JPS6382640A - Adjustment of magnetic resonance imaging apparatus - Google Patents

Adjustment of magnetic resonance imaging apparatus

Info

Publication number
JPS6382640A
JPS6382640A JP61228235A JP22823586A JPS6382640A JP S6382640 A JPS6382640 A JP S6382640A JP 61228235 A JP61228235 A JP 61228235A JP 22823586 A JP22823586 A JP 22823586A JP S6382640 A JPS6382640 A JP S6382640A
Authority
JP
Japan
Prior art keywords
adjustment
slice
magnetic field
magnetic resonance
resonance imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61228235A
Other languages
Japanese (ja)
Inventor
上山 明英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61228235A priority Critical patent/JPS6382640A/en
Priority to US07/101,400 priority patent/US4767992A/en
Publication of JPS6382640A publication Critical patent/JPS6382640A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/483NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
    • G01R33/4833NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy using spatially selective excitation of the volume of interest, e.g. selecting non-orthogonal or inclined slices
    • G01R33/4835NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy using spatially selective excitation of the volume of interest, e.g. selecting non-orthogonal or inclined slices of multiple slices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/446Multifrequency selective RF pulses, e.g. multinuclear acquisition mode

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、静磁場内に配置した被検体にRF磁場を印加
することによって磁場共鳴現象を発生させ、RF磁場解
除後に被検体の原子核から発生する磁場共鳴信号を検出
する磁気共鳴イメージング装置の調整方法に関するもの
である。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention generates a magnetic field resonance phenomenon by applying an RF magnetic field to a subject placed in a static magnetic field, and after the RF magnetic field is released. The present invention relates to a method for adjusting a magnetic resonance imaging apparatus that detects magnetic field resonance signals generated from atomic nuclei of a subject.

(従来の技術) 磁気共鳴イメージング装置(以下MRI装置と称する)
は、被検体の所望部位に−様な静磁場を印加し、この静
磁場と直角方向にRF磁場を形成する送信用RFコイル
によって、断層像を得る特定のスライス部分のみに磁場
共鳴現象を生じさせ、さらにRF磁場の解除後に原子核
から発生する磁場共鳴信号(以下MR倍信号称する)を
受信用RFコイルによって検出するようにしたものであ
る。さらに、静磁場にX′軸方向(X軸からθ。
(Prior art) Magnetic resonance imaging device (hereinafter referred to as MRI device)
The method applies a -like static magnetic field to a desired part of the subject, and uses a transmitting RF coil to form an RF magnetic field perpendicular to this static magnetic field, producing a magnetic field resonance phenomenon only in a specific slice part from which a tomographic image is obtained. Furthermore, after the RF magnetic field is released, a magnetic field resonance signal (hereinafter referred to as MR multiplied signal) generated from the atomic nucleus is detected by a receiving RF coil. Furthermore, the static magnetic field is applied in the X' axis direction (θ from the X axis.

回転した座標系)に対して直線的な傾斜を持つ線型磁場
勾配を作用させて合成MR倍信号得、この信号をフリー
エ変換することによりスライス部分のX′軸をX−Y平
面内で回転させX−Y平面内の各方向への投影情報を得
てCT像を形成することが行われる。
A composite MR multiplied signal is obtained by applying a linear magnetic field gradient with a linear gradient to the rotated coordinate system (rotated coordinate system), and this signal is subjected to Freeier transformation to rotate the X' axis of the slice part within the X-Y plane. A CT image is formed by obtaining projection information in each direction within the XY plane.

このようなMRI装置においては、被検体のMR像形成
のためのデータ収集前に、装置調整のためのプリスキャ
ンが行われる。装置調整項目としては、磁場ロック、自
動チューニング、自動パワー調整、自動ゲイン調整など
が挙げられる。
In such an MRI apparatus, a prescan for apparatus adjustment is performed before data collection for forming an MR image of a subject. Device adjustment items include magnetic field lock, automatic tuning, automatic power adjustment, and automatic gain adjustment.

