US3763036A - A method of reducing the lead content of a used hydrocarbon lubricating oil by adding methylethyl ketone to separate the resulting mixture into a coagulated insoluble phase - Google Patents

A method of reducing the lead content of a used hydrocarbon lubricating oil by adding methylethyl ketone to separate the resulting mixture into a coagulated insoluble phase Download PDF

Info

Publication number
US3763036A
US3763036A US00224222A US3763036DA US3763036A US 3763036 A US3763036 A US 3763036A US 00224222 A US00224222 A US 00224222A US 3763036D A US3763036D A US 3763036DA US 3763036 A US3763036 A US 3763036A
Authority
US
United States
Prior art keywords
methylethylketone
oil
recovering
upper layer
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00224222A
Inventor
T Jordan
Donald J Mc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Inc
Original Assignee
Texaco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Inc filed Critical Texaco Inc
Application granted granted Critical
Publication of US3763036A publication Critical patent/US3763036A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M175/00Working-up used lubricants to recover useful products ; Cleaning
    • C10M175/005Working-up used lubricants to recover useful products ; Cleaning using extraction processes; apparatus therefor

Definitions

  • Hydrocarbon lubricating oil compositions used as lubricants in internal combustion engines contain additives which serve as dispersants so that accumulated impurities such as metallic salts particularly lead salts remain dispersed in the oil rather than settling as a sludge in the crankcase.
  • the function of the dispersants is a distinct advantage when the hydrocarbonoil composition is employed as a lubricating agent, it becomes a distinct hindrance in the disposal of the used oil composition or the reclaiming thereof, in that it prevents the ready separation of lead from the used oil.
  • Used oil such as that accumulated from the automobile service stations is sometimes disposed of by burning.
  • the removal of lead prior to disposal is desirable for ecological reasons, for during burning, lead if not removed, is volatilized into the atmosphere in substantial quantities, the remainder entering the soil, both outlets being undesirable.
  • lead must be removed therefrom in order to render it commercially saleable.
  • the invention comprises contacting a hydrocarbon lubricating oil having a dispersed lead content of at least about 0.5 wt. percent, normally between about 0.5 and 1.5 wt. percent with methylethylketone (MEK) under anhydrous and mixing conditions at a temperature between about 65 and 95F. utilizing a volume ratio of methylethylketone to hydrocarbon oil of at least about 2: l preferably between about 2:1 and 3:l, separating the resultant mixture into an upper layer of clarifiedlubricating oil and methylethylketone and a bottom coagulated, insoluble layer containing the bulk of the lead impurities under said anhydrous and temperature conditions.
  • MEK methylethylketone
  • Separation can be effected, for example, by either gravity separation which is normally conducted for a period of between about 4 and 10 hours or centrifuging, either means followed by decanting or filtering to spatially separate the layers.
  • the methylethylketone is readily recovered from the separated oil-methylethylketone layer by standard means such as distillation, leaving essentially a lead free (less than about 0.1 wt. percent) clarified dark oil.
  • the recovered methylethylketone is either forwarded to storage for eventual reuse or recycled directly to the mixing stage for immediate reuse.
  • Another means of sepa rating the clarified oil-methylethylketone layer from the coagulated insoluble would be employing a high speed centrifuge and then upon the completion of centrifuging spatially separating the layers, and recycling the recovered methylethylketone for reuse or storage.
  • the separated lead containing sludge is normally deoiled by extraction with solvent, for example, additional methylethylketone, pentane or heptane to yield a dry powder of relatively high lead content, e.g., 20-40 wt. percent.
  • solvent for example, additional methylethylketone, pentane or heptane to yield a dry powder of relatively high lead content, e.g., 20-40 wt. percent.
