JPS6383033A - Production of alkyltetralin - Google Patents

Production of alkyltetralin

Info

Publication number
JPS6383033A
JPS6383033A JP61227757A JP22775786A JPS6383033A JP S6383033 A JPS6383033 A JP S6383033A JP 61227757 A JP61227757 A JP 61227757A JP 22775786 A JP22775786 A JP 22775786A JP S6383033 A JPS6383033 A JP S6383033A
Authority
JP
Japan
Prior art keywords
catalyst
alkyltetralin
hydrogenation
dehydrogenation
methyltetralin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61227757A
Other languages
Japanese (ja)
Other versions
JPH0717531B2 (en
Inventor
Tadao Nishizaki
西崎 忠夫
Ryohei Minami
良平 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumikin Chemical Co Ltd filed Critical Sumikin Chemical Co Ltd
Priority to JP61227757A priority Critical patent/JPH0717531B2/en
Publication of JPS6383033A publication Critical patent/JPS6383033A/en
Publication of JPH0717531B2 publication Critical patent/JPH0717531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To efficiently obtain the titled substance in high yield, by hydrogenating a 2-alkylnaphthalene in the presence of a catalyst to separate 2- or 6- alkyltetralin and dehydrogenating the residual part and circulating the dehydrogenated part through the hydrogenation step. CONSTITUTION:A 2-alkylnaphthalene (alkyl is methyl, ethyl, isopropyl, butyl, etc.) is hydrogenated in the presence of a catalyst. A 2- or 6-alkyltetralin is separated by precise distillation and the residual part is dehydrogenated and circulated through a hydrogenation step. The hydrogenation catalyst and the dehydrogenation catalyst may be same and both reactions are initiated by changing reaction condition. A metal selected from Mo, W, Pt, Pd, Ni and Co is used as the catalyst and particularly a binary catalyst of Mo-Ni, W-Ni, etc., is suitable for nuclear hydrogenation of a raw material containing S. H2 gas formed by the dehydrogenation reaction is preferably used for the hydrogenation step. The resultant substance is used as a synthetic intermediate for high polymers.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、2−アルキルナフタレンを水素化して高収
率で2または6−アルキルテトラリンを製造する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a method for hydrogenating 2-alkylnaphthalene to produce 2- or 6-alkyltetralin in high yield.

[従来の技術] 2−アルキルテトラリンをホルミル化して得られる2−
アルキル−6−ホルミルチトラリンは、脱水素および酸
化することにより容易に2.6−ナフタレンジカルボン
酸を生成する。2,6−ナフタレンジカルボン酸は、有
用な高分子合成原料てリ、例えば、これから導かれるポ
リエステルは、テレフタル酸を原料とするポリエステル
に比へ、機械的強度、耐熱性、寸法安定性など種々の点
で優れたフィルムや各種成型物を与えることが知られて
いる。
[Prior art] 2- obtained by formylating 2-alkyltetralin
Alkyl-6-formyltitraline easily produces 2,6-naphthalene dicarboxylic acid by dehydrogenation and oxidation. 2,6-Naphthalene dicarboxylic acid is a useful raw material for polymer synthesis. For example, polyester derived from it has various properties such as mechanical strength, heat resistance, and dimensional stability compared to polyester made from terephthalic acid. It is known that it provides excellent films and various molded products.

また、6−アルキルテトラリンをホルミル化して得られ
る6−アルキル−7−ホルミルチトラリンは、脱水素お
よび酸化することにより容易に6゜7 (2,3)−ナ
フタレンジカルボン酸に変化させることがでる。6,7
−ナフタレンジカルボン酸は、有用な高分子合成原料に
なり得ると予想されている。
In addition, 6-alkyl-7-formyltitraline obtained by formylating 6-alkyltetraline can be easily converted into 6°7 (2,3)-naphthalene dicarboxylic acid by dehydrogenation and oxidation. . 6,7
- Naphthalene dicarboxylic acid is expected to be a useful raw material for polymer synthesis.

他方、2−アルキルナフタレンを水素化すれば、2−ア
ルキルテトラリンと6−アルキルテトラリンが生成する
ことは広く知られており、触媒あるいは反応条件によっ
て両者の選択率が変化することが報告されている。
On the other hand, it is widely known that hydrogenation of 2-alkylnaphthalene produces 2-alkyltetralin and 6-alkyltetralin, and it has been reported that the selectivity of both changes depending on the catalyst or reaction conditions. .

