JPS638160B2 - - Google Patents

Info

Publication number
JPS638160B2
JPS638160B2 JP10984878A JP10984878A JPS638160B2 JP S638160 B2 JPS638160 B2 JP S638160B2 JP 10984878 A JP10984878 A JP 10984878A JP 10984878 A JP10984878 A JP 10984878A JP S638160 B2 JPS638160 B2 JP S638160B2
Authority
JP
Japan
Prior art keywords
sludge
lubricating oil
weight
solution
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10984878A
Other languages
Japanese (ja)
Other versions
JPS5536254A (en
Inventor
Iuanoichi Supitsuyan Uikutooru
Pauroichi Nazarofu Peetoru
Fuedoroichi Haromiha Uikutooru
Arekiseuichi Bichikofu Refu
Efuimoichi Zarotanikofu Reonido
Antonoichi Beranadejuku Zabiginefu
Gurigo Demitorii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INSUCHI FUIJICHESUKOI HIMII AN SSSR
Original Assignee
INSUCHI FUIJICHESUKOI HIMII AN SSSR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSUCHI FUIJICHESUKOI HIMII AN SSSR filed Critical INSUCHI FUIJICHESUKOI HIMII AN SSSR
Priority to JP10984878A priority Critical patent/JPS5536254A/en
Publication of JPS5536254A publication Critical patent/JPS5536254A/en
Publication of JPS638160B2 publication Critical patent/JPS638160B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は石油工業、さらに特定すればスラツジ
防止用潤滑油添加剤の合成反応に由来する固体不
純物を含むスラツジ防止用潤滑油添加剤の非水性
溶液の精製工程において、この固体不純物の除去
方法に関する。 本発明は潤滑油、さらに特定すれば自動車用オ
イルの動作性能を改良するのに有効である。潤滑
油に添加剤を加えて使用すると、自動車部品の摩
耗を減じ、沈殿物の付着を減少させるので、エン
ジンの信頼性を増加しかつこの使用寿命を延長す
ることができる。 内燃機関に使用する潤滑油添加剤のもつとも重
要な種類の1つはスラツジ防止剤すなわち清浄剤
である。この添加剤を潤滑油に加えると、炭素質
不純物(樹脂および残渣)がエンジン部材に沈着
することを防止できる。スラツジ防止剤の効果
は、オイル中に形成された不溶解生成物および外
部からオイル中に混入する炭素質化合物を微細な
分散状態に保つて、エンジン部材にこれらの生成
物が沈着することを解消することにもとづく。 スラツジ防止用潤滑油添加剤としては、高分子
炭化水素スルホン酸のバリウムまたはカルシウム
塩、アルキルフエノールジスルフイドのバリウム
塩、ジエステルジチオりん酸カルシウム、ジアル
キルジチオりん酸亜鉛とアルキルフエノールバリ
ウムとの油状溶液が知られている。 スルホン酸塩のごときスラツジ防止剤から不純
物を除去する公知の方法は、脱水した溶液から不
純物を分離することにもとづく。このために、合
成工程の後にスラツジ防止剤から水を蒸溜して除
去し、ついで水を含まないスラツジ防止剤溶液を
反復して過または遠心分離する。 スラツジ防止剤溶液の反復遠心分離は、最初は
分離係数1000の遠心分離機で行ない、その後で、
部分的に浄化されたスラツジ防止溶液を分離係数
15000の遠心分離機に送り、固相を最終的に分離
する。この従来の不純物の分離方法は効率が低か
つた。それは分散質と分散媒との質量差が小さい
ことおよび含有する化合物粒子の粒径が小さいこ
とにもとづく。 従来技術によつて処理したスラツジ防止剤の固
体不純物についての汚濁度は、2000〜5000mg/製
品100gであつて、これは世界的な標準値、すな
わち500mg以下/100gの10倍の不純物を含む。 さらに遠心分離機および分離装置を長く使用す
るのでエネルギーの消費が大きい。 またスラツジ防止剤から不純物を分離する他の
公知の方法がある(米国特許第3523896号参照)。
この方法によると、従来技術によつて製造したス
ラツジ防止剤に水0.3〜10重量%およびメタノー
ル1〜15重量%を加えて、その組成を改良する。
しかし不純物を除去する前に、温度240〜300〓に
おいてこの液体を蒸溜し、希釈剤および水とメタ
ノールとの残量を含むスラツジ防止剤を過器に
送る。材としては布を使用し、得られた液
を蒸溜装置に送る。 この方法によると、スラツジ防止剤から不純物
を分離する工程の前にメタノールと水とを分離す
る。しかし脱水した溶液から不純物を分離するス
ラツジ防止剤精製方法は労力を要し効率が悪いば
かりでなく、汚濁度500mg以下/100gの高純度の
製品を得ることができなかつた。 本発明の目的は上記欠点を解消することであ
る。 本発明の目的はスラツジ防止用潤滑油添加剤か
ら不純物を除去して、不純物についての汚濁度を
向上する方法を提供することである。 本発明の上記目的は、スラツジ防止用潤滑油添
加剤溶液に、比誘電率17以上の極性液体0.025〜
10重量%を加え、ついで相分離によつて不純物を
分離する、スラツジ防止用潤滑油添加剤の不純物
の除去方法によつて達成することができる。 スラツジ防止用添加剤を製造した後に、もつと
も除去困難な粒径0.5〜5μの画分の不純物を除去
することが本発明によつて可能になり、不純物含
量500mg以下/100gのスラツジ防止剤を製造する
ことができた。さらに本発明によつて精製装置を
単純化し、労力を伴なう多段遠心分離精製装置、
すなわち分離係数1000の遠心分離機および分離係
数15000の超遠心分離機を、単一の自動遠心分離
機または沈降装置に置さ換えた。これは不純物を
凝析させた後に、この不純物の沈降速度が、最初
の添加剤中の不純物の沈降速度の1000倍に増加す
るからである。 本発明によつて、固体担体に吸着された極性溶
液を、スラツジ防止剤溶液に加えることが望まし
い。 さらに本発明によつて、固体担体の使用量を、
スラツジ防止剤の0.01〜10重量%の範囲とするこ
とが推奨される。 さらに本発明によつて固体担体の粒径を、スラ
ツジ防止剤中の固体不純物の大部分を占める画分
粒径0.5〜5μの5〜10倍とすることが好ましい。 本発明によつて、固体担体の表面に湿潤させる
極性溶液は比誘電係数17以上の溶液とし、不純物
の不均一凝析をさらに迅速かつ有効に行なうこと
ができる。これは凝析速度が、界面の面積に比例
し、固体担体の表面積を大きくすれば、スラツジ
防止剤の精製速度を実質的に増加させることがで
きるからである。 スラツジ防止剤の精製中に、この溶液に外部か
ら不純物が混入することを防止するために、固体
担体として水酸化カルシウムまたは炭酸カルシウ
ムを使用することが推奨される。 本発明の実施態様として、スラツジ防止剤溶液
に極性溶液を加えた後に、相分離のために、一定
極性のパルス電圧によつて生じた不均一静電界を
作用させる。不均一静電界とは面積の異なる電極
間に生ずる静電界を意味し、不均一係数とは電極
面積間の比を意味する。 本発明によつて、強さ0.1〜5kV/cmおよび不
均一係数5〜50の静電界を使用することが推奨さ
れる。 不均一に配向した静電界を使用することによつ
て、相分離速度を実質的に増加させて、スラツジ
防止剤から不純物を迅速かつ有効に除去すること
ができる。 さらに、本発明の上記実施態様は、単一装置内
で不純物を凝析させかつ分離することができる。 本発明の他の目的および利益は、潤滑油に添加
するスラツジ防止剤から固体不純物を除去する方
法について次に記載する詳細な説明および実施例
によつてさらに明らかになるであろう。 本発明によつて固体不純物を除去できるスラツ
ジ防止剤は次のごとくである。すなわち高分子炭
化水素スルホン酸のバリウムまたはカルシウム
塩、アルキルサリチル酸カルシウム、アルキルフ
エノールジスルフイドのバリウム塩、ジエステル
ジチオりん酸カルシウム、ジアルキルジチオりん
酸亜鉛とアルキルフエノールバリウムとの油状溶
液である。 周知のごとく、スラツジ防止剤を合成した後
に、このなかに存在する不純物は主として水酸化
カルシウムおよび炭酸カルシウムであり、この不
純物のうち粒径0.5〜5μの画分が約70重量%を占
め、粒径4μ以下の画分が約30重量%である。 潤滑油に添加するスラツジ防止剤をたとえば遠
心分離によつて相分離するとき、本発明によつ
て、比誘電率17以上の極性液体の存在下で不純物
の凝析および沈降を行うことが好ましい。 比誘電率17以上の極性液体として、たとえばア
セトン、メチルエチルケトンのごときケトン類、
メタノール、エタノール、プロパノール、ブタノ
ール、イソプロパノール、イソブタノールのごと
きアルコール類、エチレングリコール、グリセロ
ールの水溶液、水、およびアルカリまたはアルカ
リ土類金属の硝酸塩水溶液を使用することができ
る。 極性化合物を加えて汚濁不純物を凝析させるこ
とは、極性化合物が不純物の固相の親水性粒子に
選択的に吸着されることにもとづく。従つて水は
スラツジ防止剤分子を湿潤させるよりもスラツジ
防止剤中の汚濁物である無機質粒子を湿潤させ
る。それはこれらに対する水分子の吸着熱を比較
すれば明らかであつて、スラツジ防止剤のスルホ
ン酸カルシウム塩分子について1.88cal/gであ
るのに対して、未精製のスラツジ防止剤溶液から
回収した不純物粒子については25〜26cal/gで
ある。 スラツジ防止剤分子は不純物粒子が水に吸着さ
れると、不純物粒子から離脱するので、粒子は安
定性を失つて湿潤領域の外側に凝析する。 精製すべきスラツジ防止剤に加える上記特性を
有する極性溶液の量は、0.25〜〜10重量%とする
ことがよいことを見出した。この値は、加えた極
性液体が個別の相を形成することなく、全部が不
純物粒子に吸着されかつ次にスラツジ防止剤溶液
の相を分離するときに、実質的に完全に不純物と
ともに除去されるように決定したものである。 固体粒子が凝析して形成された残渣は、粒子の
共沈の原理によつて沈殿し、明瞭な界面を形成し
て相分離する。生成したより大きい凝集物はより
小さい粒子を同伴するので、残渣に吸着されて液
体を清澄化する顕著な効果を有する。 比誘電率が17より大きい極性溶液の凝析剤を加
えないときは、スラツジ防止剤溶液は安定性が大
きい。凝析剤の添加量が0.025重量%より少ない
と、不純物粒子は凝析しない、これはスラツジ防
止剤の溶解性が大きいことによつて説明できる。
凝析剤の添加量が1.0重量%を超えると、スラツ
ジ防止剤溶液中の不純物粒子の安定性が失なわれ
て、不純物の凝析工程は進行しはじめるが、20
mm/hを超えない。極性溶液の添加量が10.0重量
%まで増加すると、不純物の残渣形成速度および
その沈降速度は強制分離法を使用しなくとも、
200mm/h以上に達する。従つてスラツジ防止剤
溶液中の極性溶液の添加量を5〜10重量%とすれ
ば、相分離工程は沈降装置内で行なうことができ
る。 凝析効果をあげるために極性溶液とスラツジ防
止剤との混合を5000rpmの高速度機械撹拌機によ
つて行なうとよい。工業的装置で凝析させるには
水力学的混合機で行なう。 しかし粒径2.5〜50μの固体担体に吸着された極
性溶液をスラツジ防止剤溶液に加えるならば、水
力学的混合機を使用しなくとも同様な凝析効果が
得られる。固体担体として、たとえば塩化ナトリ
ウム、炭酸ナトリウム、硝酸ナトリウム、硝酸カ
ルシウムのごとき種々の無機塩類を使用でき、ま
たフイルトロパーライト、シリカゲル、ハイフラ
スーパーゲルのごとき親水性粉末を使用できる。
しかし固体担体として水酸化カルシウムまたは炭
酸カルシウムを使用することが推奨される。それ
はこれらの化合物がスラツジ防止剤中の不純物の
基本的成分であり、かつスラツジ防止剤溶液にこ
の担体を加えることによつて付加的な汚濁を生じ
ないからである。 上記のごとく、もつとも除去し難い不純物画分
の粒径は0.5〜5μであるので、担体の粒径はこの
画分の粒径の5〜10倍大きく、すなわち2.5〜50μ
とすべきである。一方において固体不純物と担体
との粒径の差が大きいと不均一凝析が迅速かつ有
効に行なわれるが、他方において担体の粒径が大
きくなると、その比表面積が減少して凝析の効果
が減少する。固体不純物と担体との粒径の比を上
記比に選択することは最適であつて、不均一凝析
の効果が最高である。 固体担体に吸着された極性溶液をスラツジ防止
剤に加えるときに、極性溶液は単分子層の厚みに
近いような薄膜の形とすることが必要である。こ
の状態において極性溶液の凝析効果が大きく、従
つてスラツジ防止剤を浄化する効果が大きい。こ
の点と極性溶液の添加量の前記最適量とを考慮に
入れて、湿潤率0.1〜50%の担体をスラツジ防止
剤の重量に対して0.01〜10重量%の範囲で加える
ことを決定できる。 極性溶液をスラツジ防止剤に加えると、固体不
純物の電気力学的性質が実質的に変化することが
判明した。すなわち凝析した不純物粒子の電界に
おける電気泳動性が3〜4倍に増加し、固体不純
物のゼータ電位は、分散質と分散媒との比誘電率
の差が増加するのに応じて増加する。 極性溶液が存在しないときは、スラツジ防止剤
中の不純物粒子は弱い正電荷を有し、電界におけ
る電極間の循環や電気的二重層の現象は認められ
ない程度であり、これらの電気動力学的性質は実
際に重要でない。 スラツジ防止用潤滑油添加剤の重量に対して
0.025〜10重量%の極性溶液をスラツジ防止剤に
加えると不純物粒子のゼータ電位が増加し、一方
向の電気泳動が観察される。すなわち電極に固相
が沈着する。不純物が電気泳動して凝析した沈着
物を電気動力学的に調査すると、沈着した電極面
で正電荷を有することが判明した。この性質によ
つて沈着した電極の放電極性を10〜15秒間変化さ
せることによつて沈着電極の表面を容易に浄化す
ることができる。 沈着電極を回転円板とするときは、得られる実
質的に液を含まない固体不純物の沈着物をブレー
ド状の部材で連続的に除去することができる。 従つて極性溶液を加えた後に、一定極性のパル
ス電圧によつて生じた不均一静電界においてスラ
ツジ防止剤溶液を相分離すれば、スラツジ防止剤
の不純物除去を迅速かつ有効に行なうことができ
ることが判明した。 この相分離の実施態様によつて、単一装置内で
スラツジ防止剤の不純物の凝析および分離を行つ
て除去することができる。 本発明の方法において使用する静電界の強さ範
囲は0.1〜5kV/cmとし、静電界の不均一係数範
囲は5〜50単位とする。また静電界を生じさせる
にはR―C回路を平滑化しない整流された電圧、
すなわち周波数100Hzの半波を有する一定極性の
パルス電圧によつて行なうことが好ましい。 静電界の強さが増加すると、スラツジ防止剤中
の不純物粒子の電気泳動速度が増加するが、極性
溶液が0.025〜10重量%存在する溶液に絶縁破壊
が認められる静電界の強さの値を超えてはならな
い。静電界の強さが1〜3kV/cm系で作られる条
件が不純物粒子の凝析および分離に最適である。 静電界の不均一係数はスラツジ防止剤中の固相
含量によつて変化する。固相含量が多い程、静電
界の不均一係数を大きくする。固相含量が7840
mg/100gから770mg/100gに変化するときは、
不均一係数を50から5に変化させる。 実施例 1 この実施例は次の記載する公知の方法によつて
調製した石油スルホン酸カルシウム塩をベースと
するスラツジ防止剤から不純物を除去する方法を
説明する。 前記スルホン酸カルシウム塩を調製する原料と
して、分子量350以上で、温度50℃における粘度
が10〜14cStの石油をスルホン化して温度50℃に
おける粘度40〜60cStの40〜60%スルホン酸を含
む油状溶液を生成した。 スルホン酸塩の灰分含量が少なくとも5重量%
の、PH7の中性スルホン酸カルシウム塩を得るに
は、この油状のスルホン酸溶液を混合機に入れ、
希釈剤として温度50℃における粘度10〜14cStの
鉱油を加えて温度100℃における全溶液の粘度を
20〜25cStに予め減少させた後に水酸化カルシウ
ムを加えた。 スルホン酸塩の灰分含量を定量するには、スル
ホン酸の存在するスルホン酸カルシウム塩溶液の
一部をとつて秤量し、これを蒸発乾涸させた後に
得られた固体残渣を定量になるまで〓焼した。ま
た上記懸濁液の撹拌は速さ1460r.p.mで行つた。
なお、石油スルホン酸を水酸化カルシウムで中和
するには、温度範囲80〜95℃で行なつた。 スルホン酸塩の灰分含量が少なくとも5重量%
のPH=7の中性スルホン酸カルシウム塩を調製し
た後に、100〜130mgKOH/100gのアルカリ度を
有し、かつスルホン酸塩の灰分含量が少なくとも
17重量%である高灰分の石油スルホン酸カルシウ
ム塩を調製した。この灰分含量とアルカリ度とは
スラツジ防止剤に所望の性質を与えるために必要
である。このためには、混合機内の中性スルホン
酸カルシウムに触媒として20%フエノールを加え
て、高灰分のスルホン酸カルシウムの生成を完結
させた。次に混合機に6〜7重量%の水酸化カル
シウムも加えた。得られた混合物を温度102℃に
加熱し、この温度に1時間保つた。次に反応生成
物を徐々に温度125℃に加熱して、水を蒸発させ、
反応生成物をこの温度に1時間保つた。ついで反
応生成物に、ゲージ圧0.7気圧、温度125℃で5体
積%のCO2を2時間通した。その後反応生成物の
温度を80℃に低下させ、かつ圧力を大気圧とし
た。 得られた油状のスルホン酸カルシウム塩溶液が