  • the thus recovered lead can be containerized and the resultant lead filled container can be employed as land fill or the lead can be accumulated and reprocessed for industrial use.
  • anhydrous denotes water content less than about 0.5 wt. percent.
  • this can be accomplished by standard means such as in line" blending, paddle mixing, etc., and is normally conducted for only that period of time which is required to insure thorough contact of the oil and ketone, e.g., 0.5-10 minutes.
  • the process of the invention may be conducted on a batch or continuous basis.
  • An example of a continuous operation would be to employ initial in line blending using adjustable proportioning pumps to provide the proper used oil-methylethylketone mix and introducing the mixture into a series of settling vessels. At least two separation vessels are employed in the continuous procedure with the flow of the mix, for example, being alternated between settling vessels, e.g., one being filled while recovering the separated layer from the other.
  • Another approach would be to connect a number of settling vessels in series, introducing the mix into the first of the series and withdrawing the clarified oilketone layer from the last of the series.
  • Still another approach would I be to feed the used oilmethylethylketone mix directly into a number of high speed centrifuges and alternating such feed between the centrifuges.
  • the methylethylketone functions to solubilize a yet unidentified resin, said resin believed to provide a chemical bond between the lead impurity and lube oil dispersants, the latter maintaining the lead impurity in the dispersed state. Once this bond is broken via solubilization the lead and other metallic materials become desolubilized, coagulate and separate from the oilmethylethylketone layer.
  • Another surprising material feature of the invention is that normally in purifying processes elevated temperatures of the order of 100 to 300F., preferably above l50F., are employed.
  • our procedure preferably employs ambient temperatures, that is, of the order of 65 to F., and therefore, affords a substantial saving in process costs since normally heat does not have to be supplied to the desolubilizing reaction. Temperatures above about 95F. in our procedure result in somewhat reduced lead removal.
  • volume ratio of methylethylketone to used oil of at least about 2:1 is advantageous. Volume ratios substantially below 2:1 such as 1:1, except when high speed centrifuge separation is employed, result in a treated oil have an unsatisfactory high lead content, that is, above about 0.1 wt. percent.
  • Still another material feature is the requirement that the desolubilization be conducted under anhydrous conditions, i.e., the initial oil-ketone mixture have a water content below about 0.5 wt. percent. Higher water contents prevent separation of.the lead impurity layer. If the oil to be treated has a water content which would bring the oil-ketone mixture above the aforementioned maximum value, it is subjected to a dehydration pretreatment. Such dehydration can be accomplished by standard means such as by passing used oil over a hot surface to flash off the water, by blowing with hot air or with steam above about 250F. or by vacuum treatment at ambient or elevated temperatures, preferably at about 150F.
  • hydrocarbon lubricating oil it is intended to mean oils removed from the crankcases after extended use in operating internal combustion engines, wherein the lead therein has been solubilized by dispersant additive(s) in said oil and the initial lead content therein is at least about 0.5 wt. percent.
  • hydrocarbon lubricating oil compositions contemplated herein are derived from the hydrocarbon lubricating compositions, normally lead free, comprising between about 85 and 99 wt. percent hydrocarbon lubricating oil and between about 1 and wt. percent additives.
  • additives in addition to the aforementioned dispersants normally comprise one or more of the following: pour depressors, anti thickening agents, antioxidants, corrosion inhibitors, VI improvers, and oiliness agents.
  • lube oil dispersants are overbased calcium alkylsulfonates, overbased sulfurized calcium alkyl-phenolates and polyisobutylene (e.g. 50 to 200 carbons) succinimide of tetraethylenepentamine.