(ただし、Rはアルキル基) 例えば、2−メチルナフタレンを200°Cで、Pd、
Ni、Ru、Rh、Ir、Pt等の貴金属を含有する触
媒の存在下、還元すれば2−メチルテトラリンが第1表
に示す選択率で得られることが報告されている[Adv
ances in catalysis vol。
(However, R is an alkyl group) For example, when 2-methylnaphthalene is heated at 200°C, Pd,
It has been reported that 2-methyltetralin can be obtained with the selectivity shown in Table 1 by reduction in the presence of a catalyst containing a noble metal such as Ni, Ru, Rh, Ir, or Pt [Adv
ances in catalysis vol.

18、47 (1968) Academic pre
ss 、 New York andLondon  
コ。
18, 47 (1968) Academic pre
ss, New York and London
Ko.

第   l   表        (%)第1表に示
すとおり、2−メチルテトラリンの選択率の最大値は、
Pd/AI□03の場合の65%であるが、他は50%
に達しない。
Table l (%) As shown in Table 1, the maximum selectivity of 2-methyltetralin is:
It is 65% in case of Pd/AI□03, but 50% in other cases.
does not reach.

水素化触媒としては、前記貴金属以外に硫化MO−Ni
をAl2O3に担持せしめた触媒が知られているが、2
−アルキルナフタレンの水素化においては、アルキル基
の付いた環の水素化速度が、アルキル基の付いていない
環の約173であることが報告されており(燃料協会誌
 第63巻第3号 2+1頁)、2−アルキルナフタレ
ンの水素化による2−アルキルテトラリンの選択率とし
ては、25%程度であると予想される。
In addition to the above-mentioned noble metals, sulfurized MO-Ni can be used as a hydrogenation catalyst.
A catalyst in which 2 is supported on Al2O3 is known, but 2
- In the hydrogenation of alkylnaphthalene, it has been reported that the hydrogenation rate of a ring with an alkyl group is about 173 times that of a ring without an alkyl group (Journal of Japan Fuel Association, Vol. 63, No. 3, 2+1 Page), the selectivity of 2-alkyltetralin by hydrogenation of 2-alkylnaphthalene is expected to be about 25%.

前記したとおり通常の2−アルキルナフタレンの水素化
反応では、6−アルキルテトラリンが副生ずるため、2
−アルキルテトラリンを80%以上の収率で製造するこ
とは困難であった。
As mentioned above, in the usual hydrogenation reaction of 2-alkylnaphthalene, 6-alkyltetralin is produced as a by-product.
- It was difficult to produce alkyltetralin with a yield of 80% or more.

また、生成する6−アルキルテトラリンを2−アルキル
テトラリンに転化させ、収率を向上せしめる経済的な方
法も提案されていない。
Furthermore, no economical method has been proposed for converting the produced 6-alkyltetralin into 2-alkyltetralin to improve the yield.

逆に2−アルキルナフタレンの水素化によって、6−ア
ルキルテトラリンを回収時は、2−アルキルテトラリン
が副生ずるため、6−アルキルテトラリンを高収率で回
収することは困難であった。
Conversely, when 6-alkyltetralin is recovered by hydrogenation of 2-alkylnaphthalene, 2-alkyltetralin is produced as a by-product, making it difficult to recover 6-alkyltetralin in a high yield.

[解決しようとする問題点] この発明は、2−アルキルナフタレンの水素化による2
または6−アルキルテトラリンの製造において、高収率
でしかも効率よく2または6−アルキルテトラリンを製
造できる方法を提供するものである。
[Problems to be Solved] This invention solves the problem by hydrogenating 2-alkylnaphthalene.
Another object of the present invention is to provide a method for producing 2- or 6-alkyltetralin with high yield and efficiency in the production of 6-alkyltetralin.