ここに、磁場ロック、自動チューニング、自動パワー調
整は、M R(8号のピーク値が最大となるように静磁
場強度、受信周波数、送信パルス電力をそれぞれ調整す
ることにより行われ、また、自動ゲイン調整は最適受信
レベルとなるように受信系の利得を調整することにより
行われる。
Here, magnetic field lock, automatic tuning, and automatic power adjustment are performed by adjusting the static magnetic field strength, receiving frequency, and transmitting pulse power, respectively, so that the peak value of MR (No. 8) is maximized. Gain adjustment is performed by adjusting the gain of the reception system so as to obtain the optimum reception level.

第3図は、磁場ロック、自動チューニング、自動パワー
調整、自動ゲイン調整を行う場合の従来のプリスキャン
の説明図であり、図中、■乃至n回はそれぞれ1回の励
起を示し、TRは各励起の反覆時間を示している。同図
より明らかなように従来のプリスキャンは、磁場ロック
、自動チューニング、自動パワー調整、自動ゲイン調整
等、各調整項目毎に逐次実施している。このため、上記
4項目の自動調整におけるブリスキャンに要する時間T
7は、 Tr = (n x’l’、l) X 4 = 4n 
TRとなり、n=16回、TR= 1secとすれば、
64secにもなる。
FIG. 3 is an explanatory diagram of the conventional prescan when performing magnetic field lock, automatic tuning, automatic power adjustment, and automatic gain adjustment. In the figure, ■ to n times each indicate one excitation, and TR is Repetition times for each excitation are shown. As is clear from the figure, the conventional prescan is performed sequentially for each adjustment item, such as magnetic field lock, automatic tuning, automatic power adjustment, automatic gain adjustment, etc. Therefore, the time required for bliscan in automatic adjustment of the above four items is T
7 is Tr = (n x'l', l) X 4 = 4n
TR, and if n = 16 times and TR = 1 sec, then
It is also 64 seconds.

周知のようにMRI装置における撮影時間は、他の撮影
装置例えばX線CT装置等に比して長くならざるを得す
、このため被検体たる患者の不安感を少しでも軽減する
関係上、プリスキャンに要する時間は極力短くずべきで
ある。
As is well known, the imaging time of an MRI device is inevitably longer than that of other imaging devices such as an X-ray CT device. The time required for scanning should be kept as short as possible.

(発明が解決しようとする問題点) 上述したようにMRI装置の従来の調整方法においては
、ブリスキャン時間が長くなるという問題点を有してい
る。
(Problems to be Solved by the Invention) As described above, the conventional adjustment method for an MRI apparatus has the problem that the briscan time becomes long.

この発明は上記事情に鑑みて成されたものであり、その
目的とするところは、装置調整のためのプリスキャンの
時間短縮を図った調整方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an adjustment method that reduces the time required for pre-scanning for device adjustment.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、被検体に送信されるRFパルスの搬送周波数
を変えることで該被検体のマルチスライスを実行し、各
スライス毎に異なる調整を行うことで複数種類の調整を
並列的に実行するようにしたものである。
(Means for Solving the Problems) The present invention executes multi-slices of a subject by changing the carrier frequency of RF pulses transmitted to the subject, and performs different adjustments for each slice. This allows different types of adjustments to be executed in parallel.

(作 用) RFパルス(励起パルス)の搬送周波数ω。(for production) Carrier frequency ω of the RF pulse (excitation pulse).

を少しづつ変えることにより、例えば第2図に示すよう
に被検体Pのスライス位置を体軸方向に移動できるのは
既知の事実であり、これをマルチスライスと称している
。本発明はこのマルチスライスの原理を積極的に利用し
たものであり、マルチスライスのスライス毎に別種の調
整項目を割り当てることにより複数種類の調整を並列化
し、これにより装置調整におけるブリスキャン全体の時
間短縮を図っている。
It is a known fact that by changing little by little, the slice position of the subject P can be moved in the body axis direction as shown in FIG. 2, for example, and this is called multi-slice. The present invention makes active use of this multi-slice principle, and parallelizes multiple types of adjustment by assigning different types of adjustment items to each slice of the multi-slice, thereby reducing the overall Briscan time in device adjustment. We are trying to shorten the time.

