JPS6382484A - Photosensitive body - Google Patents

Photosensitive body

Info

Publication number
JPS6382484A
JPS6382484A JP22945686A JP22945686A JPS6382484A JP S6382484 A JPS6382484 A JP S6382484A JP 22945686 A JP22945686 A JP 22945686A JP 22945686 A JP22945686 A JP 22945686A JP S6382484 A JPS6382484 A JP S6382484A
Authority
JP
Japan
Prior art keywords
atoms
film
gas
layer
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22945686A
Other languages
Japanese (ja)
Inventor
Shuji Iino
修司 飯野
Mochikiyo Osawa
大澤 以清
Hideo Yasutomi
英雄 保富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP22945686A priority Critical patent/JPS6382484A/en
Priority to EP87113881A priority patent/EP0261652A3/en
Publication of JPS6382484A publication Critical patent/JPS6382484A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08285Carbon-based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain stable and excellent photoconductive characteristics by using a hydrogenated amorphous carbon film contg. Si atoms or Ge atoms as an electric charge transfer layer and hydrogenated amorphous SiGe film contg. specific atoms as an electric charge generating layer. CONSTITUTION:The photosensitive body is constituted by laminating the charge transfer layer 2 and the charge generating layer 3 successively on a conductive substrate 1. The layer 2 in this constitution consists of the hydrogenated amorphous (a-)carbon film contg. at least either of the Si atoms or Ge atoms. The layer 3 consists of the hydrogenated a-SiGe film contg. carbon atoms and contg. at least either of the phosphorus atoms or boron atoms or the similar fluorinated a-SiGe film. Adequate transferability is thereby provided to the layer 2 and further, excellent electrophotographic performances such as electrical chargeability, durability, weatherability, and environmental staining resistance are provided thereto. The layer 3 is extremely thin in film thickness and has the excellent photoconductivity to visible light or wavelength near semiconductor laser light.

Description

【発明の詳細な説明】 崖によΩ刊■分野 本発明は、電荷発生層と電荷輸送層とを有する感光体に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a photoreceptor having a charge generation layer and a charge transport layer.

従来技術 カールソン法の発明以来、電子写真の応用分野は著しい
発展を続け、電子写真用感光体にも様々な材料が開発さ
れ実用化きれてきた。
BACKGROUND OF THE INVENTION Since the invention of the Carlson method, the application field of electrophotography has continued to make remarkable progress, and various materials have been developed and put into practical use for electrophotographic photoreceptors.

従来用いられて来た電子写真感光体材料の主なものとし
ては、非晶質セレン、セレン砒素、セレンテルル、硫化
カドミウム、酸化亜鉛、アモルファスシリコン等の無機
物質、ポリビニルカルバゾール、金属フタロシアニン、
ジスアゾ顔料、トリスアゾ顔料、ペリレン顔料、トリフ
ェニルメタン化合物、トリフェニルアミン化合物、ヒド
ラゾン化合物、スチリル化合物、ピラゾリン化合物、オ
キサゾール化合物、オキサジアゾール化合物、等の有機
物質が挙げられる。また、その構成形態としては、これ
らの物質を単体で用いる単層型構成、結着材中に分散さ
せて用いるバインダー型構成、機能別に電荷発生層と電
荷輸送層とを設ける81層型構成等が挙げられる。
The main electrophotographic photoreceptor materials conventionally used include inorganic substances such as amorphous selenium, selenium arsenide, selenium telluride, cadmium sulfide, zinc oxide, amorphous silicon, polyvinyl carbazole, metal phthalocyanine,
Examples include organic substances such as disazo pigments, trisazo pigments, perylene pigments, triphenylmethane compounds, triphenylamine compounds, hydrazone compounds, styryl compounds, pyrazoline compounds, oxazole compounds, and oxadiazole compounds. In addition, its structural forms include a single-layer structure in which these substances are used alone, a binder-type structure in which they are dispersed in a binder, and an 81-layer structure in which a charge generation layer and a charge transport layer are provided for each function. can be mentioned.

しかしながら、従来用いられて来た電子写真感光体材料
にはそれぞれ欠点があった。その一つとして人体への有
害性が挙げられ、るが、前述したアモルフガスシリコン
を除く無械物質において巳よ、何れも好ましくない性質
を持つものであった。また、電子写真感光体が実際に複
写機内で用いられるためには、帯電、露光、現像、転写
、除電、清掃等の苛酷な環境条件に曝された場合におい
ても、常に安定な性能を維持している必要があるが、前
述した有機物質においては、何れも耐久性に乏しく、性
能面での不安定要素が多かった。
However, the electrophotographic photoreceptor materials conventionally used each have drawbacks. One of these is its toxicity to the human body, but all of the inorganic substances, except for the amorphous gas silicon mentioned above, have unfavorable properties. In addition, in order for an electrophotographic photoreceptor to be actually used in a copying machine, it must always maintain stable performance even when exposed to harsh environmental conditions such as charging, exposure, development, transfer, neutralization, and cleaning. However, all of the organic substances mentioned above have poor durability and many unstable factors in terms of performance.

このような欠点を解消すべく、近年、有害性を改善し耐
久性に富んだ材料として、グロー放電法により生成きれ
るアモルファスシリコンの電子写真感光体への応用が進
んで来ている。しかし、アモルファスシリコンは、原料
としてシランガスを多量に必要とする反面、高価なガス
であることから、出来上がった電子写真感光体も従来の
感光体に比べ大幅に高価なものとなる。また、成膜速度
が遅く、成膜時間の増大に伴い爆発性を有するシラン未
分解生成物を粉、字状に発生する等、生産上の不都合も
多い。また、この粉塵が製造時に感光層中に混入した場
合には、画像品質に著しく悪影響を及ぼす。ざらに、ア
モルファスシリコンは、元来、比誘電率が高いため帯電
性能が低く、複写機内で所定の表面電位に帯電するため
に−よ膜厚を厚くする必要があり、高価なアモルファス
シリコン膜を長時間堆積させなくてはならない。
In order to eliminate such drawbacks, in recent years, amorphous silicon, which can be produced by a glow discharge method, has been increasingly applied to electrophotographic photoreceptors as a material with improved toxicity and high durability. However, while amorphous silicon requires a large amount of silane gas as a raw material, it is an expensive gas, so the resulting electrophotographic photoreceptor is also significantly more expensive than a conventional photoreceptor. In addition, the film formation rate is slow, and as the film formation time increases, explosive silane undecomposed products are generated in the form of powder, and there are many other inconveniences in production. Furthermore, if this dust gets mixed into the photosensitive layer during manufacturing, it will have a significant negative effect on image quality. Generally speaking, amorphous silicon originally has a high dielectric constant and therefore has low charging performance, and in order to charge it to a predetermined surface potential in a copying machine, it is necessary to increase the thickness of the film, making it difficult to use an expensive amorphous silicon film. It must be allowed to accumulate for a long time.

ところでアモルファスカーボン膜自体は、プラズマ有機
重合膜として古くより知られており、例えばジエン(M
、5hen)及びベル(A、T。
By the way, the amorphous carbon film itself has been known for a long time as a plasma organic polymerized film, for example, diene (M
, 5hen) and Bell (A, T.

Be1l)により、1973年発行ののジャーナル・オ
ブ・アプライド・ポリマー・サイエンス(Journa
 1  of  App l ied  P。
Journal of Applied Polymer Science (Journa Be1l), published in 1973.
1 of Applied P.

lymer  Sc 1ence)第17巻の第885
頁乃至第892頁において、あらゆる有機化合物のガス
から作製され得る事が、また、同著者により、1979
年のアメリカンケミカルソサエテ−r   (Amer
ican  ChemicalSociety)発行に
よるプラズマボリマライゼーション(Plasma  
Polymerization)の中でもその成膜性が
論じられている。
lymer Sc 1ence) Volume 17, No. 885
Pages 892 to 892, it is also reported by the same author in 1979 that any organic compound can be prepared from gas.
American Chemical Society (Amer)
ican Chemical Society)
Polymerization), its film formability is also discussed.

しかしながら従来の方法で作製したプラズマ有機重合膜
は絶縁性を前提とした用途に限って用いられ、即ちそれ
らの膜は通常のポリエチレン膜の如く1016Ωcm程
度の比抵抗を有する絶縁膜と考えられ、或は、少なくと
もそのような膜であるとの認識のもとに用いられていた
。実際に電子写真感光体への用途にしても同様の認識か
ら、保護層、接着層、ブロッキング層もしくは絶縁層に
限られており、所謂アンダーコート層もしくはオーバー
コート層としてしか用いられていなかった。
However, plasma organic polymer films prepared by conventional methods are used only for applications that assume insulation properties, that is, they are considered to be insulating films with a specific resistance of about 1016 Ωcm, like ordinary polyethylene films, or was used with the understanding that it was at least such a membrane. Due to the same recognition, its actual use in electrophotographic photoreceptors has been limited to protective layers, adhesive layers, blocking layers, or insulating layers, and has only been used as so-called undercoat layers or overcoat layers.

例えば、特開昭59−28161号公報には、基板上に
ブロッキング層及び接着層としてプラズマ重合された網
目構造を有する高分子層を設け、その上にアモルファス
シリコン層を設けた感光体が開示きれている。特開昭5
9−38753号公報には、基板上にブロッキング層及
び接着層として酸素と窒素と炭化水素の混合ガスから生
成きれる1013〜1015Ωcmの高抵抗のプラズマ
重合膜を10人〜100人設けた上にアモルファスシリ
コン層を設けた感光体が開示されている。特開昭59−
136742号公報には、アルミ基板上に設けたアモル
ファスシリコン層内へ光照射時にアルミ原子が拡散する
のを防止するための保護層として1〜5μm程度の炭素
膜を基板表面に形成せしめた感光体が開示されている。
For example, JP-A-59-28161 discloses a photoreceptor in which a plasma-polymerized polymer layer having a network structure is provided on a substrate as a blocking layer and an adhesive layer, and an amorphous silicon layer is provided on the polymer layer. ing. Japanese Patent Application Publication No. 5
Publication No. 9-38753 discloses that 10 to 100 plasma polymerized films with high resistance of 1013 to 1015 Ωcm, which can be generated from a mixed gas of oxygen, nitrogen, and hydrocarbons, are formed on a substrate as a blocking layer and an adhesive layer, and then an amorphous film is formed. A photoreceptor provided with a silicon layer is disclosed. Unexamined Japanese Patent Publication 1987-
Publication No. 136742 discloses a photoreceptor in which a carbon film of approximately 1 to 5 μm is formed on the surface of the substrate as a protective layer to prevent aluminum atoms from diffusing into the amorphous silicon layer provided on the aluminum substrate during light irradiation. is disclosed.

特開昭60−63541号公報には、アルミ基板とその
上に設けたアモルファスシリコン層との接着性を改善す
るために、接着層として200人〜2μmのダイヤモン
ド状炭素膜を中間に設けた感光体が開示され、残留電荷
の面から膜厚は2μm以下が好ましいとされている。
Japanese Unexamined Patent Publication No. 60-63541 discloses a photosensitive material in which a diamond-like carbon film with a thickness of 200 to 2 μm is provided in the middle as an adhesive layer in order to improve the adhesion between an aluminum substrate and an amorphous silicon layer provided thereon. It is said that the film thickness is preferably 2 μm or less in terms of residual charge.

これらの開示は、何れも基板とアモルファスシリコン層
との間に、所謂アンダーコート層を設けた発明であり、
電荷輸送性についての開示は全くなく、また、a−Si
の有する前記した本質的問題を解決するものではない。
All of these disclosures are inventions in which a so-called undercoat layer is provided between the substrate and the amorphous silicon layer,
There is no disclosure regarding charge transport properties, and a-Si
However, it does not solve the above-mentioned essential problems.

また、例えば、特開昭50−20728号公報には、ポ
リビニルカルバゾール−セレン系感光体の表面に保護層
としてグロー放電重合によるポリマー膜を0.1〜1μ
m設けた感光体が開示きれている。特開昭59−214
859号公報には、アモルファスシリコン感光体の表面
に保護層としてスチレンやアセチレン等の有機炭化水累
モノマーをプラズマ重合させて5μm程度の膜を形成き
せる技術が開示きれている。特開昭60−61761号
公報には、表面保護層として、500人〜2μmのダイ
ヤモンド状炭素薄膜を設けた感光体が開示きれ、透光性
の面から膜厚は2μm以下が好ましいとされてている。
For example, Japanese Patent Application Laid-Open No. 50-20728 discloses that a polymer film of 0.1 to 1 μm formed by glow discharge polymerization is applied as a protective layer on the surface of a polyvinylcarbazole-selenium photoreceptor.
The photoreceptor provided with m is completely exposed. Japanese Patent Publication No. 59-214
Publication No. 859 discloses a technique for forming a film of about 5 μm on the surface of an amorphous silicon photoreceptor as a protective layer by plasma polymerizing an organic hydrocarbon monomer such as styrene or acetylene. JP-A-60-61761 discloses a photoreceptor provided with a diamond-like carbon thin film of 500 to 2 μm as a surface protective layer, and it is said that the film thickness is preferably 2 μm or less from the viewpoint of translucency. ing.

特開昭60−249115号公報には、0.05〜5μ
m程度の無定形炭素または硬質炭素膜を表面保護層とし
て用いる技術が開示され、膜厚が5umを越えると感光
体活性に悪影響が及ぶとされている。
JP-A-60-249115 discloses that 0.05 to 5μ
A technique has been disclosed in which an amorphous carbon or hard carbon film with a thickness of about 5 um is used as a surface protective layer, and it is said that if the film thickness exceeds 5 um, the activity of the photoreceptor will be adversely affected.

これらの開示は、何れも感光体表面に所謂オーバーコー
ト層を設けた発明であり、電R輸送性についての開示は
全くなく、また、a−3iの有する前記した本質的問題
を解決するものではない。
All of these disclosures are inventions in which a so-called overcoat layer is provided on the surface of a photoreceptor, and there is no disclosure regarding the electric R transport property, and they do not solve the above-mentioned essential problems of a-3i. do not have.

また、特開昭51−46130号公報には、ポリビニル
カルバゾール系電子写真感光体の表面にグロー放電重合
を行なって0.001〜3μmのポリマー膜を形成せし
めた電子写真感光板が開示されているが、電荷輸送性に
ついては全く言及されていないし、a−3iの持つ前記
した本質的問題を解決するものではない。
Further, JP-A-51-46130 discloses an electrophotographic photosensitive plate in which a polymer film of 0.001 to 3 μm is formed on the surface of a polyvinyl carbazole electrophotographic photoreceptor by glow discharge polymerization. However, there is no mention of charge transport properties, and it does not solve the above-mentioned essential problems of a-3i.

一方、アモルファスシリコン膜については、スピア(W
、E、5pear)及びレコンバ(P。
On the other hand, regarding the amorphous silicon film, Spear (W
, E, 5pear) and Recomba (P.