スルホン酸塩灰分含量17重量%であれば反応が完
結したと認められる。 十分な分析を行なうには、得られた油状溶液中
の生成物を真空カラムに吸入し、真空度30〜40mm
Hgで、温度を除々に180〜200℃に上昇させて触
媒のフエノールを蒸発させ、その含量が0.5重量
%以下になるまで除去した。 こうして得られたスルホン酸塩からなるスラツ
ジ防止剤溶液の最初の汚濁度は3850mg/100gで
あつた。 得られたスラツジ防止剤溶液に、比重0.7〜
0.8、沸点範囲80〜120℃の炭化水素からなる溶媒
50重量%を加えた。次にこの溶液に室温で水(比
誘電率78.3)7.5重量%を加えた。 分離係数1000の遠心分離機内で5分間遠心伏離
した後に、不純物含量110mg/100gのスルホン酸
塩スラツジ防止剤を得た。 実施例 2 公知の方法で製造したアルキルサリチル酸カル
シウムからなる油状のスラツジ防止剤溶液の不純
物含量は7950mg/100gであつた。この溶液100g
に温度125℃で20%担体懸濁液2gを加えた。担
体は粒径2.5〜50μであり、懸濁液は温度50℃にお
ける粘度10―14cStの鉱油希釈剤を加えて調製し
た。この調製には、激しく撹拌しながら担体重量
の5重量%の水(比誘電率78.3)を加えた。 凝析した析出物を分離係数1000および15000の
遠心分離機で遠心分離した。分離係数1000の第1
の遠心分離の後に、スラツジ防止剤の不純物含量
は540mg/100g(固体不純物含量0.011重量%)
であつた。分離係数15000の第2の遠心分離の後
に、スラツジ防止剤の不純物含量は90mg/100g
(固体不純物含量0.008重量%)であつた。 実施例 3 スルホン酸塩からなる油状のスラツジ防止剤溶
液の不純物含量は7840mg/100gであつた。この
溶液100gに温度125℃で、粒径2.5〜50μの炭酸カ
ルシウム担体0.1%を含むグリセリン(比誘電率
42.4)の懸濁液10gを加えた。懸濁液は、温度50
℃における粘度10〜14cStの鉱油希釈剤中で調製
し、これを激しく撹拌しながら、担体重量の50重
量%のグリセリンを加えた。 凝析した析出物は、分離係数1000および15000
の遠心分離機によつて分離した。分離係数1000の
第1の遠心分離の後にスラツジ防止剤の不純物含
量は650mg/100g(固体不純物含量0.035重量%)
であつた。分離係数15000の第2の遠心分離の後
に、スラツジ防止剤の不純物含量は150mg/100g
(固体不純物含量0.02重量%)であつた。 実施例 4 アルキルフエノールジスルフイルドのバリウム
塩からなる油状のスラツジ防止剤溶液の不純物含
量は2100mg/100gであつた。この溶液100gに比
重0.7〜0.73、沸点範囲80〜130℃の炭化水素を体
積比1:1.5で加えた。これを温度60℃で撹拌し
ながら粒径2.5〜50μシリカゲル担体の50%懸濁液
20gを加えた。この懸濁液は炭化水素溶媒で調製
し、これを激しく撹拌しながらメチルエチルケト
ン(比誘電率18.6)の水溶液を加えて、担体0.5
重量%とした。 分離係数1000で5分間遠心分離した後に、スラ
ツジ防止剤の不純物含量は100mg/100g(固体不
純物含量0.009重量%)であつた。 実施例 5 実施例1記載のごとく調製した石油スルホン酸
バリウムからなる油状スラツジ防止剤溶液は最初
の汚濁液が6400mg/100gであつた。この溶液100
gに比重0.7〜0.73、沸点範囲80〜130℃の炭化水
素溶剤を体積比1:1.5で加えた。この混合物を
温度60℃で激しく撹拌しながら、0.1M/イソ
プロパノール(比誘電率18.3)の水溶液10重量%
を加えた。 分離係数1000で5分間遠心分離した後に、スラ
ツジ防止剤の不純物含量は110mg/100g(固体不
純物含量0.020重量%)であつた。 実施例 6 最初の汚濁度が6400mg/100gの石油スルホン
酸バリウムからなる油状のスラツジ防止剤溶液
100gに、比重0.7〜0.73、沸点範囲80〜130℃の
炭化水素溶媒を体積比1:1.5で加えた。この混
合物を温度60℃で激しく撹拌しながら比誘電率が
17以上の極性液体である、0.1M/硝酸カルシ
ウム水溶液0.75重量%を加えた。 分離係数1000で5分間遠心分離した後に、スラ
ツジ防止剤の不純物含量は80mg/100g(固体不
純物含量0.02重量%)であつた。 実施例 7 ジエステルジチオりん酸カルシウムからなる油
状のスラツジ防止剤溶液の最初の汚濁度は3850
mg/100gであつた。この溶液100gに、比重0.7
〜0.73、沸点範囲80〜130℃の炭化水素溶剤を体
積比1:1.5で加えた。得られた混合物を温度60
℃で激しく撹拌しながら水(比誘電率78.3)7.5
重量%を加えた。 分離係数1000で5分間遠心分離した後に、スラ
ツジ防止剤の不純物含量は110mg/100g(固体不
純物含量0.10重量%)であつた。 実施例 8 石油スルホン酸カルシウムからなるスラツジ防
止剤溶液の最初の汚濁度は7840mg/100g(固体
不純物含量3.9重量%)であつた。この溶液を温
度60℃で撹拌しながら水(比誘電率78.3)1.0重
量%を加えた。次にこの混合物を強さ1.5kv/cm、
不均一係数50の静電界で処理した。スラツジ防止
剤溶液からの不純物の凝析および分離は同一装置
内で行なつた。 この静電界処理を15分間行なつた後に、得られ
たスラツジ防止剤の汚濁度は380mg/100g(固体
不純物含量0.018重量%)であつた。 実施例 9 アルキルフエノールジスルフイドのバリウム塩
からなるスラツジ防止剤溶液は最初の汚濁度が
2100mg/100g(固体不純物含量は1.2重量%)で
あつた。この溶液を温度60℃で撹拌しながら水
(比誘電率78.3)0.09重量%を加えた。この混合
物を強さ2.5kv/cm、不均一係数25の静電界で処
理した。スラツジ防止剤溶液からの不純物の凝析
および分離は同一装置内で同時に行なつた。 この静電界処理を15分間行なつた後に、得られ
たスラツジ防止剤溶液の汚濁度は40mg/100g
(固体不純物含量0.010重量%)であつた。 実施例 10 ジアルキルジチオりん酸亜鉛とアルキルフエノ
ールバリウムとからなるスラツジ防止剤溶液は最
初の汚濁度は770mg/100g(固体不純物含量0.8
重量%)であつた。この溶液100gを温度60℃で
撹拌しながら水(比誘電率78.3)0.025重量%を
加えた。この混合物を強さ1.5kv/cm、不均一係
数5の静電界で処理した。この溶液からの不純物
の凝析および分離は同一装置内で行なつた。 この静電界処理を15分間行なつた後に、得られ
た溶液の汚濁度は185mg/100g(固体不純物含量
0.010重量%)であつた。 実施例 11 石油スルホン酸カルシウムからなるスラツジ防
止剤溶液は最初の汚濁度が3290mg/100g(固体
不純物含量4.7重量%)であつた。この溶液を温
度60℃で撹拌しながら0.5重量%の水(比誘電率
78.3)を加えた。この混合物を、強さ1kv/cm、
不均一係数10の静電界で処理した。この溶液から
の不純物の凝析および分離は同一装置内で行なつ
た。 この静電界処理を30分間行なつた後に、得られ
たスラツジ防止剤は、汚濁度が211mg/100g(固
体不純物含量0.01重量%)であつた。 実施例 12 実施例1記載の方法によつて調製した、石油ス
ルホン酸カルシウムからなるスラツジ防止剤溶液
は、最初の汚濁度が3290mg/100g(固体不純物
含量4.7重量%)であつた。この溶液を温度60℃
で撹拌しながら、水(比誘電率78.3)0.5重量%
を加えた。この混合物を、強さ3kv/cm、不均一
係数10の静電界で処理した。この溶液からの不純
物の凝析および分離は同一装置内で行なつた。 この静電界処理を30分間行なつた後に、得られ
たスラツジ防止剤は汚濁度69mg/100g(固体不
純物含量0.01重量%)であつた。 比較例 1a これは使用水量を添加剤に対して780重量%に
増加したことの他は実施例1と同様である。この
水量は従来技術の一例として特開昭37−1274号記
載の実施例1で使用する水量に等しくしたもので
ある。 比較例 1b これは使用水量を1150重量%に増加したことの
他は実施例1と同様である。この水量は上記公報
に記載する実施例2の水量に等しい。 比較例1a,1bを実施例1と比較すると、第1
表に示すように固体不純物が著しく多量に残留す
る。
The present invention relates to the petroleum industry, and more particularly to a method for removing solid impurities in the purification process of a non-aqueous solution of an anti-sludge lubricant additive containing solid impurities originating from the synthesis reaction of the anti-sludge lubricant additive. . The present invention is useful for improving the operational performance of lubricating oils, and more particularly automotive oils. The use of additives in lubricating oils can reduce wear and deposits on automotive parts, thereby increasing engine reliability and extending its service life. One of the most important classes of lubricating oil additives used in internal combustion engines are anti-sludge agents or detergents. Adding this additive to lubricating oils can prevent carbonaceous impurities (resins and residues) from depositing on engine components. The effect of anti-sludge agents is to keep insoluble products formed in the oil and carbonaceous compounds that enter the oil from the outside in a finely dispersed state, thereby eliminating the deposit of these products on engine parts. Based on what you do. Anti-sludge lubricating oil additives include barium or calcium salts of polymeric hydrocarbon sulfonic acids, barium salts of alkylphenol disulfides, calcium diester dithiophosphates, oily solutions of zinc dialkyldithiophosphates and barium alkylphenols. It has been known. Known methods for removing impurities from anti-sludge agents, such as sulfonates, are based on separating the impurities from a dehydrated solution. To this end, the water is distilled off from the anti-sludge agent after the synthesis step and the water-free anti-sludge solution is then repeatedly filtered or centrifuged. Repeated centrifugation of the anti-sludge solution was first carried out in a centrifuge with a separation factor of 1000, and then
Partially purified anti-sludge solution with separation factor
15,000 centrifuge to finally separate the solid phase. This conventional impurity separation method had low efficiency. This is based on the small difference in mass between the dispersoid and the dispersion medium and the small particle size of the compound particles contained therein. The pollution degree of solid impurities of the sludge inhibitor treated by the prior art is 2000-5000 mg/100 g of product, which contains 10 times more impurities than the world standard value, ie less than 500 mg/100 g. Furthermore, since the centrifuge and separation equipment are used for a long time, energy consumption is large. There are also other known methods of separating impurities from anti-sludge agents (see US Pat. No. 3,523,896).
According to this method, 0.3 to 10% by weight of water and 1 to 15% by weight of methanol are added to the sludge inhibitor prepared by the prior art to improve its composition.
However, before the impurities are removed, this liquid is distilled at a temperature of 240-300°C and the diluent and anti-sludge containing the balance of water and methanol are sent to the filter. Cloth is used as the material, and the resulting liquid is sent to a distillation device. According to this method, methanol and water are separated before the step of separating impurities from the anti-sludge agent. However, the method of purifying the sludge inhibitor, which involves separating impurities from a dehydrated solution, is not only labor-intensive and inefficient, but also fails to provide a highly pure product with a contamination level of 500 mg/100 g or less. The aim of the invention is to eliminate the above-mentioned drawbacks. It is an object of the present invention to provide a method for removing impurities from anti-sludge lubricating oil additives to improve their dirtiness with respect to impurities. The above object of the present invention is to add a polar liquid having a dielectric constant of 17 or more from 0.025 to 0.025 to a lubricating oil additive solution for preventing sludge.
This can be accomplished by a process for removing impurities in anti-sludge lubricant additives by adding 10% by weight and then separating the impurities by phase separation. The present invention makes it possible to remove impurities in the particle size fraction of 0.5 to 5μ, which are difficult to remove, after producing an additive for preventing sludge, thereby producing an anti-sludge agent with an impurity content of 500 mg or less/100 g. We were able to. Furthermore, the present invention simplifies the purification device and provides a labor-intensive multistage centrifugal separation purification device.