[発明の詳細な 説明者等は、前記2−アルキルナフタレンの水素化によ
り2または6−アルキルテトラリンを高収率でしかも効
率よく製造するについて種々試験研究の結果、副生ずる
6または2−アルキルテトラリンを系外に取り出すと、
結果的に2−アルキルナフタレンに対する2または6−
アルキルテトラリンの収率を低下させるので、副生ずる
6または2−アルキルテトラリンを系外へ取り出すこと
なく、脱水素することにより2−アルキルナフタレンに
転化し、水素化工程へ循環させることにより2または6
−アルキルテトラリンを高収率で製造できることを見い
出しこの発明に到達した。
[Detailers of the invention have conducted various tests and studies to efficiently produce 2- or 6-alkyltetralin in high yield by hydrogenating the 2-alkylnaphthalene, and have found that 6- or 2-alkyltetralin as a by-produced When you take it out of the system,
Consequently, 2 or 6- to 2-alkylnaphthalene
Since this reduces the yield of alkyltetralin, the by-produced 6- or 2-alkyltetralin is not taken out of the system, but is converted into 2-alkylnaphthalene by dehydrogenation and recycled to the hydrogenation step.
-We have discovered that alkyltetralin can be produced in high yield and have arrived at this invention.

すなわちこの発明は、2−メチルナフタレンを触媒の存
在下、水素化して2または6−アルキルテトラリンを製
造する方法において、水素化生成物より2または6−ア
ルキルテトラリンを分離したのち、残部を触媒の存在下
、脱水素処理して水素化工程へ循環することを特徴とす
る2または6−アルキルテトラリンの製造方法である。
That is, this invention provides a method for producing 2- or 6-alkyltetralin by hydrogenating 2-methylnaphthalene in the presence of a catalyst, in which 2- or 6-alkyltetralin is separated from the hydrogenated product, and the remainder is then treated with the catalyst. This is a method for producing 2- or 6-alkyltetralin, characterized by dehydrogenating it in the presence of hydrogen and recycling it to a hydrogenation step.

本発明方法における出発原料である2−アルキルナフタ
レンとしては、2−メチルナフタレン、2−エチルナフ
タレン、2−イソプロピルナフタレン、2−ブチルナフ
タレンを用いる。
As the 2-alkylnaphthalene which is a starting material in the method of the present invention, 2-methylnaphthalene, 2-ethylnaphthalene, 2-isopropylnaphthalene, and 2-butylnaphthalene are used.

本発明で使用する水素化触媒としては、一般的な水素化
触媒であるPt、Pd、Ni、Co、等の貴金属を担持
せしめた触媒や、Mo−Ni、W−Ni、Mo−Co等
の二元系触媒が使用できる。
The hydrogenation catalyst used in the present invention includes catalysts supported with noble metals such as Pt, Pd, Ni, and Co, which are common hydrogenation catalysts, and catalysts supported with noble metals such as Mo-Ni, W-Ni, and Mo-Co. Binary catalysts can be used.

特に二元系触媒は、水素化脱硫触媒として一般的に使用
されており、硫黄分を含有した原料の核水素化に適して
おり、石炭系タール留分より分離した硫黄含有量の多い
2−メチルナフタレンの水素化に好適である。
In particular, binary catalysts are commonly used as hydrodesulfurization catalysts, and are suitable for the nuclear hydrogenation of raw materials containing sulfur. Suitable for hydrogenation of methylnaphthalene.

触媒成分としては、Mo15重社%、Ni3重1%を、
Al2O3あるいはA1203−5 i02の担体に担
持せしめて使用する。
As catalyst components, Mo 15%, Ni 3% 1%,
It is used by being supported on a carrier of Al2O3 or A1203-5 i02.

水素化方法は、特に限定するものではないが、上記触媒
を直径2關、長さ7mm程度の円柱状に成型し、固定床
に充填して原料2−アルキルナフタレンを供給して反応
させる方法や、触媒を粉末にして原料2−アルキルナフ
タレン中に懸濁させ反応させる方法が採用できる。
The hydrogenation method is not particularly limited, but may include a method in which the above-mentioned catalyst is formed into a cylindrical shape with a diameter of about 2 mm and a length of about 7 mm, filled in a fixed bed, and the raw material 2-alkylnaphthalene is supplied and reacted. Alternatively, a method can be adopted in which the catalyst is made into powder and suspended in the raw material 2-alkylnaphthalene for reaction.