G、LeComber)により1976年発行のフィロ
ソフィカル・マガジン(Philosoph ica 
I  Magaz 1ne)第33巻の第935頁乃至
第949頁において、極性制御が可能な材料である事が
報じられて以来、種々の光電デバイスへの応用が試みら
れて来た。感光体への応用に関しては、例えば、特開昭
56−62254号公報、特開昭57−119356号
公報、特開昭57−177147号公報、特開昭57−
119357号公報、特開昭57−177149号公報
、特開昭57−119357号公報、特開昭57−17
7146号公報、特開昭57−177148号公報、特
開昭57−174448号公報、特開昭57−1744
49号公報、特開昭57−174450号公報、等に、
炭・素原子を含有したアモルファスシリコン感光体が開
示されているが、何れもアモルファスシリコンの光導電
性を炭素原子により調整する事を目的としたものであり
、また、アモルファスシリコン自体厚い膜を必要として
いる。
Philosophical Magazine (Philosophical Magazine) published in 1976 by
Since it was reported in Vol. 33, pages 935 to 949 of I Magaz 1ne) that it is a material whose polarity can be controlled, attempts have been made to apply it to various photoelectric devices. Regarding application to photoreceptors, for example, JP-A-56-62254, JP-A-57-119356, JP-A-57-177147, JP-A-57-
119357, JP 57-177149, JP 57-119357, JP 57-17
7146, JP 57-177148, JP 57-174448, JP 57-1744
No. 49, JP-A-57-174450, etc.
Amorphous silicon photoreceptors containing carbon and carbon atoms have been disclosed, but all of them are aimed at adjusting the photoconductivity of amorphous silicon with carbon atoms, and amorphous silicon itself requires a thick film. It is said that

Hが解決しようとする4題、Φ 以上のように、従来、電子写真感光体に用いられている
プラズマ有機重合膜は所謂アンダーコート層もしくはオ
ーバーコート層として使用されていたが、それらはキャ
リアの輸送機能を必要としない膜であって、有機重合膜
が絶縁性で有るとの判断にたって用いられている。従っ
てその膜厚も高々5μm程度の極めて薄い膜としてしか
用いられず、キャリアはトンネル効果で膜中を通過する
か、トンネル効果が期待できない場合には、残留電位の
発生に関して事実上問題にならずに済む程度の薄い膜で
しか用いられていない。また、従来、電子写真に用いら
れているアモルファスシリコン膜は所謂厚膜で使用され
ており、価格或は生産性等に、不都合な点が多い。
Four problems that H aims to solve: Φ As mentioned above, conventionally, plasma organic polymer films used in electrophotographic photoreceptors have been used as so-called undercoat layers or overcoat layers; It is a membrane that does not require a transport function, and is used based on the judgment that the organic polymer membrane is insulating. Therefore, it can only be used as an extremely thin film with a thickness of about 5 μm at most, and carriers either pass through the film by tunneling effect, or if a tunneling effect cannot be expected, there is virtually no problem with the generation of residual potential. It is only used in thin films that are only small enough to last. Furthermore, amorphous silicon films conventionally used in electrophotography are so-called thick films, which have many disadvantages in terms of cost, productivity, and the like.

本発明者らは、アモルファスカーボン膜の電子写真感光
体への応用を検討しているうちに、本来絶縁性であると
考えられていた水素化アモルファスカーボン阪がシリコ
ン原子及びゲルマニウム原子のうち少なくとも一方を含
有せしめる事により、燐原子及び硼素原子のうち少なく
とも一方を含有すると共に炭素原子を含有してなる水素
化或は弗素化アモルファスシリコンゲルマニウム膜との
積層においては電荷輸送性を有し、容易に好適な電子写
真特性を示し始める事を見出した。その理論的解釈には
本発明者においても不明確な点が多く詳細に亙り言及は
できないが、シリコン原子及びゲルマニウム原子のうち
少なくとも一方を含有せしめた水素化アモルファスカー
ボン膜中に捕捉されている比較的不安定なエネルギー状
態の電子、例えばπ電子、不対電子、茂存フリーラジカ
ル等が形成するバンド構造が、燐原子及びl素原子のう
ち少なくとも一方を含有すると共に炭素原子を含有して
なる水素化或は弗素化アモルファスシリコンゲルマニウ
ム膜が形成するバンドt11¥造と電導帯もしくは荷電
子帯において近似したエネルギー準位を有するため、燐
原子及び硼素原子のうち少なくとも一方を含有すると共
に炭素原子を含有してなる水素化或は弗素化アモルファ
スシリコンゲルマニウム膜中で発生したキャリアが容易
にシリコン原子及びゲルマニウム原子のうち少なくとも
一方を含有せしめた水素化アモルファスカーボン膜中へ
注入きれ、ざらに、このキャリアは前述の比較的不安定
なエネルギー状態の電子の作用によりシリコン原子及び
ゲルマニウム原子のうち少なくとも一方を含有せしめた
水素化アモルファスカーボン膜中を好適に走行し得るた
めと推定される。
While considering the application of amorphous carbon films to electrophotographic photoreceptors, the present inventors discovered that hydrogenated amorphous carbon films, which were originally thought to be insulating, were capable of forming at least one of silicon atoms and germanium atoms. By containing , it has charge transport properties and is easily stacked with a hydrogenated or fluorinated amorphous silicon germanium film containing at least one of phosphorus atoms and boron atoms and also carbon atoms. It has been found that the material begins to exhibit suitable electrophotographic properties. There are many unclear points in the theoretical interpretation, even for the present inventor, and it is not possible to discuss it in detail. A band structure formed by electrons in an unstable energy state, such as π electrons, unpaired electrons, and free radicals, contains at least one of phosphorus atoms and l atoms, and also contains carbon atoms. Since the hydrogenated or fluorinated amorphous silicon germanium film has a similar energy level in the conduction band or valence band to the band t11 formed by the film, it contains at least one of phosphorus atoms and boron atoms and also contains carbon atoms. Carriers generated in the hydrogenated or fluorinated amorphous silicon germanium film containing silicon atoms can be easily injected into the hydrogenated amorphous carbon film containing at least one of silicon atoms and germanium atoms. It is presumed that this is because the electrons can travel suitably through the hydrogenated amorphous carbon film containing at least one of silicon atoms and germanium atoms due to the action of the electrons in the relatively unstable energy state described above.

本発明はその新たな知見を利用することにより、アモル
ファスシリコン感光体の持つ前述の如き本質的問題点を
全て解消し、また従来とは全く使用目的も特性も異なる
、有機プラズマ重合膜、特にシリコン原子及びゲルマニ
ウム原子のうち少なくとも一方を含有してなる水素化ア
モルファスカーボン膜を電荷輸送層として使用し、かつ
、燐原子及び硼素原子のうち少なくとも一方を含有する
と共に炭素原子を含有してなる水素化或は弗素化アモル
ファスシリコンゲルマニウムのけ股を電荷発生層として
使用した感光体を提供する事を目的とする。
By utilizing this new knowledge, the present invention solves all the above-mentioned essential problems of amorphous silicon photoreceptors, and also produces organic plasma polymerized films, especially silicon Hydrogenation using a hydrogenated amorphous carbon film containing at least one of atoms and germanium atoms as a charge transport layer, and containing at least one of phosphorus atoms and boron atoms as well as carbon atoms. Another object of the present invention is to provide a photoreceptor using a fluorinated amorphous silicon germanium layer as a charge generation layer.

57包を解決するための 即ち、本発明は、電荷発生層と電荷輸送層とを有する機
能分離型感光体において、該電荷輸送層がプラズマ重合
反応から生成されるシリコン原子及びゲルマニウム原子
のうち少なくとも一方を含有してなる水素化アモルファ
スカーボン膜であり、かつ、該電荷発生層が燐原子及び
硼素原子のうち少なくとも一方を含有すると共に炭素原
子を含有してなる水素化或は弗素化アモルファスシリコ
ンゲルマニウム膜であることを特徴とする感光体に関す
る(以下、本発明による電荷輸送層をa−C膜及び電荷
発生層をa−SillJと称する)。
In order to solve the problem, the present invention provides a functionally separated photoreceptor having a charge generation layer and a charge transport layer, in which the charge transport layer contains at least silicon atoms and germanium atoms generated from a plasma polymerization reaction. hydrogenated or fluorinated amorphous silicon germanium, in which the charge generation layer contains at least one of phosphorus atoms and boron atoms, and carbon atoms; The present invention relates to a photoreceptor characterized in that it is a film (hereinafter, the charge transport layer according to the present invention is referred to as an a-C film and the charge generation layer is referred to as a-SillJ).

本発明は、従来のアモルファスシリコン感光体において
は、電荷発生層として優れた機能を有するアモルファス
シリコンを、電荷発生能が無くても電荷輸送能さえあれ
ば済む電荷輸送層としても併用していたため発生してい
たこれらの問題点を解決すべく成きれたものである。
The present invention was developed because, in conventional amorphous silicon photoreceptors, amorphous silicon, which has an excellent function as a charge generation layer, is also used as a charge transport layer, which requires only charge transport ability even if it does not have charge generation ability. This was created to solve these problems.

即ち、本発明は、電荷輸送層としてグロー放電により生
成されるシリコン原子及びゲルマニウム原子のうち少な
くとも一方を含有してなる水素化アモルファスカーボン
膜を設け、かつ、電荷発生層として同じくグロー放電に
より生成される燐原子及び車素原子のうち少なくとも一
方を含有すると共に炭素原子を含有してなる水素化或は
弗素化アモルファスシリコンゲルマニウム膜を設けた事
を特徴とする機能分離型感光体に関する。該電荷輸送層
は、可視光もしくは半導体レーザー光付近の波長の光に
対しては明確なる光導電性は有さないが、好適な輸送性
を有し、ざらに、帯電能、耐久性、耐候性、耐環境汚染
性等の電子写真感光体性能に優れ、しかも透光性にも優
れるため、機能分離型感光体としての積層構造を形成す
る場合においても極めて高い自由度が得られるものであ
る。
That is, the present invention provides a hydrogenated amorphous carbon film containing at least one of silicon atoms and germanium atoms produced by glow discharge as a charge transport layer, and a hydrogenated amorphous carbon film containing at least one of silicon atoms and germanium atoms produced by glow discharge as a charge generation layer. The present invention relates to a functionally separated photoreceptor characterized by being provided with a hydrogenated or fluorinated amorphous silicon germanium film containing at least one of phosphorus atoms and hydrogen atoms and carbon atoms. Although the charge transport layer does not have clear photoconductivity for visible light or light with a wavelength near semiconductor laser light, it has suitable transport properties, and has excellent charging ability, durability, and weather resistance. It has excellent electrophotographic photoreceptor performance such as durability and environmental pollution resistance, and is also excellent in light transmission, so it provides an extremely high degree of freedom when forming a laminated structure as a function-separated photoreceptor. .

また、該電荷発生層は、可視光もしくは半導体レーザー
光付近の波長の光に対しTJ優れた光導電性を有し、し
かも従来のアモルファスシリコン感光体に比べて極めて
薄い膜厚で、その機能を活かす事ができるものである。
In addition, the charge generation layer has excellent TJ photoconductivity for visible light or light with wavelengths near semiconductor laser light, and has an extremely thin film thickness compared to conventional amorphous silicon photoreceptors. It is something that can be put to good use.

本発明においては、a −C膜を形成するために有機化
合物ガス、特に炭化水素ガスが用いられる。
In the present invention, an organic compound gas, particularly a hydrocarbon gas, is used to form the a-C film.

該炭化水素における相状態は常温常圧において必ずしも
気相である必要はなく、加熱或は減圧等により溶融、蒸
発、昇華等を経て気化しうるものであれば、液相でも固
相でも使用可能である。
The phase state of the hydrocarbon does not necessarily have to be a gas phase at room temperature and normal pressure; it can be used in either a liquid phase or a solid phase as long as it can be vaporized through melting, evaporation, sublimation, etc. by heating or reduced pressure. It is.

使用可能な炭化水素には種類が多いが、飽和炭化水素と
しては、例えば、メタン、エタン、プロパン、ブタン、
ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デ
カン、ウンデカン、ドデカン、トリデカン、テトラデカ
ン、ペンタデカン、ヘキサデカン、ヘプタデカン、オク
タデカン、ノナデカン、エイコサン、ヘンエイコサン、
トコサン、トリコサン、テトラコサン、ペンタコサン1
、ヘキサコサン、ヘプタコサン、オクタコサン、ノナコ
サン、トリアコンタン、トドリアコンタン、ペンタトリ
アコンタン、等のノ、ルマルパラフィン並びに、イソブ
タン、イソペンタン、ネオペンタン、−(ソヘキサン、
ネオヘキサン、2.3−ジメチルブタン、2−メチルヘ
キサン、3−エチルペンタン、2.2−ジメチルペンタ
ン、2.4−ジメチルペンタン、3,3−ジメチルペン
タン、トリブタン、2−メチルへブタン、3−メチルへ
ブタン、2.2−ジメチルヘキサン、2,2.5−ジメ
チルヘキサン、2,2.3−)ジメチルペンタン、2.
2.4−トリメチルペンタン、2,3゜3−トリメチル
ペンタン、2.3.4−トリメチルペンタン、イソナノ
ン、等のイソパラフィン、等が用いられる。不飽和炭化
水素としては、例えば、エチレン、プロピレン、イソブ
チレン、1−ブテン、2−ブテン、1−ペンテン、2−
ペンテン、2−メチル−1−ブテン、3−メチル−1−
ブテン、2−メチル−2−ブテン、1−ヘキセン、テト
ラメチルエチレン、1−ヘプテン、1−オクテン、1−
ノネン、1−デセン、等のオレフィン、並びに、アレン
、メチルアレン、ブタジェン、ペンタジェン、ヘキサジ
エン、シクロペンタジェン、等のジオレフィン、並びに
、オシメン、アロオシメン、ミルセン、ヘキサトリエン
、等のトリオレフイン、並びに、アセチレン、ブタジイ
ン、1゜3−ペンタジイン、2.4−へキサジイン、メ
チルアセチレン、1−ブチン、2−ブチン、1−ペンチ
ン、1−ヘキシン、1−ヘプチン、1−オクチン、1−
ノニン、1−デシン、等が用いられる。
There are many types of hydrocarbons that can be used, but examples of saturated hydrocarbons include methane, ethane, propane, butane,
Pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane, eicosane, heneicosane,
Tocosan, Tricosan, Tetracosan, Pentacosan 1
, hexacosane, heptacosane, octacosane, nonacosane, triacontane, todoriacontane, pentatriacontane, etc., as well as isobutane, isopentane, neopentane, -(sohexane,
Neohexane, 2,3-dimethylbutane, 2-methylhexane, 3-ethylpentane, 2,2-dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane, tributane, 2-methylhebutane, 3 -Methylhebutane, 2.2-dimethylhexane, 2,2.5-dimethylhexane, 2,2.3-)dimethylpentane, 2.
Isoparaffins such as 2,4-trimethylpentane, 2,3°3-trimethylpentane, 2,3,4-trimethylpentane, isonanone, etc. are used. Examples of unsaturated hydrocarbons include ethylene, propylene, isobutylene, 1-butene, 2-butene, 1-pentene, 2-
Pentene, 2-methyl-1-butene, 3-methyl-1-
Butene, 2-methyl-2-butene, 1-hexene, tetramethylethylene, 1-heptene, 1-octene, 1-
Olefins such as nonene, 1-decene, diolefins such as allene, methylalene, butadiene, pentadiene, hexadiene, cyclopentadiene, and triolefins such as ocimene, alloocimene, myrcene, hexatriene, and Acetylene, butadiyne, 1゜3-pentadiyne, 2.4-hexadiyne, methylacetylene, 1-butyne, 2-butyne, 1-pentyne, 1-hexyne, 1-heptyne, 1-octyne, 1-
Nonine, 1-decyne, etc. are used.

