from each of them, and the main parts thereof, the reflecting mirror,
A device group consisting only of a collector and a collimator lens group (this is referred to as the W series) is designated as W11, W12, and W.
13, W21, W22, and W23, and in all possible combinations in the U series described in items 3 and 4, these and the respective collimators in the corresponding combinations in the W series.・By combining a separate heat collector whose heat collecting plate can be positioned at an arbitrary distance from the lens group (as long as the overall size of the device does not become too large), multiple devices such as these can be combined. Solar radiant energy collection and solar radiant energy collection, in which the solar radiant energy collected by each is used in combination with polymerization, or used alone or in combination with each other to provide collected heat.
The main part of the transmission device is that regardless of the incident angle of the incident light, after receiving and forming an image, all the incident light beams are emitted as parallel light beams with concentrated energy by the collimator lens group. Claim 2, characterized in that all the collimated beams that are emitted are perpendicularly incident on the heat collecting plate, so that it can also be used as a solar radiant energy heat collecting device with good heat collecting efficiency. The solar radiant energy heat collection device according to any one of Items 1, 3, 4, and 5. (8) For all U series devices described in paragraphs 2, 3, and 4, a plurality of these devices shall be installed in all possible combinations described in paragraphs 3 and 4. They can be used in combination to polymerize the solar radiant energy collected respectively, or to use them alone or in a mixture of polymerization and singly, and if necessary, to collect the collected solar radiant energy via an optical path changer or hollow light pipe, etc. If the energy is transmitted to a desired point and a heat collector with a heat collecting plate is installed at this point, all incident light beams will become energy-concentrated parallel beams, regardless of the angle of incidence of the incident light. The light is emitted as a group of light beams, and all of these are perpendicularly incident on the heat collection plate, making it a highly efficient heat collector.The solar radiant energy collection and transmission device can also be used as the main part of the solar radiant energy collection device. Claim 1, which is characterized in that:
The solar radiant energy heat collecting device according to any one of Items 2, 3, 4, and 5. (9) A solar radiant energy collection and transmission device that combines a reflecting mirror, a collector, a collimator lens group, an objective lens system, an eyepiece system, and an automatic solar tracking mechanism arranged on a common optical axis. In the method of tracking the height of incident light on the reflecting mirror, when the effective full angle of incidence of the collector is 2w, the angle of incidence (altitude angle) of the incident light is w', and the elevation angle of the reflecting mirror is θ, then 0°. When ≦w′≦60°, θ=45°+(w+w′)÷2 is always satisfied. In other words, at the incident angle w, all reflected light incident on the reflecting mirror always reflects the light toward the collector. so that the incident angle is w, that is, it is always incident as the effective maximum oblique beam of the collector, and in particular, when 2w = 60°, when 0°≦w'≦60°, θ = 60° + w. ÷2 In a solar radiant energy collection and transmission device that tracks the height of incident light on a reflecting mirror so that θ = 90° is always satisfied when 60°≦w≦89°, Solar altitude driving method for automatic solar tracking mechanism. (10) In a solar radiation energy collection and transmission device that combines a reflecting mirror, a collector, a collimator lens group, an objective lens system, an eyepiece system, and an automatic solar tracking mechanism arranged on a common optical axis. In the relationship between the automatic solar tracking mechanism and the collimator lens group, the collimator lens group substrate is fixed to its vertical axis, and the collimator lens group is operated by the automatic solar tracking mechanism. and a reflecting mirror always rotate in synchronization around a vertical axis,
The collimator lens in charge of receiving and transmitting the effective light beam incident at a specific incident angle is always a specific one, and similarly, the light receiving and transmitting efficiency is maintained at a high level and constant. A method for synchronizing an automatic solar tracking mechanism and a collimator lens group in a solar radiant energy collection and transmission device, characterized by: (11) In a solar radiant energy collection and transmission device that combines a reflecting mirror, a collector, a collimator lens group, an objective lens system, an eyepiece system, and an automatic solar tracking mechanism arranged on a common optical axis. When forming an image of incident light, all principal rays of the incident light beam are incident perpendicularly to the image plane, regardless of the angle of incidence, so that the light reception and transmission efficiency is not reduced. A method for controlling the angle of incidence of principal rays of all incident light beams relative to an image plane in a solar radiation energy collection and transmission device, characterized in that the exit side of the collector is made telecentric. (12) A solar radiant energy collection and transmission device that combines a reflecting mirror, a collector, a collimator lens group, an objective lens system, an eyepiece system, and an automatic solar tracking mechanism arranged on a common optical axis. In the configuration of the collection/transmission optical system, a collector whose optical axis is fixed toward the zenith and whose exit side is telecentric;
Direct solar light that enters via the reflection mirror always enters the collector as the maximum effective oblique light beam, and various optical aberrations of the collector are corrected intensively at the maximum effective oblique light angle, and this is received and transmitted. The collimator lens uses a high-order aspherical surface to give a high degree of accuracy to the parallelism of the emitted light beam, thereby always maintaining high and constant light reception and transmission efficiency, especially for direct sunlight. Seshime, collimator・
The telescope system, which uses all the parallel light fluxes emitted from the lens group as incident light, further concentrates the collected solar radiation energy, and at the same time collects all of the components of the solar natural light in a wide wavelength range. A configuration of a collection/transmission optical system in a solar radiant energy collection/transmission device that emits wavelength light as a highly accurate parallel beam, and a method for controlling the emitted parallel beam.
JP61227192A 1986-09-27 1986-09-27 Solar radiation energy collecting and transferring device as well as method and device for collecting heat Pending JPS6383552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61227192A JPS6383552A (en) 1986-09-27 1986-09-27 Solar radiation energy collecting and transferring device as well as method and device for collecting heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61227192A JPS6383552A (en) 1986-09-27 1986-09-27 Solar radiation energy collecting and transferring device as well as method and device for collecting heat