(実施例) 以下、本発明を実施例により具体的に説明する。(Example) Hereinafter, the present invention will be specifically explained with reference to Examples.

第1図は本実施例におけるプリスキャンの説明図であり
、磁場ロック、自動チューニング、自動パワー調整、自
動ゲイン調整を行う場合を示している。同図において1
乃至nはマルチスライスにおける各スライス毎の1回の
励起を示し、’r、Iは各励起の反覆時間を示している
。同図より明らかなように本実施例では、第1スライス
乃至第4スライスにおいてそれぞれn回(nは正の整数
)励起され、各スライス毎に磁場ロック、自動チューニ
ング、自動パワー調整、自動ゲイン調整が割り当てられ
、各調整が並列的に行われるようになっ一ζいる。これ
を時経列的に説明すると次のようになる。
FIG. 1 is an explanatory diagram of pre-scanning in this embodiment, and shows the case where magnetic field lock, automatic tuning, automatic power adjustment, and automatic gain adjustment are performed. In the same figure, 1
thru n indicate one excitation for each slice in the multi-slice, and 'r and I indicate the repetition time of each excitation. As is clear from the figure, in this example, each slice is excited n times (n is a positive integer) from the first slice to the fourth slice, and magnetic field lock, automatic tuning, automatic power adjustment, and automatic gain adjustment are performed for each slice. are allocated, and each adjustment is performed in parallel. This can be explained chronologically as follows.

すなわち、RFパルスの搬送周波数ω。を少しづつ変化
させることにより第1スライス、第2スライス、第3ス
ライス、第4スライスの順でそれぞれ1回目の励起が行
われ、これにより得られたデータは磁場ロック、自動チ
ューニング、自動パワー調整、自動ゲイン調整のために
それぞれ用いられる。
That is, the carrier frequency ω of the RF pulse. The first excitation is performed in the order of the first slice, the second slice, the third slice, and the fourth slice by changing the , respectively used for automatic gain adjustment.

第4スライスにおける1回目の励起及びデータ収集を終
了した後、再び前記と同様に第1乃至第4スライスの順
で2回目の励起が行われ、これにより得られたデータが
上記各調整に用いられる。
After completing the first excitation and data collection in the fourth slice, a second excitation is performed again in the order of the first to fourth slices in the same manner as above, and the data obtained thereby is used for each adjustment described above. It will be done.

同様に第1乃至第4スライスの順で3回目乃至n回目の
励起が行われ、第4スライスにおけるn回目の励起及び
データ収集を終了した時点で木実施例におけるプリスキ
ャンを終了する。
Similarly, the third to nth excitations are performed in the order of the first to fourth slices, and the prescan in the tree embodiment ends when the nth excitation and data collection in the fourth slice are completed.

ここで、上記各調整は各スライス毎のn回の励起によっ
て得られたデータに基づいて行われる。
Here, each of the above adjustments is performed based on data obtained by excitation n times for each slice.