脂環式炭化水素としては、例えば、シクロプロパン、シ
クロブタン、シクロベンクン、シクロヘキサン、シクロ
へブタン、シクロオクタン、シクロノナン、シクロデカ
ン、シクロウンデカン、シクロドデカン、シクロトリデ
カン、シクロテトラデカン、シクロペンタデカン、シク
ロヘキサデカン、等のシクロパラフィン並びに、シクロ
プロペン、シクロブテン、シクロペンテン、シクロヘキ
セン、シクロヘプテン、シクロオクテン、シクロノネン
、シクロデセン、等のシクロオレフィン並びに、リモネ
ン、テルビルン、フエランドレン、シルベストレン、ツ
エン、カレン、ピネン、ボルニレン、カンフエン、フエ
ンチェン、シクロウンデカン、トリシクレン、ビサボレ
ン、ジンギベレン、クルクメン、フムレン、カジネンセ
スキベニヘン、セリネン、カリオシイレン、サンタレン
、セドレン、カンホレン、フィロクラテン、ボドカルブ
レン、ミレン、等のテルペン並びに、ステロイド等が用
いられる。芳香族炭化水素としては、例えば、ベンゼン
、トルエン、キシレン、ヘミメリテン、プソイドクメン
、メシチレン、プレニテン、イソジュレン、ジュレン、
ペンタメチルベンゼン、ヘキサメチルベンゼン、エチル
ベンゼン、プロピルベンゼン、クメン、スチレン、ビフ
ェニル、テルフェニル、ジフェニルメタン、トリフェニ
ルメタン、ジベンジル、スチルベン、インデン、ナフタ
リン、テトラリン、アントラセン、フェナントレン、等
が用いられる。
Examples of alicyclic hydrocarbons include cyclopropane, cyclobutane, cyclobencune, cyclohexane, cyclohebutane, cyclooctane, cyclononane, cyclodecane, cycloundecane, cyclododecane, cyclotridecane, cyclotetradecane, cyclopentadecane, cyclohexadecane, and the like. cycloparaffins such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclononene, cyclodecene, and cycloolefins such as limonene, tervirun, phelandrene, sylvestrene, thuen, carene, pinene, bornylene, kanghuen, fuenchen, Terpenes such as cycloundecane, tricyclene, bisabolene, zingiberene, curcumene, humulene, kajinensesquivenichen, selinene, caryosirene, santarene, cedrene, campholene, phylloclatene, bodocarbrene, mirene, and steroids are used. Examples of aromatic hydrocarbons include benzene, toluene, xylene, hemimelithene, pseudocumene, mesitylene, prenitene, isodurene, durene,
Pentamethylbenzene, hexamethylbenzene, ethylbenzene, propylbenzene, cumene, styrene, biphenyl, terphenyl, diphenylmethane, triphenylmethane, dibenzyl, stilbene, indene, naphthalene, tetralin, anthracene, phenanthrene, etc. are used.

ざらに、炭化水素以外でも、例えば、アルコール類、ケ
トン類、エーテル類、エステル類、等炭素と成りうる化
合物であれば使用可能である。
In general, any compound other than hydrocarbons that can be converted into carbon, such as alcohols, ketones, ethers, and esters, can be used.

本発明におけるa −C膜中に含まれる水素原子の量は
グロー放電を用いるというその製造面から必然的に定ま
るが、炭素原子と水素原子の総量に対して、概ね30乃
至60原子%含有される。ここで、炭素原子並びに水素
原子の膜中含有量は、有機元素分析の常法、例えばCN
H分析を用いる事により知る事ができる。
The amount of hydrogen atoms contained in the a-C film of the present invention is inevitably determined from the manufacturing aspect of using glow discharge, but it is approximately 30 to 60 atomic percent contained in the a-C film based on the total amount of carbon atoms and hydrogen atoms. Ru. Here, the content of carbon atoms and hydrogen atoms in the film is determined by a conventional method of organic elemental analysis, for example, CN
This can be determined by using H analysis.

本発明におけるa −C膜中に含まれる水素原子の量は
、成膜装置の形態並びに成膜時の条件により変化するが
、例えば、基板温度を高くする、圧力を低くする、原料
炭化水素ガスの希釈率を低くする、印加電力を高くする
、交番電界の周波数を低くする、交番電界に重畳せしめ
た直流電界強度を高くする、等の手段、或は、これらの
組合せ操作は、含有水素量を低くする効果を有する。
The amount of hydrogen atoms contained in the a-C film in the present invention varies depending on the form of the film forming apparatus and the conditions during film forming, but for example, increasing the substrate temperature, lowering the pressure, using the raw material hydrocarbon gas, etc. Measures such as lowering the dilution rate of hydrogen, increasing the applied power, lowering the frequency of the alternating electric field, increasing the strength of the direct current electric field superimposed on the alternating electric field, or combinations thereof, can reduce the amount of hydrogen contained. It has the effect of lowering

本発明における電荷輸送層としてのa −C膜の膜厚は
、通常の電子写真プロセスで用いるためには、5乃至5
0 ums特に7乃至20umが適当であり、5μmよ
り薄いと、帯電電位が低いため充分な複写画像濃度を得
る事ができない。また、5011mより厚いと、生産性
の面で好ましくない。
The thickness of the a-C film as the charge transport layer in the present invention is 5 to 5
0 ums, particularly 7 to 20 um, is suitable; if it is thinner than 5 μm, sufficient copying image density cannot be obtained because the charging potential is low. Moreover, if it is thicker than 5011 m, it is not preferable in terms of productivity.

このa−C膜は、高透光性、高暗抵抗を有するとともに
電荷輸送性に富み、膜厚を上記の様に5μm以上として
もキャリアはトラップされる事無く輸送され明減衰に寄
与する事が可能である。
This a-C film has high light transmittance, high dark resistance, and is rich in charge transport properties, and even if the film thickness is 5 μm or more as mentioned above, carriers are transported without being trapped and contribute to bright attenuation. is possible.

本発明における原料気体からa−CMを形成する過程と
しては、原料気体が、直流、低周波、高周波、或はマイ
クロ波等を用いたプラズマ法により生成されるプラズマ
状態を経て形成される方法が最も好ましいが、その他に
も、イオン化蒸着法、或はイオンビーム蒸着法等により
生成されるイオン状態を経て形成されてもよいし、真空
蒸着法、或はスパッタリング法等により生成きれる中性
粒子から形成きれてもよいし、ざらには、これらの組み
合わせにより形成されてもよい。
The process of forming a-CM from a raw material gas in the present invention includes a method in which the raw material gas is formed through a plasma state generated by a plasma method using direct current, low frequency, high frequency, microwave, etc. Most preferably, it may also be formed through an ion state generated by ionization vapor deposition, ion beam vapor deposition, etc., or from neutral particles generated by vacuum vapor deposition, sputtering, etc. It may be formed completely, or it may be formed by a combination of these.

本発明においては炭化水素の他に、a −C膜中に少な
くともシリコン原子或はゲルマニウム原子を添加するた
めの原料として、シリコン化合物或はゲルマニウム化合
物が用いられる。該シリコン化合物或はゲルマニウム化
合物におけるt目状態は常温常圧において必ずしも気相
である必要はなく、加熱或は減圧等により溶融、蒸発、
昇華等を経て気化しうるちのであれば、液相でも固相で
も使用可能である。シリコン化合物或はゲルマニウム化
合物としては、例えば、シラン、ジシラン、弗化シラン
、ゲルマン等の無敗化合物、金属フタロシアニン、金属
アルコラード等の有機化合物が用いられる。
In the present invention, in addition to hydrocarbons, a silicon compound or a germanium compound is used as a raw material for adding at least silicon atoms or germanium atoms into the a-C film. The t-th state of the silicon compound or germanium compound does not necessarily have to be in a gas phase at normal temperature and pressure, but can be melted, evaporated, or evaporated by heating or reduced pressure.
As long as it can be vaporized through sublimation or the like, it can be used in either liquid or solid phase. As the silicon compound or germanium compound, for example, undefeated compounds such as silane, disilane, fluorinated silane, and germane, and organic compounds such as metal phthalocyanine and metal alcoholade are used.

本発明において化学的修飾物質として含有されるシリコ
ン原子或はゲルマニウム原子の量は、全構成原子に対し
て10原子%以下である。ここで、シリコン原子或はゲ
ルマニウム原子の膜中含有量は、元素分析の常法、例え
ばオージェ分析により知る事ができる。シリコン原子或
はゲルマニウム原子を含まない場合には、好適な輸送性
が確保されず、ざらに、成膜後の経時劣化を招きやすく
なる。一方、シリコン原子の量が10%を越える場合に
は、少量の添加では好適な輸送性を保証していたシリコ
ン原子が逆に膜の高抵抗化を招く作用を示し、感度が低
下してしまう。一方、ゲルマニウム原子の量が10原子
%を越える場合には、少量の添加では好適な輸送性を保
証していたゲルマニウム原子が逆に膜の低抵抗化を招く
作用を示し、帯電能が低下してしまう。従って、本発明
におけるシリコン原子或はゲルマニウム原子の添加量範
囲は重要である。
In the present invention, the amount of silicon atoms or germanium atoms contained as a chemical modifier is 10 at % or less based on the total constituent atoms. Here, the content of silicon atoms or germanium atoms in the film can be determined by a conventional method of elemental analysis, such as Auger analysis. If the film does not contain silicon atoms or germanium atoms, suitable transport properties cannot be ensured, and deterioration over time after film formation is likely to occur. On the other hand, when the amount of silicon atoms exceeds 10%, the silicon atoms, which had guaranteed suitable transport properties when added in small amounts, instead exhibit the effect of increasing the resistance of the film, resulting in a decrease in sensitivity. . On the other hand, when the amount of germanium atoms exceeds 10 at %, the germanium atoms, which had guaranteed suitable transport properties when added in small amounts, conversely work to lower the resistance of the film, and the charging ability decreases. It ends up. Therefore, the range of the amount of silicon atoms or germanium atoms added in the present invention is important.

本発明において化学的修飾物質として含有されるシリコ
ン原子或はゲルマニウム原子の量は、主に、プラズマ反
応を行なう反応室への前述のシリコン化合物或はゲルマ
ニウム化合物の導入量を増減することにより制瀕するこ
とが可能である。シリコン化合物或はゲルマニウム化合
物の導入量を増大きせれば、本発明によるa−C膜中へ
のシリコン原子或はゲルマニウム原子の添加量を高くす
ることが可能であり、逆にシリコン化合物或はゲルマニ
ウム化合物の導入量を減少きせれば、本発明によるa−
C膜中へのシリコン原子或はゲルマニウム原子の添加量
を低くすることが可能である。
In the present invention, the amount of silicon atoms or germanium atoms contained as a chemical modifier is mainly controlled by increasing or decreasing the amount of the silicon compound or germanium compound introduced into the reaction chamber in which the plasma reaction is performed. Is possible. By increasing the amount of silicon compound or germanium compound introduced, it is possible to increase the amount of silicon atoms or germanium atoms added to the a-C film according to the present invention. If the amount of the compound introduced can be reduced, a-
It is possible to reduce the amount of silicon atoms or germanium atoms added to the C film.

本発明においては、a−Si膜を形成するためにシラン
ガス、ジシランガス、或は、弗化シランガスが用いられ
る。また、化学的113飾物質として燐原子或は硼素原
子を膜中に含有せしめるための原料ガスとして、ホスフ
ィンガス或はジボランガス等が用いられる。さらに、化
学的修飾物質として炭素原子を膜中に含有せしめるため
の原nガスとして、メタン、エタン、エチレン、アセチ
レン、プロパン、プロピレン、ブタン、ブタジェン、ブ
タジイン、ブテン、−酸化炭素、或は、二酸化炭素等の
炭素化合物ガスが用いられる。また、ゲルマニウム原子
を含有させるために、ゲル、マンガスが用いられる。
In the present invention, silane gas, disilane gas, or fluorinated silane gas is used to form the a-Si film. In addition, phosphine gas, diborane gas, or the like is used as a raw material gas for containing phosphorus atoms or boron atoms as chemical 113 decorative substances in the film. Furthermore, raw n gases for incorporating carbon atoms into the film as chemical modifiers include methane, ethane, ethylene, acetylene, propane, propylene, butane, butadiene, butadiyne, butene, carbon oxide, or carbon dioxide. A carbon compound gas such as carbon is used. Furthermore, gel and mangas are used to contain germanium atoms.

本発明におけるa−3i膜中に含有きれるゲルマニウム
原子の含有量は、シリコン原子とゲルマニウム原子との
総和に対して、30原子%以下が好ましい。ここで、ゲ
ルマニウム原子及びシリコン原子の含有率は、元素分析
の常法、例えばオージェ分析により知る事ができる。ゲ
ルマニウム原子の含有量は、膜形成時に流入するゲルマ
ンガスの流量を増加する事により高くなる。ゲルマニウ
ム原子の含有量が高くなるにつれ本発明感光体の長波長
感度は向上し、短波長領域から長波長領域にまで幅広く
露光源が選択され得るようになり好ましいが、ゲルマニ
ウム原子が30原子%より多く含有されると帯電能の低
下を招くため、過剰の添加は好ましくない。従って、本
発明におけるa −3i股中に含有されるゲルマニウム
原子の含有量は重要である。
The content of germanium atoms that can be contained in the a-3i film in the present invention is preferably 30 at % or less based on the total of silicon atoms and germanium atoms. Here, the contents of germanium atoms and silicon atoms can be determined by a conventional method of elemental analysis, for example, Auger analysis. The content of germanium atoms can be increased by increasing the flow rate of germane gas flowing during film formation. As the content of germanium atoms increases, the long wavelength sensitivity of the photoreceptor of the present invention improves, and exposure sources can be selected from a wide range from short wavelength regions to long wavelength regions, which is preferable. Excessive addition is not preferable since a large content will lead to a decrease in charging ability. Therefore, the content of germanium atoms contained in the a-3i crotch in the present invention is important.

本発明において化学的修飾物質として含有される燐原子
或は硼素原子の量は、全構成原子に対し−C20000
原子ppm以下である。ここで燐原子或は硼素原子の膜
中含有量は、元素分析の常法、例えばオージェ分析或は
IMA分析により知る事ができる。燐原子或は硼素原子
の膜中含有量が20000原子ppmより高い場合には
、少量の添加では好適な輸送性、或は、極性刷部効果を
保証していた燐原子或は硼素原子が、逆に膜の低抵抗化
を招く作用を示し、帯電能の低下を来たす。従って、本
発明における燐原子或は1素原子添加量の範囲は重要で
ある。
In the present invention, the amount of phosphorus or boron atoms contained as a chemical modifier is -C20000 with respect to all constituent atoms.
It is less than atomic ppm. Here, the content of phosphorus atoms or boron atoms in the film can be determined by a conventional method of elemental analysis, such as Auger analysis or IMA analysis. When the content of phosphorus atoms or boron atoms in the film is higher than 20,000 atomic ppm, the phosphorus atoms or boron atoms that have guaranteed suitable transport properties or polar printing area effects when added in small amounts, On the contrary, it has the effect of lowering the resistance of the film, resulting in a decrease in charging ability. Therefore, the range of the amount of phosphorus atoms or single atoms added in the present invention is important.