反応条件としては、Pt、Pd、Co等の貴金属触媒使
用の場合は、100〜250℃、また、Mo−N i、
Mo−Co等の二元系触媒使用の場合は、250〜40
0℃の温度範囲が適当である。
The reaction conditions are 100 to 250°C when noble metal catalysts such as Pt, Pd, and Co are used, and Mo-Ni,
When using a binary catalyst such as Mo-Co, 250 to 40
A temperature range of 0°C is suitable.

水素圧としては、30〜150J/ c tn’、好ま
しくは50〜100kg/ c m”の範囲である。原
料の触媒層中の滞留時間は1〜2時間で良い。
The hydrogen pressure is in the range of 30 to 150 J/ctn', preferably 50 to 100 kg/cm''.The residence time of the raw material in the catalyst layer may be 1 to 2 hours.

反応装置としては、固定床の場合トリクルペット型反応
装置が、懸濁床の場合は完全混合型のオートクレーブ方
式の反応Haがそれぞれ使用される。
As the reactor, a trickle pet type reactor is used in the case of a fixed bed, and a complete mixing autoclave type reaction Ha is used in the case of a suspended bed.

水素化反応生成物から2または6−アルキルテトラリン
を分離回収する方法としては、精密蒸留が好適である。
Precision distillation is suitable as a method for separating and recovering 2- or 6-alkyltetralin from the hydrogenation reaction product.

2−アルキルテトラリンと6−アルキルテトラリンは、
性質が非常に似かよっているが・沸点差が8℃あり、理
論段数40段程度の蒸留塔によって純度99%以上の2
または6−アルキルテトラリンを分離回収することが可
能である。
2-alkyltetralin and 6-alkyltetralin are
Although their properties are very similar, there is a boiling point difference of 8°C, and a distillation column with about 40 theoretical plates produces 2.
Alternatively, it is possible to separate and recover 6-alkyltetralin.

精密蒸留により2または6−アルキルテトラリンを分離
回収したのち、残部の6または2−アルキルテトラリン
に富んだ留分の脱水素反応は、脱水素触媒として前期水
素化触媒と同一の触媒を使用するのが、同一反応装置で
連続的に脱水素、水素化反応を実施できるので有利であ
る。
After separating and recovering 2- or 6-alkyltetralin by precision distillation, the remaining 6- or 2-alkyltetralin-rich fraction is dehydrogenated using the same catalyst as the previous hydrogenation catalyst as the dehydrogenation catalyst. However, it is advantageous because the dehydrogenation and hydrogenation reactions can be carried out continuously in the same reactor.

反応温度は、250〜450°C1好ましくは300〜
400℃である。反応圧力は、特に限定されないが、脱
水素反応を効率よ〈実施するためには、水素分圧をでき
るだけ低くし、場合によっては窒素雰囲気下で実施する
The reaction temperature is 250 to 450°C, preferably 300 to
The temperature is 400°C. The reaction pressure is not particularly limited, but in order to carry out the dehydrogenation reaction efficiently, the hydrogen partial pressure is made as low as possible, and the reaction is carried out under a nitrogen atmosphere depending on the case.

反応装置としては、固定床、懸濁床いずれでも可能であ
るが、固定床の場合、気相で脱水素する方法も可能であ
る。懸濁床での脱水素は、完全混合型のオートクレーブ
方式の反応Vzeが採用されるが、水素化反応も同様の
方法で実施すれば、種々の利点がある。すなわち、反応
’A+’Wに6または2−アルキルテトラリンに富んだ
留分と粉末触媒を装入したのち、窒素雰囲気下、400
℃で脱水案反応せしめ、そのままで温度を350℃まで
低下させ、原料2−アルキルナフタレンを添加し、水素
を追加正大して水素化反応せしめれば、同一触媒、同一
反応装置で連続的に脱水素、水素化反応を実施すること
が可能である。
The reactor can be either a fixed bed or a suspended bed, but in the case of a fixed bed, a method of dehydrogenation in the gas phase is also possible. For dehydrogenation in a suspended bed, a completely mixed autoclave type reaction Vze is employed, but there are various advantages if the hydrogenation reaction is also carried out in a similar manner. That is, after charging the reaction 'A+'W with a fraction rich in 6 or 2-alkyltetralin and a powdered catalyst, 400
If the dehydration reaction is carried out at ℃, then the temperature is lowered to 350℃, the raw material 2-alkylnaphthalene is added, and hydrogen is added to increase the hydrogenation reaction, continuous dehydrogenation can be achieved using the same catalyst and the same reaction equipment. , it is possible to carry out the hydrogenation reaction.