That is, a centrifuge with a separation factor of 1000 and an ultracentrifuge with a separation factor of 15000 were replaced with a single automatic centrifuge or sedimentation device. This is because after coagulating the impurity, the settling rate of this impurity increases to 1000 times the settling rate of the impurity in the initial additive. According to the present invention, it is desirable to add a polar solution adsorbed on a solid support to the anti-sludge solution. Furthermore, according to the present invention, the amount of solid carrier used can be reduced by
A range of 0.01 to 10% by weight of the anti-sludge agent is recommended. Furthermore, according to the present invention, it is preferred that the particle size of the solid carrier is 5 to 10 times the fraction particle size of 0.5 to 5 microns, which accounts for most of the solid impurities in the sludge inhibitor. According to the present invention, the polar solution with which the surface of the solid support is wetted is a solution having a relative dielectric constant of 17 or more, so that the heterogeneous coagulation of impurities can be carried out more quickly and effectively. This is because the rate of coagulation is proportional to the area of the interface, and by increasing the surface area of the solid carrier, the rate of purification of the sludge inhibitor can be substantially increased. During the purification of the anti-sludge agent, it is recommended to use calcium hydroxide or calcium carbonate as a solid carrier in order to prevent the introduction of external impurities into this solution. In an embodiment of the invention, after the polar solution is added to the anti-sludge solution, a non-uniform electrostatic field generated by a pulsed voltage of constant polarity is applied for phase separation. A non-uniform electrostatic field means an electrostatic field generated between electrodes having different areas, and a non-uniformity coefficient means a ratio between electrode areas. According to the invention, it is recommended to use an electrostatic field with a strength of 0.1-5 kV/cm and a non-uniformity factor of 5-50. By using a non-uniformly oriented electrostatic field, the rate of phase separation can be substantially increased to rapidly and effectively remove impurities from the anti-sludge agent. Furthermore, the above embodiments of the invention are capable of precipitating and separating impurities within a single device. Other objects and benefits of the present invention will become more apparent from the following detailed description and examples of methods for removing solid impurities from anti-sludge additives added to lubricating oils. The sludge inhibitors that can remove solid impurities according to the present invention are as follows. That is, barium or calcium salts of polymeric hydrocarbon sulfonic acids, calcium alkylsalicylates, barium salts of alkylphenol disulfides, calcium diester dithiophosphates, oily solutions of zinc dialkyldithiophosphates and barium alkylphenols. As is well known, after the sludge inhibitor is synthesized, the impurities present in it are mainly calcium hydroxide and calcium carbonate, and of these impurities, the fraction with a particle size of 0.5 to 5μ accounts for about 70% by weight, and the particles The fraction with a diameter of 4μ or less is about 30% by weight. When the anti-sludge agent added to the lubricating oil is subjected to phase separation, for example, by centrifugation, it is preferred according to the present invention that the coagulation and precipitation of impurities be carried out in the presence of a polar liquid with a dielectric constant of 17 or more. Examples of polar liquids with a dielectric constant of 17 or higher include ketones such as acetone and methyl ethyl ketone;
Alcohols such as methanol, ethanol, propanol, butanol, isopropanol, isobutanol, ethylene glycol, aqueous solutions of glycerol, water, and aqueous solutions of alkali or alkaline earth metal nitrates can be used. The addition of polar compounds to precipitate contaminating impurities is based on the fact that the polar compounds are selectively adsorbed onto the hydrophilic particles of the solid phase of the impurities. Therefore, the water wets the inorganic particles that are the contaminants in the anti-sludge agent rather than the anti-sludge molecules. This is clear by comparing the heat of adsorption of water molecules to these molecules, which is 1.88 cal/g for calcium sulfonate molecules of the sludge inhibitor, while that of impurity particles recovered from the unpurified sludge inhibitor solution. It is 25 to 26 cal/g. As the anti-sludge molecules detach from the impurity particles when they are adsorbed by water, the particles lose stability and coagulate outside the wetted area. It has been found that the amount of polar solution having the above properties added to the sludge inhibitor to be purified is preferably from 0.25 to 10% by weight. This value ensures that the added polar liquid is completely adsorbed onto the impurity particles without forming a separate phase and is then virtually completely removed along with the impurities when separating the phases of the anti-sludge solution. It was decided that The residue formed by coagulation of solid particles precipitates according to the principle of coprecipitation of particles, forms a clear interface, and undergoes phase separation. The larger aggregates produced are accompanied by smaller particles, which are adsorbed onto the residue and have a significant effect of clarifying the liquid. The anti-sludge solution is highly stable when no coagulant is added, which is a polar solution with a dielectric constant greater than 17. When the amount of coagulant added is less than 0.025% by weight, the impurity particles do not coagulate, which can be explained by the high solubility of the anti-sludge agent.
When the amount of coagulant added exceeds 1.0% by weight, the stability of impurity particles in the sludge inhibitor solution is lost, and the coagulation process of impurities begins to proceed.
Do not exceed mm/h. When the amount of polar solution added increases to 10.0% by weight, the rate of impurity residue formation and its sedimentation rate decreases even without using forced separation method.
Reaching over 200mm/h. Therefore, if the amount of polar solution added in the anti-sludge solution is 5 to 10% by weight, the phase separation step can be carried out in a sedimentation device. The mixing of the polar solution and the anti-sludge agent is preferably carried out using a high speed mechanical stirrer at 5000 rpm to enhance the coagulation effect. Coagulation in industrial equipment is carried out in hydraulic mixers. However, if a polar solution adsorbed on a solid support with a particle size of 2.5 to 50 microns is added to the anti-sludge solution, a similar coagulation effect can be obtained without the use of a hydraulic mixer. As solid carriers, various inorganic salts such as sodium chloride, sodium carbonate, sodium nitrate, calcium nitrate can be used, and hydrophilic powders such as filtroperlite, silica gel, Hyfura supergel can be used.
However, it is recommended to use calcium hydroxide or calcium carbonate as solid carrier. This is because these compounds are the basic constituents of impurities in the anti-sludge agent and the addition of this carrier to the anti-sludge solution does not create additional contamination. As mentioned above, the particle size of the impurity fraction that is difficult to remove is 0.5 to 5μ, so the particle size of the carrier is 5 to 10 times larger than the particle size of this fraction, that is, 2.5 to 50μ.