本発明において化学的修飾物質として含有される炭素原
子の量は、全構成原子に対して0.001乃至5原子%
である。ここで炭素原子の膜中含有量は、元素分析の常
法、例えばオージェ分析或はIMA分析により知る事が
できる。炭素原子の膜中含有量が0.001原子%より
低い場合には、a−5i膜の電気抵抗値が低くなる事か
らa−5i膜にコロナ帯電等による電界がかかりにくく
なり、光励起キャリアが必ずしも効率よ<a−CM’A
中に注入されなくなり感度の低下を招く。また、帯電能
も低下する。炭素原子の膜中含有量が5原子%より高い
場合には、a−3i膜の電気抵抗値が高くなり過ぎ、光
励起キャリアの発生効率の低下及びキャリアの易動速度
の低下により、感度低下を招く。従フて、本発明におけ
る炭素原子添加量の範囲は重要である。
In the present invention, the amount of carbon atoms contained as a chemical modifier is 0.001 to 5 at% based on the total constituent atoms.
It is. Here, the content of carbon atoms in the film can be determined by a conventional method of elemental analysis, such as Auger analysis or IMA analysis. When the content of carbon atoms in the film is lower than 0.001 at%, the electrical resistance value of the a-5i film becomes low, making it difficult for the a-5i film to be subjected to electric fields due to corona charging, etc., and photoexcited carriers are Not necessarily efficient<a-CM'A
This results in a decrease in sensitivity. Furthermore, the charging ability is also reduced. When the content of carbon atoms in the film is higher than 5 at %, the electrical resistance value of the a-3i film becomes too high, resulting in a decrease in sensitivity due to a decrease in the generation efficiency of photoexcited carriers and a decrease in the mobility speed of carriers. invite Therefore, the range of the amount of carbon atoms added in the present invention is important.

本発明におけるa−3i膜中に含まれる水素原子或は弗
素原子の量はグロー放電を用いるというその製造面から
必然的に定まるが、シリコン原子と水素原子或はシリコ
ン原子と弗素原子の総量に対して、概ね1o乃至35原
子%含有きれる。ここで、水素原子或は弗素原子の膜中
含有量は、元素分析の常法、例えばONH分析、オージ
ェ分析等を用いる事により知る事ができる。
The amount of hydrogen atoms or fluorine atoms contained in the a-3i film of the present invention is necessarily determined from the manufacturing aspect of using glow discharge, but the total amount of silicon atoms and hydrogen atoms or silicon atoms and fluorine atoms On the other hand, the content can be approximately 10 to 35 at%. Here, the content of hydrogen atoms or fluorine atoms in the film can be determined by using conventional methods of elemental analysis, such as ONH analysis and Auger analysis.

本発明における電荷発生層としてのa−Si膜の膜厚は
、通常の電子写真プロセスで用いるためには、0.1乃
至5umが適当であり、0.1μmより薄いと、光吸収
が不十分となり充分な電荷発生が行なわれなくなり、感
度の低下を拓く。また、5μmより厚いと、生産性の面
で好ましくない。このa−5i膜は電荷発生能に富み、
さらに、本発明の最も特徴とするところのa−C膜との
精Ntg成において効率よ<a−C膜中に発生キャリア
を注入せしめ、好適な明減衰に寄与する事が可能である
The appropriate thickness of the a-Si film as the charge generation layer in the present invention is 0.1 to 5 um for use in a normal electrophotographic process, and if it is thinner than 0.1 um, light absorption is insufficient. As a result, sufficient charge generation is not performed, leading to a decrease in sensitivity. Moreover, if it is thicker than 5 μm, it is not preferable in terms of productivity. This a-5i film has a rich charge generation ability,
Furthermore, in the fine Ntg formation with the a-C film, which is the most characteristic feature of the present invention, generated carriers can be efficiently injected into the a-C film, contributing to suitable bright attenuation.

本発明における原料気体からa−Siiを形成する過程
は、a−C膜を形成する場合と同様にして行なわれる。
The process of forming a-Sii from the raw material gas in the present invention is carried out in the same manner as the case of forming an a-C film.

本発明において化学的修飾物質として含有される炭素原
子、燐原子、或は、硼素原子の量は、主に、プラズマ反
応を行なう反応室への前述の炭素化合物ガス、ホスフィ
ンガス、或は、ジボランガスの導入量を増減することに
より制御することが可能である。炭素化合物ガス、ホス
フィンガス、或は、ジボランガスの導入量を増大させれ
ば、本発明によるa−Si膜中への炭素原子、燐原子、
或は、q1素原子の添加量を窩くすることが可能であり
、逆に炭素化合物ガス、ホスフィンガス、或は、ジボラ
ンガスの導入量を減少させれば、本発明によるaS+&
中への炭素原子、燐原子、或は、硼素原子の添加量を低
くすることが可能である。
In the present invention, the amount of carbon atoms, phosphorus atoms, or boron atoms contained as chemical modifiers is mainly determined by the amount of carbon compound gas, phosphine gas, or diborane gas introduced into the reaction chamber in which the plasma reaction is performed. It can be controlled by increasing or decreasing the amount of introduced. By increasing the amount of carbon compound gas, phosphine gas, or diborane gas introduced, carbon atoms, phosphorus atoms,
Alternatively, it is possible to reduce the amount of q1 atoms added, and conversely, if the amount of carbon compound gas, phosphine gas, or diborane gas introduced is reduced, the aS+&
It is possible to reduce the amount of carbon atoms, phosphorus atoms, or boron atoms added therein.

本発明における感光体は、電荷発生層と電荷輸送層から
成る機能分離型の構成とするのが最適で、該電荷発生層
と該電荷輸送層の積層構成は、必要に応じて適宜選択す
ることが可能である。
It is optimal for the photoreceptor in the present invention to have a functionally separated structure consisting of a charge generation layer and a charge transport layer, and the laminated structure of the charge generation layer and the charge transport layer may be appropriately selected as necessary. is possible.

第1図は、その一形態として、導電性基板(1)上に電
荷輸送層(2)と電荷発生層(3)を順次積層してなる
構成を示したものである。第2図1.t1別の一形態と
して、導電性基Vj、(1)上に電荷発生層(3)と電
荷輸送層(2)を順次積層してなる構成を示したもので
ある。第3図は、別の一形態として、導電性基板(1)
、上に、電荷輸送層(2)と電荷発生層(3)と電荷輸
送層(2)を順次積層してなる構成を示したものである
FIG. 1 shows, as one embodiment, a structure in which a charge transport layer (2) and a charge generation layer (3) are sequentially laminated on a conductive substrate (1). Figure 2 1. As another form of t1, a structure is shown in which a charge generation layer (3) and a charge transport layer (2) are sequentially laminated on a conductive group Vj, (1). FIG. 3 shows a conductive substrate (1) as another form.
, a structure in which a charge transport layer (2), a charge generation layer (3), and a charge transport layer (2) are sequentially laminated on the top.

感光体表面を、例えばコロナ帯電器等により正帯電した
後、画像露光して使用する場合においては、第1図では
電荷発生層(3)で発生した正孔が電荷輸送層(2)中
を導電性基板(1)に向は走行し、第2図では電荷発生
N(3)で発生した電子が電荷輸送層(2)中を感光体
表面に向は走行し、第3図では電荷発生層(3)で発生
した正孔が導電性基板側の電荷輸送層(2)中を導電性
基板(1)に向は走行すると共に、同時に電荷発生層(
3)で発生した電子が表面側の電荷輸送層(2)中を感
光体表面に向は走行し、好適な明減衰に保証きれた静7
!1潜像の形成が行なわれる。反対に感光体表面を負帯
電した後、画像露光して使用する場合においては、電子
と正孔の挙動を入れ代えて、キャリアーの走行性を解す
ればよい。第2図及び第3図では、画像露光用の照射光
が電荷輸送層中を通過する事になるが、本発明による電
荷輸送層は透光性に優れることから、好適な潜像形成を
行なうことが可能である。
When the surface of the photoreceptor is positively charged using a corona charger or the like and then used for image exposure, in FIG. 1, holes generated in the charge generation layer (3) pass through the charge transport layer (2). Electrons travel toward the conductive substrate (1), and in Figure 2, electrons generated by charge generation N (3) travel through the charge transport layer (2) toward the surface of the photoreceptor; Holes generated in the layer (3) travel toward the conductive substrate (1) through the charge transport layer (2) on the conductive substrate side, and at the same time travel through the charge generation layer (2) toward the conductive substrate (1).
The electrons generated in step 3) travel toward the surface of the photoreceptor through the charge transport layer (2) on the surface side, resulting in a static 7.
! 1 latent image is formed. On the other hand, when the surface of the photoreceptor is negatively charged and then used for image exposure, the behavior of electrons and holes can be exchanged to understand the mobility of carriers. In FIGS. 2 and 3, the irradiation light for image exposure passes through the charge transport layer, but since the charge transport layer according to the present invention has excellent translucency, it forms a suitable latent image. Is possible.

第4図は、さらなる一形態として、導電性基板(1)上
に電荷輸送層(2)と電荷発生層(3)と表面保護層(
4)を順次積層してなる構成を示したものである。即ち
第1図の形態に表面保護層を設けた形態に相当するが、
第1図の形態では、最表面が耐湿性に乏しいa−Si膜
で有ることから、多(の場合実用上の対湿度安定性を確
保するために表面保護層を設けることが好ましい。第2
図及び第3図の構成の場合、最表面が耐久性に優れたa
−CFlであるため表面保護層を設けなくてもよいが、
例えば現像剤の付着による感光体表面の汚れを防止する
ような、複写機内の各種エレメントに対する整合性を調
整する目的から、表面保護層を設けることもざらなる一
形態と成りうる。
FIG. 4 shows, as a further embodiment, a charge transport layer (2), a charge generation layer (3) and a surface protective layer (
4) is shown in a structure formed by sequentially stacking them. In other words, it corresponds to the form shown in Fig. 1 with a surface protective layer provided, but
In the form shown in FIG. 1, since the outermost surface is an a-Si film with poor moisture resistance, it is preferable to provide a surface protective layer in order to ensure practical humidity stability in the case of multilayer film.
In the case of the configurations shown in Figures and Figure 3, the outermost surface is a with excellent durability.
- Since it is CFL, there is no need to provide a surface protective layer, but
For example, a surface protective layer may be provided for the purpose of adjusting compatibility with various elements within a copying machine, such as preventing staining of the photoreceptor surface due to adhesion of developer.

第5図は、ざらなる一形態として、導電性基板(1)上
に中間層(5)と電荷発生層(3)と電荷輸送層(2)
を順次′f!4層してなる構成を示したものである。即
ち第2図の形態に中間層を設けた形態に相当するが、第
2図の形態では、導電性基板との接合面がa−Si膜で
ある事から、多くの場合接着性及び注入阻止効果を確保
するために中間層を設ける事が好ましい。第1図及び第
3図の構成の場合、導電性基板との接合面が、接着性及
び注入阻止効果に優れた、本発明による電荷輸送層であ
るため、中間層を設けなくてもよいが、例えば導電性基
板の前処理方法のような、感光層形成以前の製造工程と
の整合性を調整する目的から、中間層を設けることもざ
らなる一形態と成りうる。
FIG. 5 shows an intermediate layer (5), a charge generation layer (3), and a charge transport layer (2) on a conductive substrate (1) as a rough form.
sequentially 'f! This figure shows a four-layered structure. In other words, it corresponds to the form shown in Fig. 2 with an intermediate layer provided, but in the form shown in Fig. 2, the bonding surface with the conductive substrate is an a-Si film, so in most cases adhesiveness and injection prevention are required. It is preferable to provide an intermediate layer to ensure the effect. In the case of the configurations shown in FIGS. 1 and 3, since the bonding surface with the conductive substrate is the charge transport layer according to the present invention, which has excellent adhesiveness and injection blocking effect, it is not necessary to provide an intermediate layer. For example, an intermediate layer may be provided for the purpose of adjusting compatibility with a manufacturing process before forming a photosensitive layer, such as a pretreatment method for a conductive substrate.

第6図は、ざらなる一形態として、導電性基板(1)上
に中間層(5)と電荷輸送層(2)と電荷発生層(3)
と表面保護層(4)を順次積層してなる構成を示したも
のである。即ち第1図の形態に中間層と表面保護層を設
けた形態に相当する。
FIG. 6 shows, as a rough form, an intermediate layer (5), a charge transport layer (2), and a charge generation layer (3) on a conductive substrate (1).
This figure shows a structure in which a surface protection layer (4) and a surface protection layer (4) are sequentially laminated. That is, it corresponds to the form shown in FIG. 1 with an intermediate layer and a surface protective layer provided.

中間層と表面保護層の設置理由は前述と同様であり、従
って第2図及び第3図の構成において中間層と表面保護
層を設けることもざらなる一形態と成りうる。
The reason for providing the intermediate layer and the surface protective layer is the same as described above, and therefore, providing the intermediate layer and the surface protective layer in the configurations shown in FIGS. 2 and 3 can be an alternative form.

本発明において中間層と表面保護層は、材料的にも、製
法的にも、特に限定を受けるものではなく所定の目的が
達せられるものであれば、適宜選択することが可能であ
る。本発明によるa −C膜を用いてもよい。但し、用
いる材料が、例えば従来例で述べた如き絶縁性材料であ
る場合には、残留電位発生の防止のため膜厚は5μm以
下に留める必要がある。
In the present invention, the intermediate layer and the surface protective layer are not particularly limited in terms of material or manufacturing method, and can be appropriately selected as long as a predetermined purpose can be achieved. An a-C film according to the invention may also be used. However, if the material used is, for example, an insulating material as described in the conventional example, the film thickness must be kept at 5 μm or less to prevent generation of residual potential.

本発明による感光体の電荷輸送層は、気相状態の分子を
減圧下で放電分解し、発生したプラズマ雰囲気中に含ま
れる活性中性種あるいは荷電穏を基板上に拡散、電気力
、あるいは磁気力等により訪導し、基板上での再結合反
応により固相として堆積きせる、所謂プラズマ重合反応
がら生成される事が好ましい。
The charge transport layer of the photoreceptor according to the present invention decomposes molecules in the gas phase by discharge under reduced pressure, and diffuses active neutral species or charged particles contained in the generated plasma atmosphere onto the substrate, using electric force or magnetism. It is preferable that the particles be generated by a so-called plasma polymerization reaction, in which the particles are introduced by force or the like and deposited as a solid phase by a recombination reaction on the substrate.