すなわち、磁場ロックは、第1スライスにおけるn回の
励起毎に静磁場強度を変え、MR倍信号ピーク値が最大
となるように静磁場強度を自動調整することにより行わ
れ、自動チューニングは、第2スライスにおけるn回の
励起毎に受信回路における同調コンデンサの静電容量を
変え、MR倍信号ピーク値が最大となるように同調コン
デンサを自動調整することにより行われ、自動パワー調
整は、第3スライスにおけるn回の励起毎に送信パルス
電力を変え、MR倍信号ピーク値が最大となるように送
信コイルの供給電力を自動調整することにより行われ、
自動ゲイン調整は、第4スライスにおけるn回の励起毎
の受信レベルより、受信系における増幅器の最適な増幅
度を自動設定することにより行われる。
That is, magnetic field locking is performed by changing the static magnetic field strength every n excitations in the first slice and automatically adjusting the static magnetic field strength so that the MR multiplied signal peak value is maximized. The capacitance of the tuning capacitor in the receiver circuit is changed every n excitations in two slices, and the tuning capacitor is automatically adjusted so that the peak value of the MR multiplied signal is maximized. This is done by changing the transmission pulse power every n excitations in a slice and automatically adjusting the power supplied to the transmission coil so that the MR multiplied signal peak value is maximized.
The automatic gain adjustment is performed by automatically setting the optimum amplification degree of the amplifier in the reception system based on the reception level every n times of excitation in the fourth slice.

上記調整のためのプリスキャンに要する時間T、は、は
ぼnxTRとなり、n=16回、TR=1secとすれ
ば、15secとなる。この値は従来に比して1/4と
なる。
The time T required for the prescan for the above adjustment is approximately nxTR, and if n=16 times and TR=1 sec, then it is 15 sec. This value is 1/4 of the conventional value.

このように本実施例にあっては、マルチスライスの原理
を利用し、スライス毎に別種の調整項目を割り当てるこ
とにより複数種類の調整を並列化するようにしたもので
、装置調整のためのプリスキャンの時間短縮を図ること
ができる。
In this way, this embodiment utilizes the principle of multi-slice to parallelize multiple types of adjustment by assigning different types of adjustment items to each slice. Scanning time can be shortened.

以上本発明の一実施例について説明したが、本発明は上
記実施例に限定されるものではなく、種種の変形実施を
包含するのはいうまでもない。
Although one embodiment of the present invention has been described above, it goes without saying that the present invention is not limited to the above-described embodiment and includes various modifications.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、装置調整のための
プリスキャンの時間短縮を図った調整方法を従供するこ
とができる。
As described in detail above, according to the present invention, it is possible to provide an adjustment method that reduces the time required for pre-scanning for device adjustment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明図、第2図はマルチス
ライスの説明図、第3図は従来例の説明図である。 (上ス下#色)
FIG. 1 is an explanatory diagram of one embodiment of the present invention, FIG. 2 is an explanatory diagram of multi-slice, and FIG. 3 is an explanatory diagram of a conventional example. (Top and bottom #color)

Claims (1)

【特許請求の範囲】[Claims] 被検体の磁気共鳴像を形成する磁気共鳴イメージング装
置の調整方法において、該被検体に送信されるRFパル
スの搬送周波数を変えることで該被検体のマルチスライ
スを実行し、各スライス毎に異なる調整を行うことで複
数種類の調整を並列的に実行することを特徴とする磁気
共鳴イメージング装置の調整方法。
In a method for adjusting a magnetic resonance imaging apparatus that forms a magnetic resonance image of a subject, multi-slices of the subject are performed by changing the carrier frequency of RF pulses transmitted to the subject, and different adjustments are made for each slice. A method for adjusting a magnetic resonance imaging apparatus, characterized in that a plurality of types of adjustments are executed in parallel by performing the following steps.
JP61228235A 1986-09-29 1986-09-29 Adjustment of magnetic resonance imaging apparatus Pending JPS6382640A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61228235A JPS6382640A (en) 1986-09-29 1986-09-29 Adjustment of magnetic resonance imaging apparatus
US07/101,400 US4767992A (en) 1986-09-29 1987-09-28 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61228235A JPS6382640A (en) 1986-09-29 1986-09-29 Adjustment of magnetic resonance imaging apparatus

Publications (1)

Publication Number Publication Date
JPS6382640A true JPS6382640A (en) 1988-04-13

Family

ID=16873282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61228235A Pending JPS6382640A (en) 1986-09-29 1986-09-29 Adjustment of magnetic resonance imaging apparatus