Should be. On the one hand, when the particle size difference between the solid impurity and the carrier is large, heterogeneous coagulation is carried out quickly and effectively, but on the other hand, when the particle size of the carrier increases, its specific surface area decreases and the coagulation effect becomes less effective. Decrease. It is optimal to select the ratio of the particle sizes of the solid impurity and the carrier to the above ratio, and the effect of heterogeneous coagulation is the best. When a polar solution adsorbed on a solid support is added to the anti-sludge agent, it is necessary that the polar solution be in the form of a thin film that is close to the thickness of a monolayer. In this state, the coagulation effect of the polar solution is large, and therefore the effect of purifying the sludge inhibitor is large. Taking into account this point and the above-mentioned optimum amount of polar solution added, it can be decided to add a carrier with a wetting ratio of 0.1 to 50% in the range of 0.01 to 10% by weight relative to the weight of the sludge inhibitor. It has been found that adding a polar solution to the anti-sludge agent substantially changes the electrodynamic properties of the solid impurity. That is, the electrophoresis of the precipitated impurity particles in an electric field increases three to four times, and the zeta potential of the solid impurity increases as the difference in dielectric constant between the dispersoid and the dispersion medium increases. In the absence of a polar solution, the impurity particles in the anti-sludge agent have a weak positive charge, and the circulation between the electrodes in the electric field and the phenomenon of electrical double layer are not observed, and these electrodynamic Nature doesn't really matter. By weight of anti-sludge lubricant additive
When 0.025-10% by weight of a polar solution is added to the anti-sludge agent, the zeta potential of the impurity particles increases and unidirectional electrophoresis is observed. That is, a solid phase is deposited on the electrode. When the deposited impurities were electrophoretically coagulated and electrodynamically investigated, it was found that the deposited electrode surface had a positive charge. Due to this property, the surface of the deposited electrode can be easily cleaned by changing the discharge polarity of the deposited electrode for 10 to 15 seconds. When the deposition electrode is a rotating disk, the resulting substantially liquid-free deposit of solid impurities can be continuously removed with a blade-like member. Therefore, if the anti-sludge solution is phase-separated in a non-uniform electrostatic field generated by a pulsed voltage of constant polarity after adding a polar solution, impurities in the anti-sludge agent can be quickly and effectively removed. found. This phase separation embodiment allows the coagulation and separation of impurities in the anti-sludge agent to be removed in a single device. The strength range of the electrostatic field used in the method of the present invention is 0.1 to 5 kV/cm, and the nonuniformity coefficient range of the electrostatic field is 5 to 50 units. Also, to create an electrostatic field, a rectified voltage that does not smooth the R-C circuit,
That is, it is preferable to use a constant polarity pulse voltage having a half-wave frequency of 100 Hz. As the electrostatic field strength increases, the electrophoretic velocity of impurity particles in the anti-sludge agent increases, but the value of the electrostatic field strength at which dielectric breakdown is observed in solutions containing 0.025 to 10% by weight of polar solution is Must not be exceeded. Conditions in which the electrostatic field strength is 1 to 3 kV/cm are optimal for coagulation and separation of impurity particles. The electrostatic field non-uniformity factor varies depending on the solid phase content in the anti-sludge agent. The higher the solid phase content, the higher the non-uniformity coefficient of the electrostatic field. Solid phase content is 7840
When changing from mg/100g to 770mg/100g,
Change the non-uniformity factor from 50 to 5. EXAMPLE 1 This example describes a method for removing impurities from a petroleum sulfonic acid calcium salt-based sludge inhibitor prepared by a known method as described below. As a raw material for preparing the calcium sulfonate salt, an oily solution containing 40 to 60% sulfonic acid with a viscosity of 40 to 60 cSt at a temperature of 50 °C is obtained by sulfonating petroleum with a molecular weight of 350 or more and a viscosity of 10 to 14 cSt at a temperature of 50 °C. was generated. The ash content of the sulfonate is at least 5% by weight
To obtain a neutral sulfonic acid calcium salt with a pH of 7, put this oily sulfonic acid solution into a blender,
Add mineral oil with a viscosity of 10 to 14 cSt at a temperature of 50°C as a diluent to determine the viscosity of the total solution at a temperature of 100°C.
Calcium hydroxide was added after pre-reduction to 20-25 cSt. To determine the ash content of the sulfonate, a portion of the sulfonic acid calcium salt solution in the presence of the sulfonic acid is weighed, evaporated to dryness, and the resulting solid residue is sintered until a quantitative amount is obtained. did. Further, the above suspension was stirred at a speed of 1460 rpm.
Note that petroleum sulfonic acid was neutralized with calcium hydroxide at a temperature range of 80 to 95°C. The ash content of the sulfonate is at least 5% by weight
After preparing the neutral sulfonic acid calcium salt with pH=7, the alkalinity is 100-130 mg KOH/100 g, and the ash content of the sulfonate is at least
A high ash petroleum sulfonic acid calcium salt of 17% by weight was prepared. This ash content and alkalinity are necessary to impart the desired properties to the anti-sludge agent. For this purpose, 20% phenol was added as a catalyst to the neutral calcium sulfonate in the mixer to complete the production of high ash calcium sulfonate. Next, 6-7% by weight of calcium hydroxide was also added to the mixer. The resulting mixture was heated to a temperature of 102°C and kept at this temperature for 1 hour. The reaction product is then gradually heated to a temperature of 125°C to evaporate the water,
The reaction product was kept at this temperature for 1 hour. The reaction product was then passed with 5% by volume of CO 2 for 2 hours at 0.7 atmospheres gauge pressure and 125°C. The temperature of the reaction product was then lowered to 80°C and the pressure was brought to atmospheric pressure. The reaction was considered complete if the resulting oily calcium sulfonate solution had a sulfonate ash content of 17% by weight. For a thorough analysis, the product in the resulting oily solution is sucked into a vacuum column and the vacuum level is 30-40 mm.
With Hg, the temperature was gradually increased to 180-200°C to evaporate the catalyst phenol and remove it until its content was below 0.5% by weight. The initial turbidity of the sulfonate anti-sludge solution thus obtained was 3850 mg/100 g. The resulting sludge inhibitor solution has a specific gravity of 0.7~
0.8, a solvent consisting of hydrocarbons with a boiling point range of 80-120℃
Added 50% by weight. Next, 7.5% by weight of water (relative dielectric constant 78.3) was added to this solution at room temperature. After centrifugation for 5 minutes in a centrifuge with a separation factor of 1000, a sulfonate sludge inhibitor with an impurity content of 110 mg/100 g was obtained. Example 2 The impurity content of an oily anti-sludge solution consisting of calcium alkyl salicylate prepared by a known method was 7950 mg/100 g. 100g of this solution
2 g of a 20% carrier suspension was added to the solution at a temperature of 125°C. The carrier had a particle size of 2.5-50μ and the suspension was prepared by adding a mineral oil diluent with a viscosity of 10-14 cSt at a temperature of 50°C. For this preparation, 5% by weight of water (dielectric constant 78.3) based on the weight of the carrier was added with vigorous stirring. The coagulated precipitate was centrifuged in a centrifuge with separation factors of 1000 and 15000. Separation factor 1000 1st