第7図は本発明に係わる感光体の製造装置を示し、図中
(701)〜(706)は常温において気相状態にある
原料化合物及びキャリアガスを密封した第1乃至第6タ
ンクで、各々のタンクは第1乃至第6調節弁(707)
〜(712)と第1乃至第6流′M#罪器(713)〜
(718)に接続されている。図中(719)・〜(7
21)は常温において液相または固相状態にある原料化
合物を封入した第1乃至第3容器で、各々の容器は気化
のため第1乃至第3温yJ器(722)〜(724)に
より与熱可能であり、ざらに各々の容器は第7乃至第9
調節弁(725)〜(727)と第7乃至第9流量制御
器(728)〜(730)に接続されている。これらの
ガスは混合器(731)で混合された後、主管(732
)を介して反応室(733)に送り込まれる。途中の配
管は、常温において液相または固相状態にあった原料化
合物が気化したガスが、途中で凝結しないように、適宜
配置された配管加熱器(734)により、与熱可能とさ
れている。反応室内には接地電tN(735)と電力印
加Ti極(736)が対向して設置きれ、各々の電極は
電極加熱器(737)により与熱可能とされている。電
力印加型w1(736)には、高周波電力用整合器(7
38)を介して高周波電源(739)、低周波電力用整
合! (740)を介して低周波電源(741Lローパ
スフイルタ(742)を介して直流電源(743)が接
続きれており、接続選択スイッチ(744)により周液
数の異なる電力が印加可能とされている。反応室(73
3)内の圧力は圧力副部弁(745)によりTA’J可
能であり、反応室(733)内の減圧は、排気系選択弁
(746)を介して、拡散ポンプ(747) 、油回転
ポンプ(748) 、或は、冷却除外装置(749) 
、メカニカルブースターポンプ(750) 、油回転ポ
ンプ(748)により行なわれる。排ガスについては、
ざらに適当な除外装置(753)により安全無害化した
後、大気中に排気される。これら排気系配管についても
、常温において液相または固相状態にあった原料化合物
が気化したガスが、途中で凝結しないように、適宜配置
きれた配管加熱器(734)により、与熱可能とされて
いる。反応室(733)も同様の理由から反応室加熱器
(751)により与熱可能とされ、内部に配された′R
接極上導電性基板(752)が設置きれる。第7図にお
いて導電性基板(752)は接地′7t1極(735)
に固定して配されているが、電力印加電極(736)に
固定して配されてもよく、ざらに双方に配されてもよい
FIG. 7 shows a photoconductor manufacturing apparatus according to the present invention, and in the figure (701) to (706) are first to sixth tanks in which the raw material compound and carrier gas, which are in a gas phase at room temperature, are sealed, respectively. The tanks are the first to sixth control valves (707)
~(712) and the 1st to 6th school 'M# Sin Vessel (713)~
(718). In the figure (719)・~(7
21) are first to third containers containing raw material compounds that are in a liquid or solid phase at room temperature, and each container is heated to a temperature given by the first to third YJ devices (722) to (724) for vaporization. It can be heated, and each container is roughly 7th to 9th.
It is connected to control valves (725) to (727) and seventh to ninth flow rate controllers (728) to (730). These gases are mixed in a mixer (731) and then passed through the main pipe (732).
) into the reaction chamber (733). The pipes along the way can be heated by appropriately placed pipe heaters (734) so that the gas, which is the vaporized raw material compound that is in a liquid or solid state at room temperature, does not condense on the way. . In the reaction chamber, a grounding voltage tN (735) and a power applying Ti electrode (736) are installed facing each other, and each electrode can be heated by an electrode heater (737). The power application type w1 (736) has a matching box for high frequency power (7
38) and matching for high frequency power (739) and low frequency power! A low frequency power supply (741L) is connected to a DC power supply (743) through a low-pass filter (742) via (740), and it is possible to apply power for different numbers of liquids using a connection selection switch (744). .Reaction chamber (73
3) The pressure inside can be TA'J by the pressure sub-part valve (745), and the pressure inside the reaction chamber (733) can be reduced through the exhaust system selection valve (746), diffusion pump (747), oil rotary Pump (748) or cooling exclusion device (749)
, mechanical booster pump (750), and oil rotary pump (748). Regarding exhaust gas,
After making it safe and harmless using a suitable exclusion device (753), it is exhausted into the atmosphere. These exhaust system piping can also be heated by appropriately placed piping heaters (734) to prevent the vaporized gas from the raw material compound, which is in a liquid or solid phase at room temperature, from condensing on the way. ing. For the same reason, the reaction chamber (733) can also be heated by the reaction chamber heater (751), and
The conductive substrate (752) on the electrode is now installed. In Fig. 7, the conductive substrate (752) is connected to the ground '7t1 pole (735).
Although it is fixedly arranged on the power application electrode (736), it may be fixedly arranged on the power application electrode (736), or may be arranged roughly on both sides.

第8図は本発明に係わる感光体の製造装置の別の一形態
を示し、反応室(833)内部の形態以外は、第7図に
示した本発明に係わる感光体の製造装置と同様であり、
付記された番号は、7oO番台のものを800番台に置
き換えで解すればよい。第8図において、反応室(83
3)内部には、第7図における接地電極(735)を兼
ねた円筒形の導電性基板(852)が設置きれ、内側に
は電極加熱器(837)が配されている。導電性基板(
852)周囲には同じく円筒形状をした電力印加電極(
836)が配され、外側には電極加熱器(837)が配
きれている。導電性基板(852)は、外部より駆動モ
ータ(854)を用いて自転可能となっている。
FIG. 8 shows another embodiment of the photoconductor manufacturing apparatus according to the present invention, which is similar to the photoconductor manufacturing apparatus according to the present invention shown in FIG. 7 except for the internal configuration of the reaction chamber (833). can be,
The appended numbers can be understood by replacing the 7oO series with the 800 series. In FIG. 8, the reaction chamber (83
3) A cylindrical conductive substrate (852) that also serves as the ground electrode (735) in FIG. 7 can be installed inside, and an electrode heater (837) is arranged inside. Conductive substrate (
852) There is also a cylindrical power application electrode (
836) is arranged, and an electrode heater (837) is arranged on the outside. The conductive substrate (852) is rotatable using an external drive motor (854).

感光体製造に供する反応室は、拡散ポンプにより予め1
o−4乃至10−’Torr程度にまで減圧し、真空度
の確認と装置内部に吸着したガスの脱着を行なう。同時
に電極加熱器により、電極並びに電極に固定して配され
た導電性基板を所定の温度まで昇温する。導電性基板に
は、前述の如ぎ感光体構成の中から所望の構成を得るた
めに、必要であれば、予めアンダーコート層或は電荷発
生層を設けて置いてもよい。アンダーコート層或は電荷
発生層の設置には、本装置を用いてもよいし別装置を用
いてもよい。次いで、第1乃至第6タンク及び第1乃至
第3容器から、原料ガスを適宜第1乃至第9流量制御器
を用いて定流量化しながら反応室内に導入し、圧力調節
弁により反応室内を一定の減圧状態に保つ。ガス流量が
安定化した後、接続選択スイッチにより、例えば高周波
電源を選択し、電力印加電極に高周波電力を投入する。
The reaction chamber used for photoreceptor production is preliminarily heated by a diffusion pump.
The pressure is reduced to approximately o-4 to 10-' Torr, and the degree of vacuum is confirmed and the gas adsorbed inside the apparatus is desorbed. At the same time, an electrode heater heats the electrode and the conductive substrate fixedly disposed on the electrode to a predetermined temperature. If necessary, an undercoat layer or a charge generation layer may be provided in advance on the conductive substrate in order to obtain a desired photoreceptor structure from among those described above. The present apparatus or a separate apparatus may be used to provide the undercoat layer or the charge generation layer. Next, the raw material gases are introduced into the reaction chamber from the first to sixth tanks and the first to third containers while being kept at a constant flow rate using the first to ninth flow rate controllers, and the inside of the reaction chamber is kept constant using the pressure control valve. Maintain a reduced pressure. After the gas flow rate is stabilized, a connection selection switch is used to select, for example, a high frequency power source, and high frequency power is applied to the power application electrode.

両電極間には放電が開始きれ、時間と共に基板上に固相
の膜が形成される。a−Si膜或はa−C膜は、原料ガ
スを代える事により任意に形成可能である。放電を一旦
停止し、原料ガス組成を変更した後、再び放電を再開す
れば異なる組成の膜を積層する事ができる。また、放電
を持続させながら原料ガス流量だけを徐々に代え、異な
る組成の膜を勾配を持たせながら積層する事も可能であ
る。
A discharge starts between the two electrodes, and a solid phase film is formed on the substrate over time. The a-Si film or the a-C film can be formed arbitrarily by changing the source gas. Films with different compositions can be laminated by once stopping the discharge, changing the source gas composition, and then restarting the discharge. It is also possible to gradually change only the raw material gas flow rate while sustaining the discharge, and to stack films of different compositions with a gradient.

反応時間により膜厚を制御卸し、所定の膜厚並びに積層
構成に達したところでhシミを停止し、本発明による感
光体を得る。次いで、第1乃至第9調節弁を閉じ、反応
室内を充分に排気する。ここで所望の感光体構成が得ら
れる場合には反応室内の真空を破り、反応室より本発明
による感光体を取り出す。更に所望の感光体構成におい
て、電荷発生層或はオーバーコート暦が必要とされる場
合には、そのまま本装置を用いるか、或は同様に一旦真
空を破り取り出して別装置に移してこれらの層を設け、
本発明による感光体を得る。
The film thickness is controlled by the reaction time, and when a predetermined film thickness and laminated structure are reached, h-staining is stopped to obtain a photoreceptor according to the present invention. Next, the first to ninth control valves are closed to sufficiently exhaust the inside of the reaction chamber. If the desired photoreceptor configuration is obtained, the vacuum in the reaction chamber is broken and the photoreceptor according to the present invention is taken out from the reaction chamber. Furthermore, if a charge generation layer or an overcoat layer is required in the desired photoreceptor configuration, this device can be used as is, or the vacuum can be broken and removed and transferred to another device to coat these layers. established,
A photoreceptor according to the present invention is obtained.

以下実施例を挙げながら、本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
Example 1 Using the manufacturing apparatus according to the present invention, as shown in FIG.
A photoreceptor of the present invention was prepared in which a conductive substrate, a charge transport layer, and a charge generation layer were provided in this order.

電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10−6To r r程度の高
真空にした後、第1調節弁(70?)、及び第4FJJ
節弁(710)を解放し、第4タンク(701)より水
素ガス、及び第4タンク(704)よりゲルマンガスを
各々出力圧1.○Kg/cm2の下で第1、及び第4流
量制御器(713、及び716)内へ流入させた。同時
に、第1容器(719)よりミルセンガスを第1温調器
(722)温度70℃のもと第7流量制御薇(728)
内へ流入させた。各流量制?M器を用いて、水素ガスの
流量を20secm、ゲルマンガスの流量を5secm
、及びミルセンガスの流量を20secmとなるように
設定して、途中混合器(731)を介して、主管(73
2)より反応室(733)内へ流入した。各々の流量が
安定した後に、反応室(733)内の圧力が1.5To
rrとなるように圧力調節弁(745)を調整した。一
方、導電性基板(752)としては、樅50X櫂50X
厚3mmのアルミニウム基板を用いて、予め150℃に
加熱しておき、ガス流量及び圧力が安定した状態で、予
め接続選択スイッチ(744)により接続しておいた低
周波電源(’741)を投入し、電力印加電極(736
)に110Wattの電力を周波数500KHzの下で
印加して約3時間40分プラズマ重合反応を行ない、導
電性基板(752)上に厚き15μmのa−C膜を電荷
fh送層として形成した。成膜完了後は、電力印加を停
止し、調節弁を閉じ、反応室(733)内を充分に排気
した。
Charge transport layer forming step: In the glow discharge decomposition apparatus shown in FIG. 7, first, the inside of the reaction device (733) is brought to a high vacuum of about 10-6 Torr, and then the first control valve (70?) and 4th FJJ
The control valve (710) is released, and hydrogen gas is supplied from the fourth tank (701) and germane gas is supplied from the fourth tank (704) to an output pressure of 1. It was made to flow into the first and fourth flow rate controllers (713 and 716) under ○Kg/cm2. At the same time, myrcene gas is supplied from the first container (719) to the first temperature controller (722) and then to the seventh flow rate control valve (728) at a temperature of 70°C.
It flowed inside. Each flow rate system? Using the M device, the flow rate of hydrogen gas was 20 sec, and the flow rate of germane gas was 5 sec.
, and the flow rate of myrcene gas is set to 20 seconds, and the main pipe (73
2) into the reaction chamber (733). After each flow rate stabilizes, the pressure inside the reaction chamber (733) increases to 1.5To
The pressure regulating valve (745) was adjusted so that rr. On the other hand, as the conductive substrate (752), fir 50X paddle 50X
Using an aluminum substrate with a thickness of 3 mm, preheat it to 150°C, and when the gas flow rate and pressure are stable, turn on the low frequency power supply ('741) that was previously connected using the connection selection switch (744). and the power application electrode (736
) was applied with a power of 110 Watts at a frequency of 500 KHz to perform a plasma polymerization reaction for about 3 hours and 40 minutes to form a 15 μm thick a-C film as a charge fh transport layer on the conductive substrate (752). After the film formation was completed, power application was stopped, the control valve was closed, and the inside of the reaction chamber (733) was sufficiently evacuated.

以上のようにして得られたa −C膜につき有機元素分
析を行なったところ、含有される本塁原子の量は炭素原
子と水素原子の総量に対して45原子%であった。また
、オージェ分析より含有されるゲルマニウム原子の量は
全構成原子に対して2゜8原子%てあった。
Organic elemental analysis of the a-C film obtained as described above revealed that the amount of home atoms contained was 45 atomic % based on the total amount of carbon atoms and hydrogen atoms. Moreover, the amount of germanium atoms contained was 2.8 at % based on the total constituent atoms according to Auger analysis.

電荷発生層形成工程: 次いで、一部タンクを交換し、第1調節弁(707)、
第2調節弁(708)、第3調節弁(709)、第5調
節弁(711)、及び第6調節弁(712)を解放し、
第1タンク(701)から水素ガス、第2タンク(70
2)からゲルマンガス、第3タンク(703)から四弗
化シランガス、第5タンク(705)から四弗化炭素ガ
ス、及び第6タンク(706)からシランガスを、出力
圧IKg/am2の下で第1、第2、第3、第5、及び
第6流量制(連語(713,714,715,717、
及び718)内へ流入させた。同時に、第4調節弁(7
10)を解放し、第4タンク(704)より水素ガスで
1100ppに希釈きれたジボランガスを、出力圧1.
5Kg/am2の下で第4流量制御器(716)内へ、
流入させた。各流量制i用益の目盛を調整して水素ガス
の流量を200secm、ゲルマンガスの流量を3se
cm。
Charge generation layer forming step: Next, some of the tanks are replaced, and the first control valve (707),
releasing the second control valve (708), the third control valve (709), the fifth control valve (711), and the sixth control valve (712);
Hydrogen gas from the first tank (701), hydrogen gas from the second tank (70
2), germane gas from the third tank (703), tetrafluoride silane gas from the fifth tank (705), and silane gas from the sixth tank (706) under an output pressure of IKg/am2. 1st, 2nd, 3rd, 5th, and 6th flow rate system (collocation (713, 714, 715, 717,
and 718). At the same time, the fourth control valve (7
10), and diborane gas diluted to 1100 pp with hydrogen gas from the fourth tank (704) was brought to an output pressure of 1.
into the fourth flow controller (716) under 5Kg/am2;
I let it flow in. Adjust the scale of each flow rate control i-usage to set the hydrogen gas flow rate to 200 sec and the germane gas flow rate to 3 sec.
cm.