さらにこの発明方法によれば、脱水素反応によって生成
した水素を水素化反応に利用できる利点がある。
Furthermore, the method of this invention has the advantage that hydrogen produced by the dehydrogenation reaction can be used in the hydrogenation reaction.

[実施例コ 実施例1 500ccのオートクレーブに2−メチルテトラリンl
1g、6−メチルテトラリン47g、2−メチルナフタ
レン43gからなる原料と、硫化水素を用いて硫化した
Mo−N 1−Al203系触媒logを仕込んだのち
、窒素雰囲気下、撹拌しながら370℃に昇温しで脱水
素反応せしめた。
[Example Example 1 2-methyltetralin l was placed in a 500 cc autoclave.
After charging raw materials consisting of 1g of 6-methyltetralin, 47g of 6-methyltetralin, and 43g of 2-methylnaphthalene, and a log of Mo-N 1-Al203 catalyst sulfurized using hydrogen sulfide, the temperature was raised to 370°C with stirring under a nitrogen atmosphere. The dehydrogenation reaction was carried out at warm temperature.

2時間経過後十分に脱水素したことを確認したのぢ、温
度を280℃まで低下させ、水素ガスを圧人してloo
kg/cm’まで昇圧し、2時間水素化反応せしめた。
After 2 hours, it was confirmed that the hydrogen had been sufficiently dehydrogenated.The temperature was lowered to 280℃, and the hydrogen gas was compressed into a loo.
The pressure was increased to kg/cm', and a hydrogenation reaction was carried out for 2 hours.

この間水素圧が一定になるよう水素ガスを補給した。During this time, hydrogen gas was supplied to keep the hydrogen pressure constant.

反応終了後、オートクレーブを室温まで降温し、反応生
成物から触媒を濾過して分離したのち、ガスクロマトグ
ラフィーによりそのM1成を測定したところ、2−メチ
ルテトラリン39g、6−メチルテトラリン47g、2
−メチルナフタレン9gの割合であった。
After the reaction was completed, the temperature of the autoclave was lowered to room temperature, the catalyst was filtered and separated from the reaction product, and its M1 composition was measured by gas chromatography. As a result, 39 g of 2-methyltetralin, 47 g of 6-methyltetralin,
- 9 g of methylnaphthalene.

触媒分離後の反応生成物を、理論段数40段の蒸留装置
を使用し、還流比lOで精密蒸留し、純度99.8%の
2−メチルテトラリン28gを留取した。残部の6−メ
チルテトラリン留分に富む留分67gは、6−メチルテ
トラリン47g、2−メチルテトラリンl1g、2−メ
チルナフタレン9gからなり、2−メチルナフタレン3
4gを追加すれば、そのまま脱水素原料として循環使用
が可能であった。
The reaction product after catalyst separation was precisely distilled at a reflux ratio of 10 using a distillation apparatus having 40 theoretical plates, and 28 g of 2-methyltetralin with a purity of 99.8% was distilled. The remaining 6-methyltetralin-rich fraction (67 g) consists of 47 g of 6-methyltetralin, 1 g of 2-methyltetralin, and 9 g of 2-methylnaphthalene, and 2-methylnaphthalene 3
By adding 4 g, it was possible to recycle it as it is as a dehydrogenation raw material.

このことは、脱水素反応、水素化反応、精密蒸留の組み
合わせにより、2−メチルナフタレンから収率82重層
%の高収率で2−メチルテトラリンをt!A造できるこ
とを示すものである。
This means that 2-methyltetralin can be produced from 2-methylnaphthalene in a high yield of 82% by a combination of dehydrogenation reaction, hydrogenation reaction, and precision distillation. This shows that A construction is possible.

しかも、水素化反応、脱水素反応を同一触媒、同−設備
で行うことができ、原料費、設備費の大巾な低減を図る
ことができることを示すものである。
Moreover, this shows that the hydrogenation reaction and the dehydrogenation reaction can be carried out using the same catalyst and the same equipment, and that the cost of raw materials and equipment can be significantly reduced.