  • the base oils employed in formulating the initial lubricating oil compositions from which the used oils are derived include a wide variety of hydrocarbon lubricating oils such as naphthenic base, paraffinic base and mixed base mineral oils or other hydrocarbon lubricating oils such as derived from coal products, synthetic oils, e.g., alkylene polymers such as polypropylene, polyisobutylene, of a molecular weight between 250 and 2500.
  • the lubricating base oils employed have an SUS viscosity at 100F. between about 50 and 2000.
  • the used crankcase lubricating oil employed in the following procedure was obtained from the waste oil disposal tank at a service station catering to automobiles. It was derived-from motor oils which initially contained no lead. The used oil was introduced into a mixing kettle where it was stirred at ambient temperature to assure uniform distribution of materials therein and then stored in l-gallon cans. Before use, the gallon cans- Used crankcase oil results Lead as Pb, wt. l.25 Sulfated ash, wt. 2.95 Viscosity at l00F., SUS 3
  • Table I represents the procedure of the invention utilizing gravity separation and demonstrates in Run E the gravity separation of 1:1 volume ratio is ineffective.
  • Table 11 represents the method of the invention utilizing centrifugal separation and gravity separation.
  • Table II further demonstrates in comparative Run F the ineffectiveness of comparative known lube oil solvent materials.
  • Table III shows the property difference between the untreated used oiland the clarified oil resulting from treatment of the used oil via the method of the invention.
  • EXAMPLE II This example illustrates the method of invention as practiced as a continuous process.
  • EXAMPLE III This example illustrates the ineffectiveness of closely related materials to methylethylketone in separating lead from used crankcase oil.
  • Example I gravity separation
  • Example IV This example illustrates the importance of conducting the reaction under essentially anhydrous conditions.
  • the procedure of Example I was employed utilizing a 10 volume percent water content in a 1:2 volume ratio of used oil to methylethylketone. An emulsion was formed which was stable for several days with no significant sludge coagulation being evidenced.
  • a method of reducing dispersed lead impurities in a used hydrocarbon lubricating oil composition having dispersed lead content of at least about 0.5 wt. percent consisting essentially of mixing under anhydrous conditions said composition with methylethylketone utilizing a methylethylketone to used oil composition volume ratio of at least about 2:1, forming a methylethylketone-clarified oil upper layer and a lead containing insoluble lower layer, separating the resultant methylethylketone-oil upper layer from said lead containing insoluble lower layer, and recovering from said methylethylketone-clarified oil upper layer, a lubricating oil composition of reduced lead content, said mixing, said forming, and said separating conducted at a temperature of between about 65 and F.
  • a method in accordance with claim 1 wherein said forming comprises passing the used oilmethylethylketone mixture to a settling tank and maintaining said mixture in said tank until said methylethylketone-clarified oil layer is formed as an upper layer and said lead containing insoluble layer is formed as a lower layer, said separating comprising subsequently decanting from said tank said methylethylketone-clarified oil upper layer, and. said recovering comprising passing the decanted methylethylketoneclarified oil upper layer to a distillation zone, recovering methylethylketone as distillation overhead, recovering a lubricating oil composition of reduced lead content as a distillation residue, and recycling the recovered methylethylketone to said mixing step.
  • a method in accordance with claim 1 wherein said forming comprises centrifuging the used oilmethylethylketone mixture to separate methylethylketone-clarified oil solution as an upper layer and lead containing coagulated insolubles as a lower layer, decanting said methylethylketone-clarified oil upper layer from the centrifuge, said recovering comprising passing the decanted methylethylketone-clarified oil upper layer to a distillation zone, recovering methylethylketone as distillation overhead, recovering a lubricating oil composition of reduced lead content as distillation residue, and recycling the recovered methylethylketone to said mixing step.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Lubricants (AREA)