四弗化シランガスの流量を50secm、四弗化炭素ガ
スの流量をO,lsecm、シランガスの流量を50s
ecm、水素ガスで1100ppに希釈されたジボラン
ガスの流量を1103CCとなるように設定し、反応室
(733)内に流入させた。各々の流量が安定した後に
、反応室(733)内の圧力が0.9Torrとなるよ
うに圧力調節弁(745)を調整した。一方、a −C
膜が形成されている導電性基板(7・52)は、250
℃に加熱しておき、ガスa、量及び圧力が安定した状態
で、高周波電源(739)より周波数13656MHz
d’)下でW力印加mJEj (736) に35Wa
ttの電力を印加し、グロー放電を発生させた。
The flow rate of silane tetrafluoride gas is 50 seconds, the flow rate of carbon tetrafluoride gas is O, lsec, and the flow rate of silane gas is 50 seconds.
ecm, the flow rate of diborane gas diluted to 1100 pp with hydrogen gas was set to 1103 CC, and the diborane gas was allowed to flow into the reaction chamber (733). After each flow rate became stable, the pressure control valve (745) was adjusted so that the pressure inside the reaction chamber (733) was 0.9 Torr. On the other hand, a-C
The conductive substrate (7.52) on which the film is formed is 250
℃, and with the gas a, amount and pressure stable, a frequency of 13656 MHz is supplied from a high frequency power source (739).
d'), apply W force mJEj (736) to 35W
A glow discharge was generated by applying a power of tt.

この放電を5分間行ない、厚き063μmの電荷発生層
を得た。
This discharge was carried out for 5 minutes to obtain a charge generation layer with a thickness of 063 μm.

得られたa−Si膜につき、金属中ONH分析(板場製
作所製EMGA−1300) 、オージェ分析、及びI
MA分析を行なったところ、含有される水素原子は全構
成原子に対して22原子%、硼素原子は11原子ppm
%弗素原子は4.8原子%、炭素原子は0.1原子%、
ゲルマニウム原子は6.4原子%であった。
The obtained a-Si film was subjected to ONH analysis in metal (EMGA-1300 manufactured by Itaba Seisakusho), Auger analysis, and I
When MA analysis was performed, the hydrogen atoms contained were 22 at% of the total constituent atoms, and the boron atoms were 11 at ppm.
%Fluorine atoms are 4.8 at%, carbon atoms are 0.1 at%,
Germanium atoms were 6.4 at%.

特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一480V (+530V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1μm当り
の帯電能は31■/μm (35V/μm)・と極めて
高く、このことから充分な帯電性能を有する事が理解さ
れた。
Characteristics: When the obtained photoreceptor was used with both negative and positive charging in a conventional Carlson process, the following performance was obtained. Here, the measured values at the time of positive charging are shown in parentheses, and the highest charging potential is -480V (+530V), that is,
Since the total photoreceptor film thickness was 15.degree. 3 .mu.m, the charging ability per 1 .mu.m was extremely high at 31 .mu.m/.mu.m (35 V/.mu.m).From this, it was understood that the photoreceptor had sufficient charging performance.

また、暗中にてVmaxからVmaXの90%の表面電
位にまで暗減衰するのに要した時間は約16秒(約17
秒)であり、このことから充分な電荷保持性能を有する
事が理解された。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明鳳衰させたところ必要ときれた光量は1.フルック
ス・秒(1,5ルツクス・秒)であり、このことから充
分な光感度性能を有する事が理解された。また、最高帯
電電位に初期帯電した後、半導体レーザー光(発光波長
780nm)を用いて最高帯電電位の20%の表面電位
にまで明減衰きせたとこる必要とされた光量は9.3e
rg/cm2(8,2erg/am2)であり、このこ
とから充分な長波長光感度性能を有する事が理Mされた
In addition, the time required for dark decay from Vmax to 90% of Vmax in the dark was approximately 16 seconds (approximately 17 seconds).
seconds), and from this it was understood that it had sufficient charge retention performance. In addition, after initial charging to the highest charging potential, white light was used to decay the surface potential to 20% of the highest charging potential, and the required amount of light was 1. flux-second (1.5 lux-second), and from this it was understood that it had sufficient photosensitivity performance. In addition, after initial charging to the highest charging potential, the brightness was attenuated to a surface potential of 20% of the highest charging potential using semiconductor laser light (emission wavelength 780 nm).The required light amount was 9.3e.
rg/cm2 (8.2 erg/am2), and from this it was concluded that it had sufficient long wavelength light sensitivity performance.

以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解される。
From the above, it is understood that the photoreceptor according to the present invention shown in this example has excellent performance as a photoreceptor.

また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、5!¥明な画像が得ら
れた。
In addition, when an image was formed and transferred to this photoreceptor using the commonly used Carlson process, the result was 5! A clear image was obtained.

実施例2 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
Example 2 Using the manufacturing apparatus according to the present invention, as shown in FIG.
A photoreceptor of the present invention was prepared in which a conductive substrate, a charge transport layer, and a charge generation layer were provided in this order.

電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を1O−6Torr程度の高真空
にした後、第1調節弁(707)、第2調節弁(708
)、及び第6調回弁(712)を解放し、第1タンク(
701)から水素ガス、第2タンク(702)からエチ
レンガス、及び第6タンク(706)からシランガスを
、各々出力圧1.○Kg/cm2の下で第1、第2、及
び第6流量制部器(713,714、及び718)内へ
流入させた。各流量制御器を用いて、水素ガスの流量を
60secm、エチレンガスの流量を60SCCm、及
びシランガスの流量を3secmとなるように設定して
、途中混合器(731)を介して、主管(732)より
反応室(733)内/\流入した。各々の流量が安定し
た後に、反応室(733)内の圧力が1.8Torrと
なるように圧力調節弁(745)を調整した。一方、導
電性基板(752)としては、’ftl 50 X 横
50 X N3mmのアルミニウム基板を用いて、予め
250℃に加熱しておき、ガス流量及び圧力が安定した
状態で、予め接続選択スイッチ(744)により接続し
ておいた高周波電源(739)を投入し、電力印加電極
(736)に180Wattの電力を周波数13.56
MHzの下で印加して約10時間プラズマ重合反応を行
ない、導電性基板(752)上に厚き15μmのa −
C膜を電荷輸送層として形成した。成膜完了後は、電力
印加を停止し、調節弁を閉じ、反応室(733)内を充
分に排気した。
Charge transport layer forming step: In the glow discharge decomposition apparatus shown in FIG. 7, first, the inside of the reaction device (733) is brought to a high vacuum of about 10-6 Torr, and then the first control valve (707) and the second control valve (708
), and the sixth regulating valve (712) are released, and the first tank (
701), ethylene gas from the second tank (702), and silane gas from the sixth tank (706), each at an output pressure of 1. It was made to flow into the first, second, and sixth flow rate controllers (713, 714, and 718) under ○Kg/cm2. Using each flow rate controller, set the flow rate of hydrogen gas to 60 sec, the flow rate of ethylene gas to 60 SCCm, and the flow rate of silane gas to 3 sec. The liquid then entered the reaction chamber (733). After each flow rate became stable, the pressure control valve (745) was adjusted so that the pressure in the reaction chamber (733) was 1.8 Torr. On the other hand, as the conductive substrate (752), use an aluminum substrate measuring 50 mm wide x 50 mm wide x N3 mm, heat it in advance to 250°C, and with the gas flow rate and pressure stable, connect the connection selection switch ( Turn on the high frequency power supply (739) connected by
Plasma polymerization reaction was carried out for about 10 hours by applying the voltage under MHz, and a 15 μm thick a-
A C film was formed as a charge transport layer. After the film formation was completed, power application was stopped, the control valve was closed, and the inside of the reaction chamber (733) was sufficiently evacuated.

以上のようにして得られたa −C膜につき有機元素分
析を行なったところ、含有きれる水素原子の量は炭素原
子と水素原子の総量に対して45原子%であった。また
、オージェ分析より含有されるシリコン原子の量は全構
成原子に対して0.4一原子%であっt;。
When organic elemental analysis was performed on the a-C film obtained as described above, the amount of hydrogen atoms that could be contained was 45 at % based on the total amount of carbon atoms and hydrogen atoms. Furthermore, according to Auger analysis, the amount of silicon atoms contained was 0.4 atomic % based on the total constituent atoms.

電荷輸送層形成工程: 次いで、一部タンクを交換し、第1調節弁(7o7)、
第2調節弁(708)、第5調節弁(711)、及び第
6調節弁(712)を解放し、第1タンク(701)か
ら水素ガス、第2タンク(702)からゲルマンガス、
第5タンク(705)からメタンガス、及び第6タンク
(706)からシランガスを、出力圧IKg/cm2の
下で第1、第2、第5、及び第6流量制部器(713,
714,717、及び718)内へ流入させた。
Charge transport layer forming step: Next, some of the tanks were replaced, and the first control valve (7o7)
The second control valve (708), the fifth control valve (711), and the sixth control valve (712) are released, hydrogen gas is released from the first tank (701), germane gas is removed from the second tank (702),
Methane gas from the fifth tank (705) and silane gas from the sixth tank (706) are supplied to the first, second, fifth, and sixth flow rate controllers (713,
714, 717, and 718).

同時に、第4調節弁(710)を解放し、第4タンク(
704)より水素ガスで10ppmに希釈されたホスフ
ィンガスを、出力圧1.5Kg/cm2の下で第4流量
制t’liu (716)内へ、流入きせた。各流ff
i制譚器の目盛を調整して水素ガスの流量を200se
cm、ゲルマンガスの流量を68CCm、メタンガスの
流量を3secm、シランガスの流量を200secm
、水素ガスで1100ppに希釈されたホスフィンガス
の流量を10105eに設定し、反応室(733)内に
流入きせた。各々の流量が安定した後に、反応室(73
3)内の圧力が1.○Torrとなるように圧力調節弁
(745)を調整した。一方、a−C膜が形成されてい
る導電性基板(752)は、230℃に加熱しておき、
ガス流量及び圧力が安定した状態で、高周波電源(73
9)より周波v1.13 。
At the same time, the fourth control valve (710) is released and the fourth tank (
Phosphine gas diluted to 10 ppm with hydrogen gas (704) was allowed to flow into the fourth flow rate control t'liu (716) under an output pressure of 1.5 Kg/cm2. Each style ff
Adjust the scale of the i-controller to set the hydrogen gas flow rate to 200se.
cm, germane gas flow rate 68 CCm, methane gas flow rate 3 sec, silane gas flow rate 200 sec
The flow rate of phosphine gas diluted to 1100 pp with hydrogen gas was set to 10105e, and the flow rate was allowed to flow into the reaction chamber (733). After each flow rate stabilized, the reaction chamber (73
3) The pressure inside 1. The pressure control valve (745) was adjusted so that the pressure was ○Torr. On the other hand, the conductive substrate (752) on which the a-C film is formed is heated to 230°C.
With the gas flow rate and pressure stable, turn on the high frequency power supply (73
9) Frequency v1.13.

56MHzの下で電力印加電極(736)に35Wat
tの電力を印加し、グロー放電を発生させた。この放電
を5分間行ない、厚き0.3μmの電荷発生層を得た。
35W to the power application electrode (736) under 56MHz
A power of t was applied to generate a glow discharge. This discharge was carried out for 5 minutes to obtain a charge generation layer with a thickness of 0.3 μm.

得られたa−Si膜につき、金属中ONH分析(板場製
作所製EMGA−1300) 、オージェ分析、及びI
MA分析を行なったところ、含有される水素原子は全構
成原子に対して18原子%、燐原子は12原子ppmN
炭素原子は0.3原子%、ゲルマニウム原子は10.4
原子%であった。
The obtained a-Si film was subjected to ONH analysis in metal (EMGA-1300 manufactured by Itaba Seisakusho), Auger analysis, and I
When MA analysis was performed, the hydrogen atoms contained were 18 at% of the total constituent atoms, and the phosphorus atoms were 12 at ppmN
Carbon atoms are 0.3 at%, germanium atoms are 10.4
It was atomic%.

特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一490V (+740V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1μm当り
の帯電能は32■/μm (48V/μm)と極めて高
く、このことから充分な帯電性能を有する事が理解きれ
た。
Characteristics: When the obtained photoreceptor was used with both negative and positive charging in a conventional Carlson process, the following performance was obtained. Here, the measured values during positive charging are shown in parentheses, and the highest charging potential is -490V (+740V), that is,
Since the total photoreceptor film thickness was 15.degree. 3 .mu.m, the charging ability per 1 .mu.m was extremely high at 32 .mu.m/.mu.m (48 V/.mu.m), and from this it was understood that the photoreceptor had sufficient charging performance.

また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約12秒(約18
秒)であり、このことから充分な電荷保持性能を有する
事が理解された。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰させたとこる必要とされた光量は1.2ルツク
ス・秒(3,5ルツクス・秒)であり、このことから充
分な光感度性能を有する事が理解された。
In addition, the time required for dark decay from Vmax to 90% of Vmax in the dark was approximately 12 seconds (approximately 18
seconds), and from this it was understood that it had sufficient charge retention performance. In addition, after initial charging to the highest charging potential, white light was used to brightly attenuate the surface potential to 20% of the highest charging potential.The amount of light required was 1.2 lux·sec (3.5 lux・seconds), and from this it was understood that it had sufficient photosensitivity performance.

以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解される。
From the above, it is understood that the photoreceptor according to the present invention shown in this example has excellent performance as a photoreceptor.

また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
Further, when an image was formed and transferred to this photoreceptor using the commonly used Carlson process, a clear image was obtained.

実施例3 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、N荷発止層をこの頭に設けた
本発明感光体を作製した。
Example 3 Using the manufacturing apparatus according to the present invention, as shown in FIG.
A photoreceptor of the present invention was prepared in which a conductive substrate, a charge transport layer, and an N charge blocking layer were provided on the head.

電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
袋ffi (733)の内部を10−6To r r程
度の高真空にした後、第1調節弁(707)、第2調節
弁(708) 、及び第6調節弁(712)を解放し、
第1タンク(701)から水素ガス、第2タンク(70
2)からブタジェンガス、及び第6タンク(706)か
らシランガスを、各々出力圧1.0Kg/am2の下で
第1、第2、及び第6流量制御器(713,714、及
び718)内へ流入ざ廿た。各流量制御m器を用いて、
水素ガスの流量を60secm、ブタジェンガスの流量
を60secm、及びシランガスの流量を5secmと
なるように設定して、途中混合器(731)を介して、
主管(732)より反応室(733)”内へ流入した。
Charge transport layer forming step: In the glow discharge decomposition apparatus shown in FIG. Release the second control valve (708) and the sixth control valve (712),
Hydrogen gas from the first tank (701), hydrogen gas from the second tank (70
Butadiene gas from 2) and silane gas from the sixth tank (706) flow into the first, second, and sixth flow rate controllers (713, 714, and 718) under an output pressure of 1.0 Kg/am2, respectively. It's gone. Using each flow rate controller,
The flow rate of hydrogen gas was set to 60 seconds, the flow rate of butadiene gas was set to 60 seconds, and the flow rate of silane gas was set to 5 seconds, and the mixture was passed through an intermediate mixer (731).
It flowed into the reaction chamber (733) from the main pipe (732).