After centrifugation, the impurity content of the sludge inhibitor is 540mg/100g (solid impurity content 0.011% by weight)
It was hot. After the second centrifugation with a separation factor of 15000, the impurity content of the anti-sludge agent is 90mg/100g
(Solid impurity content: 0.008% by weight). Example 3 The impurity content of an oily anti-sludge solution consisting of a sulfonate salt was 7840 mg/100 g. Glycerin (relative dielectric constant
10 g of suspension of 42.4) was added. Suspension temperature 50
It was prepared in a mineral oil diluent with a viscosity of 10-14 cSt at °C, to which 50% by weight of the carrier weight of glycerin was added while stirring vigorously. The coagulated precipitate has a separation factor of 1000 and 15000
Separated using a centrifuge. After the first centrifugation with a separation factor of 1000, the impurity content of the anti-sludge agent is 650 mg/100 g (solid impurity content 0.035% by weight)
It was hot. After the second centrifugation with a separation factor of 15000, the impurity content of the anti-sludge agent is 150mg/100g
(Solid impurity content: 0.02% by weight). Example 4 The impurity content of an oily anti-sludge solution consisting of a barium salt of an alkylphenol disulfide was 2100 mg/100 g. Hydrocarbons having a specific gravity of 0.7 to 0.73 and a boiling point range of 80 to 130°C were added to 100 g of this solution at a volume ratio of 1:1.5. While stirring this at a temperature of 60℃, a 50% suspension of silica gel carrier with a particle size of 2.5 to 50μ is prepared.
Added 20g. This suspension was prepared with a hydrocarbon solvent, and an aqueous solution of methyl ethyl ketone (relative dielectric constant 18.6) was added to this with vigorous stirring to obtain a carrier with a 0.5
It was expressed as weight%. After centrifuging for 5 minutes at a separation factor of 1000, the impurity content of the anti-sludge agent was 100 mg/100 g (solid impurity content 0.009% by weight). Example 5 An oily anti-sludge solution consisting of barium petroleum sulfonate prepared as described in Example 1 had an initial slurry concentration of 6400 mg/100 g. This solution 100
A hydrocarbon solvent having a specific gravity of 0.7 to 0.73 and a boiling point range of 80 to 130° C. was added to the solution in a volume ratio of 1:1.5. While vigorously stirring this mixture at a temperature of 60°C, a 10% by weight aqueous solution of 0.1M/isopropanol (relative dielectric constant 18.3) was prepared.
added. After centrifuging for 5 minutes at a separation factor of 1000, the impurity content of the anti-sludge agent was 110 mg/100 g (solid impurity content 0.020% by weight). Example 6 Oily anti-sludge solution consisting of barium petroleum sulfonate with an initial degree of contamination of 6400 mg/100 g
A hydrocarbon solvent having a specific gravity of 0.7 to 0.73 and a boiling point range of 80 to 130° C. was added to 100 g at a volume ratio of 1:1.5. While vigorously stirring this mixture at a temperature of 60℃, the dielectric constant
0.75% by weight of a 0.1M/aqueous calcium nitrate solution, which is a polar liquid of 17 or higher, was added. After centrifuging for 5 minutes at a separation factor of 1000, the impurity content of the anti-sludge agent was 80 mg/100 g (solid impurity content 0.02% by weight). Example 7 An oily anti-sludge solution consisting of calcium diester dithiophosphate has an initial turbidity of 3850.
mg/100g. 100g of this solution has a specific gravity of 0.7.
~0.73, a hydrocarbon solvent with a boiling point range of 80-130°C was added in a volume ratio of 1:1.5. The resulting mixture was heated to a temperature of 60
Water (dielectric constant 78.3) with vigorous stirring at 7.5 °C
Weight % added. After centrifuging for 5 minutes at a separation factor of 1000, the impurity content of the anti-sludge agent was 110 mg/100 g (solid impurity content 0.10% by weight). Example 8 The initial turbidity of an anti-sludge solution consisting of calcium petroleum sulfonate was 7840 mg/100 g (solid impurity content 3.9% by weight). While stirring this solution at a temperature of 60° C., 1.0% by weight of water (relative permittivity: 78.3) was added. Next, add this mixture to a strength of 1.5 kv/cm.
It was treated with an electrostatic field with a non-uniformity factor of 50. Coagulation and separation of impurities from the anti-sludge solution was carried out in the same apparatus. After carrying out this electrostatic field treatment for 15 minutes, the degree of turbidity of the obtained sludge inhibitor was 380 mg/100 g (solid impurity content 0.018% by weight). Example 9 An anti-sludge solution consisting of a barium salt of an alkylphenol disulfide was prepared with an initial level of turbidity.
It was 2100 mg/100 g (solid impurity content 1.2% by weight). While stirring this solution at a temperature of 60°C, 0.09% by weight of water (relative dielectric constant: 78.3) was added. This mixture was treated with an electrostatic field having a strength of 2.5 kv/cm and a nonuniformity factor of 25. Coagulation and separation of impurities from the anti-sludge solution were carried out simultaneously in the same apparatus. After performing this electrostatic field treatment for 15 minutes, the pollution degree of the obtained anti-sludge solution was 40 mg/100 g.
(solid impurity content 0.010% by weight). Example 10 An anti-sludge solution consisting of zinc dialkyldithiophosphate and barium alkylphenol had an initial turbidity of 770 mg/100 g (solid impurity content 0.8).
weight%). While stirring 100 g of this solution at a temperature of 60°C, 0.025% by weight of water (relative permittivity: 78.3) was added. This mixture was treated with an electrostatic field having a strength of 1.5 kv/cm and a nonuniformity factor of 5. Coagulation and separation of impurities from this solution were performed in the same apparatus. After performing this electrostatic field treatment for 15 minutes, the pollution degree of the obtained solution was 185 mg/100 g (solid impurity content
0.010% by weight). Example 11 An anti-sludge solution consisting of calcium petroleum sulfonate had an initial turbidity of 3290 mg/100 g (solid impurity content 4.7% by weight). While stirring this solution at a temperature of 60℃, add 0.5% by weight of water (relative permittivity
78.3) was added. This mixture has a strength of 1kv/cm,
It was treated with an electrostatic field with a non-uniformity factor of 10. Coagulation and separation of impurities from this solution were performed in the same apparatus. After carrying out this electrostatic field treatment for 30 minutes, the resulting anti-sludge agent had a turbidity of 211 mg/100 g (solid impurity content 0.01% by weight). Example 12 An anti-sludge solution of calcium petroleum sulfonate prepared by the method described in Example 1 had an initial turbidity of 3290 mg/100 g (solid impurity content 4.7% by weight). Pour this solution at a temperature of 60℃
Water (relative permittivity 78.3) 0.5% by weight while stirring with
added. This mixture was treated with an electrostatic field having a strength of 3 kv/cm and a non-uniformity factor of 10. Coagulation and separation of impurities from this solution were performed in the same apparatus. After carrying out this electrostatic field treatment for 30 minutes, the obtained sludge inhibitor had a turbidity of 69 mg/100 g (solid impurity content 0.01% by weight). Comparative Example 1a This is similar to Example 1 except that the amount of water used was increased to 780% by weight of additive. This amount of water is equal to the amount of water used in Example 1 described in JP-A-37-1274 as an example of the prior art. Comparative Example 1b This is the same as Example 1 except that the amount of water used was increased to 1150% by weight. This amount of water is equal to the amount of water in Example 2 described in the above publication. Comparing Comparative Examples 1a and 1b with Example 1, the first
As shown in the table, a significant amount of solid impurities remain.