実施例2 2−メチルテトラリン15重量%、6−メチルテトラリ
ン61重量%、2−メチルナフタレン22重位%からな
る原料を、Pt−Al2O3系触媒16ccを充填した
固定床に供給し、常圧下、400℃で脱水素反応せしめ
た。得られた脱水素生成物の組成は、2−メチルテトラ
リンフ重量%、6−メチルテトラリン15重量%、2−
メチルナフタレン75MMt%であった。
Example 2 A raw material consisting of 15% by weight of 2-methyltetralin, 61% by weight of 6-methyltetralin, and 22% by weight of 2-methylnaphthalene was supplied to a fixed bed packed with 16cc of Pt-Al2O3-based catalyst, and under normal pressure, A dehydrogenation reaction was carried out at 400°C. The composition of the obtained dehydrogenation product was as follows: 2-methyltetralin 15% by weight, 2-methyltetralin 15% by weight, 2-methyltetralin 15% by weight
Methylnaphthalene content was 75MMt%.

この脱水素生成物100部に2−メチルナフタレン42
部を添加し、P t−A12o、系触媒を16cc充填
した固寅床に供給し、反応温度200℃、LH5V (
供7tHQi量(1/hr)/充填触媒量(1))2h
rで水素化反応せしめた。
42 parts of 2-methylnaphthalene was added to 100 parts of this dehydrogenation product.
was added to a solid bed packed with 16 cc of Pt-A12o and catalyst, and the reaction temperature was 200°C, LH5V (
Supply 7tHQi amount (1/hr)/Charged catalyst amount (1)) 2h
A hydrogenation reaction was carried out at r.

得られた水素化生成物の組成は、2−メチルテトラリン
36重量%、6−メチルテトラリン44重量%、2−メ
チルナフタレン16重量%であった。
The composition of the obtained hydrogenated product was 36% by weight of 2-methyltetralin, 44% by weight of 6-methyltetralin, and 16% by weight of 2-methylnaphthalene.

この水素化生成物を実施例1と同条件で精密蒸留し、軽
沸物と純度99.8重量%の2−メチルテトラリンを留
取した。残油の組成は、2−メチルテトラリン15重量
%、6−メチルテトラリン61重量%、2−メチルナフ
タレン12重量%で、脱水素原料として循環使用が可能
であった。
This hydrogenated product was subjected to precision distillation under the same conditions as in Example 1, and light boilers and 2-methyltetralin with a purity of 99.8% by weight were distilled off. The composition of the residual oil was 15% by weight of 2-methyltetralin, 61% by weight of 6-methyltetralin, and 12% by weight of 2-methylnaphthalene, and could be recycled as a dehydrogenation raw material.

なお、2−メチルナフタレンに対する2−メチルテトラ
リンの収率は、lサイクル総計で86%であった。
The yield of 2-methyltetralin based on 2-methylnaphthalene was 86% in total for 1 cycle.

実施例3 実施例1で使用した500ccのオートクレーブに6−
メチルテトラリン15g、2−メチルテトラリン35g
、2−メチルナフタレン52gからなる原料と、硫化水
素を用いて硫化したMo−Ni−Al20g系触媒10
gを仕込んだのち、窒素雰囲気下、攪拌しながら370
℃に昇温しで脱水素反応せしめた。2時間経過後十分に
脱水素したことを確認したのち、温度を320℃まで低
下させ、水素ガスを圧入して100kg/cイまで昇圧
し、2時間水素化反応せしめた。この間水素圧が一定に
なるよう水素ガスを補給した。
Example 3 In the 500cc autoclave used in Example 1, 6-
Methyltetralin 15g, 2-methyltetralin 35g
, a raw material consisting of 52 g of 2-methylnaphthalene and 20 g of Mo-Ni-Al catalyst 10 sulfurized using hydrogen sulfide.
After charging 370g of
The temperature was raised to ℃ to cause a dehydrogenation reaction. After confirming that sufficient dehydrogenation had occurred after 2 hours had elapsed, the temperature was lowered to 320° C., hydrogen gas was injected under pressure to increase the pressure to 100 kg/cm2, and a hydrogenation reaction was carried out for 2 hours. During this time, hydrogen gas was supplied to keep the hydrogen pressure constant.