各々の流量が安定した後に、反応室(733)内の圧力
が1.8Torrとなるように圧力調節弁(745)を
調整した。一方、導電性基板(752)としては、樅5
0XI50X厚3mmのアルミニウム基板を用いて、予
め250℃に加熱しておき、ガス流量及び圧力が安定し
た状態で、予め接続選択スイッチ(744)により接続
しておいた低周波電源(741)を投入し、電力印加f
fi橿(736)に120Wattの電力を周波数40
0KHzの下で印加して約40分間プラズマ重合反応を
行ない、導電性基板(752)上に厚き15μmのa−
C膜を電荷輸送層として形成した。成膜完了後は、電力
印加を停止し、調節弁を閉じ、反応室(733)内を充
分に排気した。
After each flow rate became stable, the pressure control valve (745) was adjusted so that the pressure in the reaction chamber (733) was 1.8 Torr. On the other hand, as the conductive substrate (752), fir 5
Using an 0XI50X aluminum substrate with a thickness of 3 mm, preheat it to 250°C, and when the gas flow rate and pressure are stable, turn on the low frequency power supply (741) that was previously connected using the connection selection switch (744). and power application f
Power of 120Watt to fi rod (736) at frequency 40
A plasma polymerization reaction was performed for about 40 minutes under 0 KHz, and a 15 μm thick a-
A C film was formed as a charge transport layer. After the film formation was completed, power application was stopped, the control valve was closed, and the inside of the reaction chamber (733) was sufficiently evacuated.

以上のようにしてt4られたa −C膜につき有機元素
分析を行なったところ、含有きれる水素原子の量は炭素
原子と水素原子の総量に対して53原子%であった。ま
た、オージェ分析より含有されるシラン原子の量は全t
R成原子に対して5.2原子%であった。
When organic elemental analysis was performed on the a-C film subjected to t4 as described above, the amount of hydrogen atoms that could be contained was 53 at % based on the total amount of carbon atoms and hydrogen atoms. Furthermore, from Auger analysis, the amount of silane atoms contained is total t
The amount was 5.2 at% based on the R atoms.

電荷発生層形成工程: 次いで、一部タンクを交換し、第1調節弁(707)、
第2調節弁(708)、第5調節弁(711)、及び第
6調節弁(712)を解放し、第1タンク(701)か
ら水素ガス、第2タンク(702)からゲルマンガス、
第5タンク(705)からメタンガス、及び第6タンク
(706)からシランガスを、出力圧IKg/cm2の
下で第1、第2、第5、及び第6流量制御器(713,
714,717、及び718)内へ流入させた。
Charge generation layer forming step: Next, some of the tanks are replaced, and the first control valve (707),
The second control valve (708), the fifth control valve (711), and the sixth control valve (712) are released, hydrogen gas is released from the first tank (701), germane gas is removed from the second tank (702),
Methane gas from the fifth tank (705) and silane gas from the sixth tank (706) are supplied to the first, second, fifth, and sixth flow rate controllers (713,
714, 717, and 718).

同時に、第4調節弁(710)を解放し、第4タンク(
704)より水素ガスで1100ppに希釈されたジボ
ランガスを、出力圧1.5Kg/cm2の下で第4流量
制御器(716)内へ、流入きせた。各流量制御IJN
の目盛を調整して水素ガスの流量を200secm、ゲ
ルマンガスの流量を6secm、メタンガスの流量をO
,Olsecm。
At the same time, the fourth control valve (710) is released and the fourth tank (
Diborane gas diluted to 1100 pp with hydrogen gas (704) was allowed to flow into the fourth flow rate controller (716) under an output pressure of 1.5 Kg/cm2. Each flow rate control IJN
Adjust the scale to set the hydrogen gas flow rate to 200 sec, the germane gas flow rate to 6 sec, and the methane gas flow rate to O.
, Olsecm.

シランガスの流量を101005a、水素ガスで110
0ppに希?、キれたジボランガスの流量を10105
eとなるように設定し、反応室(733)内に流入させ
な。各々の流量が安定した後に、反応室(733)内の
圧力が0.8Torrとなるように圧力調節、# (7
45)を調整した。一方、a−C膜が形成されている導
電性基板(752)は、250℃に加熱しておき、ガス
流量及び圧力が安定した状態で、高周波電源(739)
より周波数13.56MHzの下で電力印加型+Eii
(736)に35Wattの電力を印加し、グロー放電
を発生させた。この放電を5分間行ない、厚き0゜3μ
mの電荷発生層を得た。
The flow rate of silane gas is 101005a, and the flow rate of hydrogen gas is 110a.
Rare to 0pp? , the flow rate of the broken diborane gas is 10105
e, and do not allow it to flow into the reaction chamber (733). After each flow rate stabilized, the pressure was adjusted so that the pressure in the reaction chamber (733) was 0.8 Torr, # (7
45) was adjusted. On the other hand, the conductive substrate (752) on which the a-C film is formed is heated to 250°C, and the high-frequency power source (739) is heated to stabilize the gas flow rate and pressure.
Power application type +Eii under frequency 13.56MHz
(736) was applied with a power of 35 Watts to generate a glow discharge. This discharge was carried out for 5 minutes, and a thickness of 0°3 μ
A charge generation layer of m was obtained.

得られたa−Si膜につき、金属中ONH分析(板場製
作所製EMGA−1300) 、オージェ分析、及びI
MA分析を行なったところ、含有される水素原子は全構
成原子に対して20原子%、1M素原子は9原子pPm
%炭素原子は0.○01原子%、ゲルマニウム原子は9
.8原子%であった。
The obtained a-Si film was subjected to ONH analysis in metal (EMGA-1300 manufactured by Itaba Seisakusho), Auger analysis, and I
When MA analysis was performed, the hydrogen atoms contained were 20 at% of all constituent atoms, and 1M elementary atoms were 9 at pPm.
% carbon atoms is 0. ○01 atomic%, germanium atoms are 9
.. It was 8 atom%.

特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正?g電で用いたところ次の如き性能が得られ
た。ここでは、正帯電時の測定値を括弧内に示すが、最
高帯電電位は一580V (+610V)で有り、即ち
、全感光体膜厚が15゜3umであることから1μm当
りの帯電能は38V/μm (40V/um)と極めて
高く、このことから充分な帯電性能を有する事が理解さ
れた。
Characteristics: The resulting photoreceptor can be negatively charged or positively charged in the commonly used Carlson process. When used in g-den, the following performance was obtained. Here, the measured values during positive charging are shown in parentheses, and the highest charging potential is -580V (+610V).In other words, since the total photoreceptor film thickness is 15°3um, the charging ability per 1μm is 38V. /μm (40V/um), which was extremely high, and it was understood from this that it had sufficient charging performance.

また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約23秒(約25
秒)であり、このことから充分な電荷保持性能を有する
事が理解された。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰きせたとこる必要とされた光量は1.6ルツク
ス・秒(1,5ルツクス・秒)であり、このことから充
分な光感度性能を有する事が理解きれた。また、最高帯
電電位に初期帯電した後、半導体レーザー光(発光波長
780nm)を用いて最高帯電電位の20%の表面電位
にまで明減衰させたところ必要とされた光量は?、8e
rg/cm′:(9,7erg/crn2)であり、こ
のことから充分な長波長光感度性能を有する事が理解さ
れた。
In addition, the time required for dark decay from Vmax to 90% of Vmax in the dark was approximately 23 seconds (approximately 25 seconds).
seconds), and from this it was understood that it had sufficient charge retention performance. In addition, after initial charging to the highest charging potential, the brightness was attenuated to a surface potential of 20% of the highest charging potential using white light.The amount of light required was 1.6 lux seconds (1.5 lux・seconds), and from this we can understand that it has sufficient photosensitivity performance. Also, after initial charging to the highest charging potential, what was the amount of light required to attenuate the brightness to a surface potential of 20% of the highest charging potential using semiconductor laser light (emission wavelength 780 nm)? ,8e
rg/cm': (9.7 erg/crn2), and from this it was understood that it had sufficient long wavelength light sensitivity performance.

以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解きれる。
From the above, it can be understood that the photoreceptor according to the present invention shown in this example has excellent performance as a photoreceptor.

また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
Further, when an image was formed and transferred to this photoreceptor using the commonly used Carlson process, a clear image was obtained.

寒旗辺迭 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
Using the manufacturing apparatus according to the present invention, as shown in FIG.
A photoreceptor of the present invention was prepared in which a conductive substrate, a charge transport layer, and a charge generation layer were provided in this order.

電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10−’To r r程度の高
真空にした後、第1調節弁(707)、第2調節弁(7
08) 、及び第4調節弁(710)を解放し、第1タ
ンク(701)から水素ガス、第2タンク(702)か
らアセチレンガス、及び第4タンク(704)からゲル
マンガスを、各々出力圧1.0Kg/am2の下で第1
、第2、及び第6流量制(’III器(713,714
、及び716)内へ流入きせた。各流量制御器を用いて
、水素ガスの流量を10105se、アセチレンガスの
流量を45secm、及びゲルマンガスの′fC量を9
secmとなるように設定して、途中混合器(731)
を介して、主管(732)より反応室(733)内へ流
入した。各々の流量が安定した後に、反応室(733)
内の圧力が2.0Torrとなるように圧力調節弁(7
45)を調整した。一方、導電性基板(752)として
は、樅50X横50×厚3mmのアルミニウム基板を用
いて、予め190℃に加熱しておき、ガス流量及び圧力
が安定した状態で、予め接続選択スイッチ(744)に
より接続しておいた高周波電源(739)を投入し、電
力印加電極(736)に90Wattの電力を周波数1
3.56MHzの下で印加して約3時間20分プラズマ
重合反応を行ない、導電性基板(752)上に厚き15
μmのa−C膜を電荷輸送層として形成した。成膜完了
後は、電力印加を停止し、調節弁を閉じ、反応室(73
3)内を充分に排気した。
Charge transport layer forming step: In the glow discharge decomposition apparatus shown in FIG. 2 control valves (7
08) and the fourth control valve (710) are released, hydrogen gas is supplied from the first tank (701), acetylene gas is supplied from the second tank (702), and germane gas is supplied from the fourth tank (704), respectively at the output pressure. 1st under 1.0Kg/am2
, 2nd, and 6th flow rate control ('III device (713, 714
, and 716). Using each flow rate controller, set the flow rate of hydrogen gas to 10105sec, the flow rate of acetylene gas to 45sec, and the 'fC amount of germane gas to 9.
secm, and mixer (731)
It flowed into the reaction chamber (733) from the main pipe (732) through the main pipe (732). After each flow rate is stabilized, the reaction chamber (733)
Pressure regulating valve (7) so that the internal pressure is 2.0 Torr.
45) was adjusted. On the other hand, as the conductive substrate (752), use an aluminum substrate of 50 mm x 50 mm x 3 mm in thickness, heat it to 190°C in advance, and when the gas flow rate and pressure are stable, connect the connection selection switch (744). ) is connected to the high frequency power source (739), and a power of 90 Watt is applied to the power application electrode (736) at frequency 1.
A plasma polymerization reaction was performed for about 3 hours and 20 minutes by applying a frequency of 3.56 MHz, and a thick layer of 15 MHz was applied on the conductive substrate (752).
A μm a-C film was formed as a charge transport layer. After the film formation is completed, the power application is stopped, the control valve is closed, and the reaction chamber (73
3) The inside was sufficiently evacuated.

以上のようにして得られたa  CH’Aにつき有機元
素分析を行なったところ、含有される水素原子の量は炭
素原子と水素原子の総量に対して34原子%であった。
When organic elemental analysis was performed on a CH'A obtained as described above, the amount of hydrogen atoms contained was 34 at % based on the total amount of carbon atoms and hydrogen atoms.

また、オージェ分析より含有されるゲルマニウム原子の
量は全構成原子に対して7゜8原子%であった。
Furthermore, the amount of germanium atoms contained was found to be 7.8 at% based on the total constituent atoms according to Auger analysis.

電荷発生層形成工程: 次いで、一部タンクを交換し、第1調節弁(707)、
第5調節弁(711)、及び第6調節弁(712)を解
放し、第1タンク(701)から水素ガス、第2タンク
(702)からゲルマンガス、第5タンク(705)か
らエタンガス、及び第6タンク(706)からシランガ
スを、出力圧IKg/cm2の下で第11第2、第5、
及び第6流量制卯器(713,714,717、及び7
18)内へ流入きせな。同時に、第4調節弁(710)
を解放し、第4タンク(704)より水素ガスで110
0ppに希釈きれたジボランガスを、出力圧1.5Kg
/am2の下で第4流量制御器(716)内へ、流入さ
せた。各流量制御器の目盛を調整して水素ガスの流量を
200secm。
Charge generation layer forming step: Next, some of the tanks are replaced, and the first control valve (707),
The fifth control valve (711) and the sixth control valve (712) are released, and hydrogen gas is discharged from the first tank (701), germane gas from the second tank (702), ethane gas from the fifth tank (705), and Silane gas is supplied from the 6th tank (706) to the 11th, 2nd, 5th, and
and the sixth flow control device (713, 714, 717, and 7
18) Inflow into the inside. At the same time, the fourth control valve (710)
110 with hydrogen gas from the fourth tank (704).
Diborane gas diluted to 0pp, output pressure 1.5Kg
/am2 into the fourth flow controller (716). Adjust the scale of each flow rate controller to set the hydrogen gas flow rate to 200 seconds.

ゲルマンガスの流量を10105e、エタンガスの流量
を3secm、シランガスの流量を1003 CCm 
%水素ガスで1100ppに希釈されたジボランガスの
流量を10105eに設定し、反応室(733)内に流
入とせな。各々の流量が安定した後に、反応室(733
)内の圧力が0.9Torrとなるように圧力調節弁(
745)を調整した。一方、a−C膜が形成きれている
導電性基板(752)は、240℃に加熱しておき、ガ
ス流量及び圧力が安定した状態で、高周波電源(739
)より周波数13.56MHzの下で電力印加電極(7
36)に45Wattの電力を印加し、グロー放電を発
生させた。この放電を5分間行ない、厚き0.3μmの
電荷発生層を得た。
The flow rate of germane gas is 10105e, the flow rate of ethane gas is 3 sec, and the flow rate of silane gas is 1003 CCm.
The flow rate of diborane gas diluted to 1100 pp with hydrogen gas was set to 10105e and allowed to flow into the reaction chamber (733). After each flow rate stabilizes, the reaction chamber (733
) so that the pressure inside the pressure control valve (
745) was adjusted. On the other hand, the conductive substrate (752) on which the a-C film has been formed is heated to 240°C, and the high-frequency power source (739) is heated with the gas flow rate and pressure stable.
) under a frequency of 13.56 MHz from the power applying electrode (7
36) was applied with a power of 45 Watt to generate glow discharge. This discharge was carried out for 5 minutes to obtain a charge generation layer with a thickness of 0.3 μm.