Publications (1)

Publication Number Publication Date
JPS6383552A true JPS6383552A (en) 1988-04-14

Family

ID=16856933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61227192A Pending JPS6383552A (en) 1986-09-27 1986-09-27 Solar radiation energy collecting and transferring device as well as method and device for collecting heat

Country Status (1)

Country Link
JP (1) JPS6383552A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2469300A (en) * 2009-04-08 2010-10-13 David Plaistow Crease Solar collector and rooflight

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664051A (en) * 1979-10-26 1981-06-01 Shigeru Tsukinaga Light admitting apparatus with reflector for rooms
JPS61177419A (en) * 1985-02-01 1986-08-09 Olympus Optical Co Ltd Aperture device of light source device for endoscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664051A (en) * 1979-10-26 1981-06-01 Shigeru Tsukinaga Light admitting apparatus with reflector for rooms
JPS61177419A (en) * 1985-02-01 1986-08-09 Olympus Optical Co Ltd Aperture device of light source device for endoscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2469300A (en) * 2009-04-08 2010-10-13 David Plaistow Crease Solar collector and rooflight
GB2469300B (en) * 2009-04-08 2013-11-13 David Plaistow Crease Universal solar collector and rooflight

Similar Documents

Publication Publication Date Title
US6691701B1 (en) Modular solar radiation collection and distribution system
CN102374477B (en) Sunshine intelligent household-entry system
US4389085A (en) Lighting system utilizing the sunlight
US4329021A (en) Passive solar lighting system
CN101852499B (en) Disc type focusing device capable of adjusting focusing ratio
US4377154A (en) Prismatic tracking insolation
US4411493A (en) Seasonal control skylight glazing panel with passive solar energy switching
CN103077990B (en) Wide-angle concentrated photovoltaic power generating system with wavelength selectivity and method thereof
US20070240705A1 (en) Hybrid Photovoltaic Concentrating System with Corrected Total Reflection Reflectors for Very Large Concentrating Ratios
US5408795A (en) Daylight collection and distribution system
Ahmed et al. Computer vision and photosensor based hybrid control strategy for a two-axis solar tracker-Daylighting application
US20140334007A1 (en) Optical Element Stacks for the Direction of Light
CN104143954B (en) It is a kind of suitable for photovoltaic and the non-track type concentrator of photo-thermal
Malet-Damour et al. Technological review of tubular daylight guide system from 1982 to 2020
US4382434A (en) Prismatic tracking insolation collector
KR101093773B1 (en) Sun Light Condensing Equipment
CN101050890A (en) Sun light collector
CN201867653U (en) Intelligent sunlight entering device
JPS6383552A (en) Solar radiation energy collecting and transferring device as well as method and device for collecting heat
JPS61180217A (en) Sun tracking device
WO2005088209A1 (en) Modular solar radiation collection-distribution system
Ruck et al. The passive daylighting of building interiors
Song et al. Concentration performance evaluation of sunlight concentrators: Fresnel lens, plano-convex lens, and parabolic mirrors for daylighting application
Mori et al. Visible solar-ray supply system for space station
JPS5834801B2 (en) Lighting device that doubles as a solar energy utilization device