【表】 比較例 2 スラツジ防止用潤滑油添加剤の最初の溶液は、
不純物含量6290g/100g、固体不純物含量4.7重
量%の石油スルホン酸カルシウム塩であり、この
溶液を温度60℃で撹拌しながら、水0.01重量%を
添加した。この混合物に強さ2kv/cmおよび不均
一係数10の静電界を作用させた。 固体不純物は凝集して沈降し、同一装置内で溶
液から分離された。 静電界内で30分間処理した後の潤滑油添加剤
は、不純物含量850mg/100g、固体不純物含量
0.04重量%であつた。 比較例 3 スラツジ防止用潤滑油添加剤の最初の溶液は、
不純物含量6400mg/100g、固体不純物含量4.8重
量%のスルホン酸カルシウム塩であり、この溶液
を温度60℃で撹拌しながら、水15重量%を添加し
た。 分離係数1000の遠心分離機で5分間分離した潤
滑油添加剤は、不純物含量940mg/100g、固体不
純物含量0.05重量%であつた。 比較例 4 スラツジ防止用潤滑油添加剤の最初の溶液は、
不純物含量7100mg/100g、固体不純物含量5.1重
量%のスルホン酸カルシウム塩であり、この溶液
を温度60℃で撹拌しながら、誘電率12.3の第三級
ブチルアルコール5重量%を添加した。 分離係数1000の遠心分離で5分間分離した後の
潤滑油添加剤は、不純物含量1250mg/100g、固
体不純物含量0.12重量%であつた。 上記比較例1〜3から明かなように、特許請求
の範囲第1項で規定した極性溶液の添加量0.025
〜10重量%またはその誘電率17以上を外れる場合
は、スラツジ防止用潤滑油添加剤の国際規格であ
る不純物含量500mg/100g未満の純度が得られな
い。
[Table] Comparative Example 2 The initial solution of anti-sludge lubricant additive was
It was a petroleum sulfonic acid calcium salt with an impurity content of 6290 g/100 g and a solid impurity content of 4.7% by weight. While stirring this solution at a temperature of 60°C, 0.01% by weight of water was added. An electrostatic field with a strength of 2 kv/cm and a nonuniformity factor of 10 was applied to this mixture. Solid impurities flocculated and precipitated and were separated from the solution in the same apparatus. The lubricating oil additive after being treated in an electrostatic field for 30 minutes has an impurity content of 850mg/100g, solid impurity content
It was 0.04% by weight. Comparative Example 3 The initial solution of anti-sludge lubricant additive was
It was a sulfonic acid calcium salt with an impurity content of 6400 mg/100 g and a solid impurity content of 4.8% by weight. While stirring this solution at a temperature of 60°C, 15% by weight of water was added. The lubricating oil additive separated for 5 minutes in a centrifuge with a separation factor of 1000 had an impurity content of 940 mg/100 g and a solid impurity content of 0.05% by weight. Comparative Example 4 The initial solution of anti-sludge lubricant additive was
It was a sulfonic acid calcium salt with an impurity content of 7100 mg/100 g and a solid impurity content of 5.1% by weight. While stirring this solution at a temperature of 60°C, 5% by weight of tertiary butyl alcohol having a dielectric constant of 12.3 was added. After being centrifuged for 5 minutes at a separation factor of 1000, the lubricating oil additive had an impurity content of 1250 mg/100 g and a solid impurity content of 0.12% by weight. As is clear from the above Comparative Examples 1 to 3, the amount of polar solution added as defined in claim 1 is 0.025
-10% by weight or when the dielectric constant exceeds 17, it is impossible to obtain a purity of less than 500 mg/100 g of impurity content, which is the international standard for lubricating oil additives for preventing sludge.