得られたa  5illuにつき、金属中ONH分析(
板場製作所製EMGA−1300)、オージェ分析、及
びIMA分析を行なうたところ、含有きれろ水素原子は
全構成原子に対して21原子96、硼素原子は11原子
ppm、炭素原子f0.3原子%、ゲルマニウム原子は
15.7原子%てあった。
ONH analysis in metal (
EMGA-1300 (manufactured by Itaba Seisakusho), Auger analysis, and IMA analysis revealed that hydrogen atoms contained were 21 atoms and 96 atoms, boron atoms were 11 atoms ppm, and carbon atoms f0.3 at%. , germanium atoms were 15.7 at%.

特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
?tf電電電電−800V (+780V)で有り、即
ち、全感光体膜厚が15゜3μmであることから1μm
当りの帯電能;よ52V/μm(51V/μm)と極め
て高く、このことから充分な帯電性能を有する事が理解
された。
Characteristics: When the obtained photoreceptor was used with both negative and positive charging in a conventional Carlson process, the following performance was obtained. Here, the measured values when positively charged are shown in parentheses, but is it the best? tf electric power is -800V (+780V), that is, the total photoreceptor film thickness is 15°3μm, so it is 1μm.
The charging performance per charge was extremely high at 52 V/μm (51 V/μm), and from this it was understood that the battery had sufficient charging performance.

また、暗中にてVmaxからVmaxの9o%の表面電
位にまで暗減衰するのに要した時間は約31秒(約35
秒)であり、このことから充分な電荷保持性能を有する
事が理解された。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰きせたとこる必要ときれた光量は41.5ルツ
クス・秒(3,8ルツクス・秒)であり、このことから
充分な光感度性能を有する事が理解された。
In addition, the time required for the dark decay from Vmax to 9% of Vmax in the dark was approximately 31 seconds (approximately 35
seconds), and from this it was understood that it had sufficient charge retention performance. In addition, after initial charging to the highest charging potential, the brightness was attenuated to a surface potential of 20% of the highest charging potential using white light.・seconds), and from this it was understood that it had sufficient photosensitivity performance.

以上より、本例に示した本発明による感光体は、感光体
としでばれた性能を有するものてあケ事が理解きれる。
From the above, it can be understood that the photoreceptor according to the present invention shown in this example has excellent performance as a photoreceptor.

また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
Further, when an image was formed and transferred to this photoreceptor using the commonly used Carlson process, a clear image was obtained.

実施A旦 本発明に係わる製造装置を月いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
Implementation A: As shown in FIG.
A photoreceptor of the present invention was prepared in which a conductive substrate, a charge transport layer, and a charge generation layer were provided in this order.

電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10−6To r r程度の高
真空にした後、第1yJ節弁(707)、第2調節弁(
708)、及び第6調節弁(712)を解放し、第1タ
ンク(701)から水素ガス、第2タンク(702)か
らブタジインガス、及び第6タンク(706)からシラ
ンガスを、各々出力圧1.0Kg/cm2の下で第1、
第2、及び第6流量制御器(713,714、及び71
8)内へ流入きせた。各流量刺部器を用いて、水素ガス
の流量を60secm、ブタジインガスの流星を603
 CCm、及びシランガスの流量を1105CCとなる
ように設定して、途中混合器(731)を介して、主管
(732)より反応室(733)内へ流入した。各々の
流量が安定した後に、反応室(733)内の圧力が2.
○Torrとなるように圧力調節弁(745)を調整し
た。一方、導電性基板(752)としては、縦50×横
50×厚3mmのアルミニウム基板を用いて、予め13
0℃に加熱しておき、ガス流量及び圧力が安定した状態
で、予め接続選択スイッチ(744)により接続してお
いた低周波電源(741)を投入し、電力印加電極(7
36)に180Wattの電力を周波数100KHzの
下で印加して約30分間プラズマ重合反応を行ない、導
電性基板(752)上に厚ざ15μmのa−C膜を電荷
輸送層として形成した。成膜完了後は、電力印加を停止
し、調節弁を閉じ、反応室(733)、内を充分に排気
した。
Charge transport layer forming step: In the glow discharge decomposition apparatus shown in FIG. Control valve(
708) and the sixth control valve (712) are released, hydrogen gas is supplied from the first tank (701), butadiene gas is supplied from the second tank (702), and silane gas is supplied from the sixth tank (706) to an output pressure of 1. 1st under 0Kg/cm2,
Second and sixth flow controllers (713, 714, and 71
8) It flowed inward. Using each flow rate prick device, the flow rate of hydrogen gas was 60 sec, and the flow rate of butadiene gas was 603 sec.
CCm and the flow rate of silane gas were set to 1105 CC, and the gas flowed into the reaction chamber (733) from the main pipe (732) via an intermediate mixer (731). After each flow rate stabilizes, the pressure inside the reaction chamber (733) decreases to 2.
The pressure control valve (745) was adjusted so that the pressure was ○Torr. On the other hand, as the conductive substrate (752), an aluminum substrate measuring 50 mm long x 50 mm wide x 3 mm thick was used.
After heating the gas to 0°C and stabilizing the gas flow rate and pressure, turn on the low frequency power supply (741) that was previously connected using the connection selection switch (744), and connect the power application electrode (744).
36) at a frequency of 100 KHz to perform a plasma polymerization reaction for about 30 minutes to form an a-C film with a thickness of 15 μm as a charge transport layer on the conductive substrate (752). After the film formation was completed, power application was stopped, the control valve was closed, and the inside of the reaction chamber (733) was sufficiently evacuated.

以上のようにして得られたa −C膜につき有機元素分
析を行なったところ、含有きれろ水素原子の量は炭素原
子と水素原子の総量に対して4o原子%であった。また
、オージェ分析より含有されるシリコン原子の量は全構
成原子に対して9.4原子%であった。
When organic elemental analysis was performed on the a-C film obtained as described above, the amount of hydrogen atoms contained was 40 at % based on the total amount of carbon atoms and hydrogen atoms. Moreover, the amount of silicon atoms contained was 9.4 at % based on the total constituent atoms according to Auger analysis.

電荷発生層形成工程: 次いで、一部タンクを交換し、第1調節弁(707)、
第2調節弁(708)、第5調節弁(711)、及び第
6調節弁(712)を解放し、第1タンク(701)か
ら水素ガス、第2タンク(702)からゲルマンガス、
第5タンク(705)からメタンガス、及び第6タンク
(706)からシランガスを、出力圧’IKg/cm2
の下で第1、第2、第5、及び第6流量制御式(713
,714,717、及び718)内へ流入させた。
Charge generation layer forming step: Next, some of the tanks are replaced, and the first control valve (707),
The second control valve (708), the fifth control valve (711), and the sixth control valve (712) are released, hydrogen gas is released from the first tank (701), germane gas is removed from the second tank (702),
Methane gas is supplied from the fifth tank (705) and silane gas is supplied from the sixth tank (706) at an output pressure of 'IKg/cm2.
The first, second, fifth, and sixth flow rate control formulas (713
, 714, 717, and 718).

同時に、第4調節弁(710)を解放し、第4タンク(
704)より水素ガスで1100ppに希釈されたジボ
ランガスを、出力圧1.5Kg/cm2の下で第4流量
制御器(716)内へ、流入させた。各流量制in器の
目盛を調整して水素ガスの流量を200secm、ゲル
マンガスの流量を6scCm、メタンガスの流量を10
105e、シランガスの流量を1001005e水素ガ
スで1100ppに希釈きれたジポランガスの流量を1
01005eに設定し、反応室(733)内に流入させ
た。各々の流量が安定した後に、反応室(733)内の
圧力が0.8Torrとなるように圧力調節弁(745
)を調整した。一方、a−C膜が形成されている導電性
基板(752)は、250℃に加熱しておき、ガス流量
及び圧力が安定した状態で、高周波電源(739)より
周波数13.56MHzの下で電力印加量tN(736
)に40Wattの電力を印加し、グロー放電を発生さ
せた。この放電を5分間行ない、厚き0.3μmの電荷
発生層を得た。
At the same time, the fourth control valve (710) is released and the fourth tank (
Diborane gas diluted to 1100 pp with hydrogen gas (704) was flowed into the fourth flow rate controller (716) under an output pressure of 1.5 Kg/cm2. Adjust the scale of each flow rate controller to set the hydrogen gas flow rate to 200 sec, the germane gas flow rate to 6 scCm, and the methane gas flow rate to 10 scCm.
105e, the flow rate of silane gas is 1001005e, the flow rate of diporane gas diluted to 1100pp with hydrogen gas is 1
01005e and flowed into the reaction chamber (733). After each flow rate stabilizes, the pressure regulating valve (745) is adjusted so that the pressure in the reaction chamber (733) becomes 0.8 Torr.
) was adjusted. On the other hand, the conductive substrate (752) on which the a-C film is formed is heated to 250°C, and is heated at a frequency of 13.56 MHz from a high frequency power source (739) while the gas flow rate and pressure are stable. Power application amount tN (736
) was applied with a power of 40 Watts to generate glow discharge. This discharge was carried out for 5 minutes to obtain a charge generation layer with a thickness of 0.3 μm.

得られたa−5i膜につき、金属中ONH分析(板場製
作所製EMGA−1300) 、オージェ分析、及びI
MA分析を行なったところ、含有されろ水素原子は全構
成原子に対して24原子%、硼素原子は95原子ppm
、炭素原子は1.0原子%、ゲルマニウム原子は10.
5原子%であった。
The obtained a-5i film was subjected to ONH analysis in metal (EMGA-1300 manufactured by Itaba Seisakusho), Auger analysis, and I
When MA analysis was performed, the hydrogen atoms contained were 24 at.% of the total constituent atoms, and the boron atoms were 95 at.ppm.
, carbon atoms are 1.0 at%, germanium atoms are 10.
It was 5 at%.

特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一990V (+945V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1μm当り
の帯電能は65V/μm (62V/μm)と極めて高
く、このことから充分な帯電性能を有する事が理解きれ
た。
Characteristics: When the obtained photoreceptor was used with both negative and positive charging in a conventional Carlson process, the following performance was obtained. Here, the measured values during positive charging are shown in parentheses, and the highest charging potential is -990V (+945V), that is,
Since the total photoreceptor film thickness was 15.degree. 3 .mu.m, the charging ability per 1 .mu.m was extremely high at 65 V/.mu.m (62 V/.mu.m), and from this it was understood that the photoreceptor had sufficient charging performance.

また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約41秒(約42
秒)であり、このことから充分な電荷保持性能を有する
事が理解きれた。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰させたところ必要とされた光量は6.3ルツク
ス・秒(4,3ルツクス・秒)であり、このことから充
分な光感度性能を有する事が理解されt:。
In addition, the time required for dark decay from Vmax to 90% of Vmax in the dark was approximately 41 seconds (approximately 42 seconds).
seconds), and from this we can understand that it has sufficient charge retention performance. In addition, after initial charging to the highest charging potential, white light was used to brightly attenuate the surface potential to 20% of the highest charging potential, and the amount of light required was 6.3 lux · seconds (4.3 lux · seconds), and from this it is understood that it has sufficient photosensitivity performance.

以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理Mされる。
From the above, it can be concluded that the photoreceptor according to the present invention shown in this example has excellent performance as a photoreceptor.

また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
Further, when an image was formed and transferred to this photoreceptor using the commonly used Carlson process, a clear image was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図は本発明感光体の構成を示す図面、第
7図乃至第8図は本発明に係わる感光体の製造装置を示
す図面である。 出願人 ミノルタカメラ株式会社 第1図  第2図 第3図  第4図 第5図  第6図 手続補正書 昭和62年10月21日
1 to 6 are drawings showing the structure of a photoreceptor according to the present invention, and FIGS. 7 to 8 are drawings showing an apparatus for manufacturing a photoreceptor according to the invention. Applicant: Minolta Camera Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Procedural Amendment October 21, 1988

Claims (1)

【特許請求の範囲】[Claims] 電荷発生層と電荷輸送層とを有する機能分離型感光体に
おいて、該電荷輸送層はシリコン原子及びゲルマニウム
原子のうち少なくとも一方を含有してなる水素化アモル
ファスカーボン膜であり、かつ、該電荷発生層は炭素原
子を含有すると共に燐原子及び硼素原子のうち少なくと
も一方を含有してなる水素化アモルファスシリコンゲル
マニウム膜或は炭素原子を含有すると共に燐原子及び硼
素原子のうち少なくとも一方を含有してなる弗素化アモ
ルファスシリコンゲルマニウム膜であることを特徴とす
る感光体。
In a functionally separated photoreceptor having a charge generation layer and a charge transport layer, the charge transport layer is a hydrogenated amorphous carbon film containing at least one of silicon atoms and germanium atoms, and the charge generation layer is a hydrogenated amorphous silicon germanium film containing a carbon atom and at least one of a phosphorus atom and a boron atom, or a fluorine film containing a carbon atom and at least one of a phosphorus atom and a boron atom. A photoreceptor characterized by being an amorphous silicon germanium film.
JP22945686A 1986-09-26 1986-09-26 Photosensitive body Pending JPS6382484A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22945686A JPS6382484A (en) 1986-09-26 1986-09-26 Photosensitive body
EP87113881A EP0261652A3 (en) 1986-09-26 1987-09-23 Photosensitive member comprising charge generating layer and charge transporting layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22945686A JPS6382484A (en) 1986-09-26 1986-09-26 Photosensitive body

Publications (1)

Publication Number Publication Date
JPS6382484A true JPS6382484A (en) 1988-04-13

Family

ID=16892485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22945686A Pending JPS6382484A (en) 1986-09-26 1986-09-26 Photosensitive body

Country Status (1)

Country Link
JP (1) JPS6382484A (en)

Similar Documents

Publication Publication Date Title
JPS6381481A (en) Photosensitive body
JPS6382484A (en) Photosensitive body
JPS62289848A (en) Photosensitive body
JPS6382477A (en) Photosensitive body
JPS6381485A (en) Photosensitive body
JPS6382441A (en) Photosensitive body
JPS6381461A (en) Photosensitive body
JPS6382475A (en) Photosensitive body
JPS6382483A (en) Photosensitive body
JPS6382454A (en) Photosensitive body
JPS6382478A (en) Photosensitive body
JPS6382471A (en) Photosensitive body
JPS6382456A (en) Photosensitive body
JPS6382442A (en) Photosensitive body
JPS6381473A (en) Photosensitive body
JPS6382435A (en) Photosensitive body
JPS6381453A (en) Photosensitive body
JPS6381482A (en) Photosensitive body
JPS6382458A (en) Photosensitive body
JPS6381469A (en) Photosensitive body
JPS6382455A (en) Photosensitive body
JPS6381484A (en) Photosensitive body
JPS6382447A (en) Photosensitive body
JPS6382457A (en) Photosensitive body
JPS6381479A (en) Photosensitive body