Country Status (2)

Country Link
US (1) US4767992A (en)
JP (1) JPS6382640A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272702A (en) * 2001-03-16 2002-09-24 Hitachi Medical Corp Magnetic resonance imaging system
WO2010038847A1 (en) * 2008-10-03 2010-04-08 株式会社 日立メディコ Magnetic resonance imaging apparatus and rf pulse adjustment method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2612737B2 (en) * 1988-02-25 1997-05-21 株式会社日立製作所 MR dynamic imaging method
US5422572A (en) * 1993-08-06 1995-06-06 Toshiba America Mri, Inc. Method and apparatus for substantially simultaneously exciting a plurality of slices in NMR imaging
JP3802891B2 (en) * 2003-07-02 2006-07-26 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Gain adjusting method and magnetic resonance imaging apparatus
US20230194639A1 (en) * 2021-12-16 2023-06-22 Siemens Healthcare Gmbh Method for acquiring a magnetic resonance image dataset of a subject and magnetic resonance imaging system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318043A (en) * 1978-07-20 1982-03-02 The Regents Of The University Of California Method and apparatus for rapid NMR imaging of nuclear densities within an object
US4599565A (en) * 1981-12-15 1986-07-08 The Regents Of The University Of Calif. Method and apparatus for rapid NMR imaging using multi-dimensional reconstruction techniques
US4685468A (en) * 1983-03-18 1987-08-11 Albert Macovski NMR imaging system using field compensation
DE3504734C2 (en) * 1985-02-12 1998-12-10 Max Planck Gesellschaft Method and device for recording spin resonance data
US4710717A (en) * 1986-12-29 1987-12-01 General Electric Company Method for fast scan cine NMR imaging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272702A (en) * 2001-03-16 2002-09-24 Hitachi Medical Corp Magnetic resonance imaging system
WO2010038847A1 (en) * 2008-10-03 2010-04-08 株式会社 日立メディコ Magnetic resonance imaging apparatus and rf pulse adjustment method

Also Published As

Publication number Publication date
US4767992A (en) 1988-08-30

Similar Documents

Publication Publication Date Title
US4675608A (en) Magnetic resonance imaging system
US5500596A (en) Local coil array for magnetic resonance imaging of the lower extremities
US4949042A (en) Magnetic resonance imaging system
DE102005018997A1 (en) Image generation method and MRI device
US6498485B2 (en) Method and apparatus for preventing artifacts due to magnetic field outside of field of view
JPS6382640A (en) Adjustment of magnetic resonance imaging apparatus
US4799014A (en) Method of setting conditions of high-frequency magnetic field
US5079504A (en) Magnetic resonance imaging system
US6329821B1 (en) Method and apparatus to compensate for image artifacts caused by magnet vibration in an MR imaging system
US4757260A (en) Method of producing nuclear magnetic resonance of an object and an apparatus therefor
US5353794A (en) Magnetic resonance imaging method and system capable of measuring short "T2" signal components
US7307419B2 (en) Method and system for spatial-spectral excitation by parallel RF transmission
US4868502A (en) Magnetic resonance imaging method and apparatus therefor
US4760338A (en) Magnetic resonance imaging apparatus and method utilizing a composite RF pulse
JPS6329633A (en) Magnetic resonance imaging apparatus
US4672319A (en) Multiple pulse excitation in NMR imaging
JPS63270036A (en) Magnetic resonance imaging apparatus
US5304928A (en) Method of magnetic resonance imaging
JPH01221153A (en) Mri device
US5422577A (en) Method and apparatus for producing slicing planes for nuclear magnetic resonance imaging with desired thickness
JPS63122440A (en) Magnetic resonance imaging apparatus
US5164671A (en) Hidden reconstruction
JPH01121043A (en) Magnetic resonance imaging apparatus
JP4400957B2 (en) Magnetic resonance imaging system
JPS63154170A (en) Magnetic resonance imaging apparatus