Claims (1)

【特許請求の範囲】 1 スラツジ防止用潤滑油添加剤の合成反応に由
来する固体不純物粒子を含むスラツジ防止用潤滑
油添加剤の非水性溶液の精製工程において、この
非水性溶液に、比誘電率17以上の極性液体を、前
記潤滑油添加剤の重量にもとづき0.025〜10重量
%を加え、ついで相分離によつて固体不純物粒子
を分離する、スラツジ防止用潤滑油添加剤の固体
不純物の除去方法。 2 固体担体に吸着された前記極性液体をスラツ
ジ防止用潤滑油添加剤の非水性溶液に加える、特
許請求の範囲第1項記載のスラツジ防止用潤滑油
添加剤の固体不純物の除去方法。 3 前記極性液体を加えたスラツジ防止用潤滑油
添加剤の非水性溶液に相分離のために、一定極性
のパルス電圧によつて生じた不均一静電界を作用
させる、特許請求の範囲第1項記載のスラツジ防
止用潤滑油添加剤固体不純物の除去方法。 4 強さ0.1〜5kv/cmおよび不均一係数5〜50の
静電界を使用する、特許請求の範囲第3項記載の
スラツジ防止用潤滑油添加剤の固体不純物の除去
方法。 5 固体担体として水酸化カルシウムまたは炭酸
カルシウムを使用する、特許請求の範囲第2項記
載のスラツジ防止用潤滑油添加剤の固体不純物の
除去方法。 6 固体担体の添加量がスラツジ防止用潤滑油添
加剤の0.01〜1.0重量%である、特許請求の範囲
第2項記載のスラツジ防止用潤滑油添加剤の固体
不純物の除去方法。 7 担体粒子の粒径が不純物粒子の大部分を占め
る画分粒径0.5〜5μの5〜10倍である、特許請求
の範囲第2項記載のスラツジ防止用潤滑油添加剤
の固体不純物の除去方法。
[Scope of Claims] 1. In the process of purifying a non-aqueous solution of a sludge-preventing lubricating oil additive containing solid impurity particles derived from the synthesis reaction of the sludge-preventing lubricating oil additive, this non-aqueous solution has a dielectric constant. A method for removing solid impurities from anti-sludge lubricating oil additives, comprising adding 0.025 to 10% by weight of a polar liquid of 17 or higher based on the weight of the lubricating oil additive, and then separating solid impurity particles by phase separation. . 2. A method for removing solid impurities in a lubricating oil additive for preventing sludge according to claim 1, wherein the polar liquid adsorbed on a solid carrier is added to a non-aqueous solution of the lubricating oil additive for preventing sludge. 3. A non-uniform electrostatic field generated by a pulsed voltage of constant polarity is applied to the non-aqueous solution of the anti-sludge lubricating oil additive to which the polar liquid has been added for phase separation. Method for removing solid impurities in anti-sludge lubricating oil additives as described. 4. A method for removing solid impurities in anti-sludge lubricating oil additives according to claim 3, using an electrostatic field with a strength of 0.1-5 kv/cm and a non-uniformity factor of 5-50. 5. A method for removing solid impurities from a lubricating oil additive for preventing sludge according to claim 2, wherein calcium hydroxide or calcium carbonate is used as the solid carrier. 6. The method for removing solid impurities from a lubricating oil additive for preventing sludge according to claim 2, wherein the amount of the solid carrier added is 0.01 to 1.0% by weight of the lubricating oil additive for preventing sludge. 7. Removal of solid impurities in the lubricating oil additive for preventing sludge according to claim 2, wherein the particle size of the carrier particles is 5 to 10 times the fraction particle size of 0.5 to 5μ, which accounts for the majority of the impurity particles. Method.
JP10984878A 1978-09-08 1978-09-08 Removing of impurities of sludge preventing lubricant oil additive Granted JPS5536254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10984878A JPS5536254A (en) 1978-09-08 1978-09-08 Removing of impurities of sludge preventing lubricant oil additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10984878A JPS5536254A (en) 1978-09-08 1978-09-08 Removing of impurities of sludge preventing lubricant oil additive