反応終了後、オートクレーブを室温まで降温し、反応生
成物から触媒を濾過して分離したのち、ガスクロマトグ
ラフィーによりその組成を測定したところ、2−メチル
テトラリン35g、6−メチルテトラリン51g、2−
メチルナフタレン9gであった。
After the reaction was completed, the temperature of the autoclave was lowered to room temperature, the catalyst was filtered and separated from the reaction product, and its composition was measured by gas chromatography. The following results were obtained: 35 g of 2-methyltetralin, 51 g of 6-methyltetralin, 2-methyltetralin.
It was 9g of methylnaphthalene.

触媒分離後の反応生成物を、実施例1と同じ蒸留装置を
使用し、還流比10て精密蒸留し、純度99.9%の6
−メチルテトラリン36gを留取した。残りの2−メチ
ルテトラリンに富む留分は、2−メチルテトラリン35
g、6−メチルテトラリン15g、2−メチルナフタレ
ン9gからなり、2−メチルナフタレン43gを追加す
れば、そのまま脱水素原料として循環使用が可能であっ
た。
The reaction product after catalyst separation was precision distilled using the same distillation apparatus as in Example 1 at a reflux ratio of 10 to obtain 6.
- 36 g of methyltetralin was distilled off. The remaining 2-methyltetralin-rich fraction contains 2-methyltetralin 35
g, 15 g of 6-methyltetralin, and 9 g of 2-methylnaphthalene, and by adding 43 g of 2-methylnaphthalene, it was possible to recycle it as it was as a dehydrogenation raw material.

このことは、脱水素反応、水素化反応、精密蒸留を組み
合わせることにより、2−メチルナフタレンから6−メ
チルテトラリンを収率84重量%て製造できることを示
すものである。
This shows that 6-methyltetralin can be produced from 2-methylnaphthalene at a yield of 84% by weight by combining dehydrogenation, hydrogenation, and precision distillation.

Claims (5)

【特許請求の範囲】[Claims] (1)、2−アルキルナフタレンを触媒の存在下、水素
化して2または6−アルキルテトラリンを製造する方法
において、水素化生成物から2または6−アルキルテト
ラリンを分離したのち、残部を脱水素して水素化工程へ
循環することを特徴とするアルキルテトラリンの製造方
法。
(1) In a method for producing 2- or 6-alkyltetralin by hydrogenating 2-alkylnaphthalene in the presence of a catalyst, 2- or 6-alkyltetralin is separated from the hydrogenated product, and then the remainder is dehydrogenated. A method for producing alkyltetralin, characterized in that the alkyltetralin is recycled to a hydrogenation step.
(2)、2−アルキルナフタレンが2−メチルナフタレ
ン、2−エチルナフタレン、2−イソプロピルナフタレ
ン、2−ブチルナフタレンである特許請求の範囲第1項
記載のアルキルテトラリンの製造方法。
(2) The method for producing alkyl tetralin according to claim 1, wherein the 2-alkylnaphthalene is 2-methylnaphthalene, 2-ethylnaphthalene, 2-isopropylnaphthalene, or 2-butylnaphthalene.
(3)、水素化触媒と脱水素触媒が同一であり、反応条
件を変化させることにより両反応を個々に生起させるこ
とを特徴とする特許請求の範囲第1項記載のアルキルテ
トラリンの製造方法。
(3) The method for producing alkyl tetralin according to claim 1, characterized in that the hydrogenation catalyst and the dehydrogenation catalyst are the same, and both reactions are caused individually by changing reaction conditions.
(4)、水素化あるいは脱水素触媒として、Mo、W、
Pt、Pd、Ni、Coから選ばれた金属を少なくとも
一種以上含有した触媒を使用することを特徴とする特許
請求の範囲第1項および第3項記載のアルキルテトラリ
ンの製造方法。
(4) As a hydrogenation or dehydrogenation catalyst, Mo, W,
4. The method for producing alkyl tetralin according to claims 1 and 3, characterized in that a catalyst containing at least one metal selected from Pt, Pd, Ni, and Co is used.
(5)、脱水素反応により生成した水素ガスを水素化工
程に循環使用することを特徴とする特許請求の範囲第1
項および第3〜4項記載のアルキルテトラリンの製造方
法。
(5) Claim 1 characterized in that the hydrogen gas produced by the dehydrogenation reaction is recycled to the hydrogenation process.
5. A method for producing an alkyltetralin according to Items 3 and 4.
JP61227757A 1986-09-25 1986-09-25 Method for producing alkyltetralin Expired - Lifetime JPH0717531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61227757A JPH0717531B2 (en) 1986-09-25 1986-09-25 Method for producing alkyltetralin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61227757A JPH0717531B2 (en) 1986-09-25 1986-09-25 Method for producing alkyltetralin