Publications (2)

Publication Number Publication Date
JPS5536254A JPS5536254A (en) 1980-03-13
JPS638160B2 true JPS638160B2 (en) 1988-02-20

Family

ID=14520717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10984878A Granted JPS5536254A (en) 1978-09-08 1978-09-08 Removing of impurities of sludge preventing lubricant oil additive

Country Status (1)

Country Link
JP (1) JPS5536254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107281U (en) * 1990-02-16 1991-11-05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107281U (en) * 1990-02-16 1991-11-05

Also Published As

Publication number Publication date
JPS5536254A (en) 1980-03-13

Similar Documents

Publication Publication Date Title
US4073719A (en) Process for preparing lubricating oil from used waste lubricating oil
Dos Reis et al. Waste lubricating oil rerefining by extraction-flocculation. 1. A scientific basis to design efficient solvents
US2761563A (en) Method of treating water
US4502948A (en) Reclaiming used lubricating oil
EP0009935B1 (en) Process for removing metals and water from used hydrocarbon lubricating oil
CN1045122A (en) Purify and reclaim the method for waste oil
US3835035A (en) Method of purifying lubricating oils
JPS584759B2 (en) How to recycle used lubricating oil
US2453690A (en) Process of producing polyvalentmetal hydrocarbon sulfonate
JPS5946262A (en) Manufacture of alkylphenate sulfide of alkali earth metal for use as lubricating oil additive
RU2340652C2 (en) Method of demetallisation with recycling of hydrocarbon oil
US4544491A (en) Recovery of hydrocarbon oil from filter cakes
US3763036A (en) A method of reducing the lead content of a used hydrocarbon lubricating oil by adding methylethyl ketone to separate the resulting mixture into a coagulated insoluble phase
JPS638160B2 (en)
US2568583A (en) Method of separating impurities from used lubricating oils
US1553141A (en) Oil purification
CN203333614U (en) Regenerating device for waste emulsified liquid generated in steel rolling process
US4430230A (en) Method for removal of impurities from liquid mixtures
US3607731A (en) Re-refined waste crankcase oils and method
WO2002018523A9 (en) A method of reclaiming used motor oil for further use
US3904512A (en) Method for reclaiming used crankcase oil
US2271882A (en) Method of purifying used oils
CN102234525B (en) Method for reducing water content in hydrocarbon oil
GB2031935A (en) Method of removing mechanical impurities from antisludge oil additives
US3826725A (en) Breaking of oil-in-water emulsions