Publications (2)

Publication Number Publication Date
JPS6383033A true JPS6383033A (en) 1988-04-13
JPH0717531B2 JPH0717531B2 (en) 1995-03-01

Family

ID=16865896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61227757A Expired - Lifetime JPH0717531B2 (en) 1986-09-25 1986-09-25 Method for producing alkyltetralin

Country Status (1)

Country Link
JP (1) JPH0717531B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198469A (en) * 1999-11-05 2001-07-24 Sekisui Chem Co Ltd Metal carrying catalyst for storing/supplying hydrogen and hydrogen storage/supply system using the catalyst
JP2001354601A (en) * 2000-06-14 2001-12-25 Dainippon Ink & Chem Inc Method for manufacturing fluorotetrahydronaphthalene derivative
JP2002003416A (en) * 2000-06-26 2002-01-09 Dainippon Ink & Chem Inc Method for producing 1,2,3,4-tetrahydronaphthalene derivative

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198469A (en) * 1999-11-05 2001-07-24 Sekisui Chem Co Ltd Metal carrying catalyst for storing/supplying hydrogen and hydrogen storage/supply system using the catalyst
JP2001354601A (en) * 2000-06-14 2001-12-25 Dainippon Ink & Chem Inc Method for manufacturing fluorotetrahydronaphthalene derivative
JP2002003416A (en) * 2000-06-26 2002-01-09 Dainippon Ink & Chem Inc Method for producing 1,2,3,4-tetrahydronaphthalene derivative

Also Published As

Publication number Publication date
JPH0717531B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
US2257814A (en) Preparation of omega-amino nitriles
JPH0337545B2 (en)
JP2000514068A (en) Method for producing phthalide
US2082025A (en) Method for the reduction of furfural and furan derivatives
JPH03178943A (en) Production of 1,4-butane diol and tetrahydrofuran
JPS6383033A (en) Production of alkyltetralin
JP2001181223A (en) Method for producing 1, 4-cyclohexanedimethanol
US4024196A (en) Process for the manufacture of hydroquinone
KR101639487B1 (en) Manufacturing apparatus of trans-1,4-cyclohexanedimethanol for simplifying process
US4345089A (en) Recovery of aromatic carboxylic acid or ester thereof from residue fraction of oxidation or esterification reaction mixture
JP6372771B2 (en) Process for producing trans-cyclohexanedicarboxylate bis (2-hydroxyalkyl)
JP2001151716A (en) Method for producing trans-1,4-cyclohexanedimethanol
KR0131203B1 (en) Process for the production of ñò-butyrolactone
JPS5858334B2 (en) resorcinnoseiho
US3428668A (en) Process for the preparation of 1,4-cyclohexane dicarboxylic acid dialkyl esters
JPH02504510A (en) Synthesis of phenylhydroquinone
US3987112A (en) Process for manufacture of catechol
JP3579923B2 (en) Method for producing alicyclic diketone compound
US4792631A (en) Preparation of di-tert.-butylethylenediamine
US5616730A (en) Process for preparing succinic anhydride
US3890397A (en) Process for the preparation of 2-naphthole from the corresponding tetralin-hydroperoxide and 1,2-dialin
JPH10167997A (en) Production of 2-methylnaphthalene
US3875235A (en) Process for the preparation of tertiary amines of high purity
JPH01294645A (en) Production of aromatic polyhydric alcohol
JPH0669991B2 (en) Process for producing 3-aminomethyl-3,5,5-trimethylcyclohexylamine