Abstract

A method of reducing the lead content of a used hydrocarbon lubricating oil comprising mixing a used hydrocarbon lubricating oil having a lead content of at least about 0.5 wt. percent with methylethylketone, separating the resulting mixture into coagulated insoluble layer and a clarified hydrocarbon lubricating oil-methylethylketone layer, said mixing and said separating conducted under anhydrous conditions at a temperature between about 65* and 95*F.

Description

United States Patent Jordan et a1.
[ Get. 2, 1973 1 METHoD 0F REDUCING THE LEAD CONTENT or A USED HYDROCARBON LUBRICATING 01L BY ADDING METHYLETHYL KETONE T0 SEPARATE THE RESULTING MIXTURE mm A COAGULATED INSOLUBLE PHASE [75] Inventors: Terence B. Jordan, Fishkill; Joseph W. McDonald, Wappingers Falls,
both of NY.
[73] Assignee: Texaco Inc., New York, NY.
[22] Filed: Feb. 7, 1972 21 Appl. No.: 224,222
[52] US. Cl. 208/180, 208/179 [51] Cl0g 27/00 [58] Field of Search 208/180, 251, 179
[56] References Cited UNITED STATES PATENTS 3,159,571 12/1964 Reman et a1 208/251 R Deschamps et a1. I. 208/251 R Primary ExaminerDelbert E. Gantz Assistant Examiner-Juanita M. Nelson Attorney-Thomas H. Whaley et al.
[57] ABSTRACT 4 Claims, No Drawings Ford 208/180 METHOD OF REDUCING THE LEAD CONTENT OF A USED HYDROCARBON LUBRICATING OIL BY ADDING METHYLETIIYL KETONE TO SEPARATE THE RESULTING MIXTURE INTO A COAGULATED INSOLUBLE PHASE BACKGROUND OF INVENTION Hydrocarbon lubricating oil compositions used as lubricants in internal combustion engines contain additives which serve as dispersants so that accumulated impurities such as metallic salts particularly lead salts remain dispersed in the oil rather than settling as a sludge in the crankcase. Although the function of the dispersants is a distinct advantage when the hydrocarbonoil composition is employed as a lubricating agent, it becomes a distinct hindrance in the disposal of the used oil composition or the reclaiming thereof, in that it prevents the ready separation of lead from the used oil.
Used oil such as that accumulated from the automobile service stations is sometimes disposed of by burning. The removal of lead prior to disposal is desirable for ecological reasons, for during burning, lead if not removed, is volatilized into the atmosphere in substantial quantities, the remainder entering the soil, both outlets being undesirable. In addition, if the oil is to be reused via a reclaiming process, lead must be removed therefrom in order to render it commercially saleable.
In the past, various materials have been employed to remove lead impurities such as reacting the impurities with N-phenyl alkylol amines as disclosed in U. S. Pat. No. 2,568,583. However, these materials are of relatively high cost, normally require the employment of elevated temperatures during separation, and are not reuseable.
SUMMARY OF INVENTION We have discovered and this constitutes our invention a low cost method of readily separating lead from hydrocarbon lubricating oil compositions used in internal combustion engines which is conducted at moderate temperatures, preferably room temperature, utilizing a particular agent which is readily recoverable for reuse.
DETAILED DESCRIPTION OF THE INVENTION Specifically, the invention comprises contacting a hydrocarbon lubricating oil having a dispersed lead content of at least about 0.5 wt. percent, normally between about 0.5 and 1.5 wt. percent with methylethylketone (MEK) under anhydrous and mixing conditions at a temperature between about 65 and 95F. utilizing a volume ratio of methylethylketone to hydrocarbon oil of at least about 2: l preferably between about 2:1 and 3:l, separating the resultant mixture into an upper layer of clarifiedlubricating oil and methylethylketone and a bottom coagulated, insoluble layer containing the bulk of the lead impurities under said anhydrous and temperature conditions. Separation can be effected, for example, by either gravity separation which is normally conducted for a period of between about 4 and 10 hours or centrifuging, either means followed by decanting or filtering to spatially separate the layers. The methylethylketone is readily recovered from the separated oil-methylethylketone layer by standard means such as distillation, leaving essentially a lead free (less than about 0.1 wt. percent) clarified dark oil. The recovered methylethylketone is either forwarded to storage for eventual reuse or recycled directly to the mixing stage for immediate reuse. Another means of sepa rating the clarified oil-methylethylketone layer from the coagulated insoluble would be employing a high speed centrifuge and then upon the completion of centrifuging spatially separating the layers, and recycling the recovered methylethylketone for reuse or storage.
The separated lead containing sludge is normally deoiled by extraction with solvent, for example, additional methylethylketone, pentane or heptane to yield a dry powder of relatively high lead content, e.g., 20-40 wt. percent. The thus recovered lead can be containerized and the resultant lead filled container can be employed as land fill or the lead can be accumulated and reprocessed for industrial use.
Hereinbefore and hereinafter the term anhydrous" denotes water content less than about 0.5 wt. percent.
In regard to mixing of the methylethylketone and used oil, this can be accomplished by standard means such as in line" blending, paddle mixing, etc., and is normally conducted for only that period of time which is required to insure thorough contact of the oil and ketone, e.g., 0.5-10 minutes.
The process of the invention may be conducted on a batch or continuous basis. An example of a continuous operation would be to employ initial in line blending using adjustable proportioning pumps to provide the proper used oil-methylethylketone mix and introducing the mixture into a series of settling vessels. At least two separation vessels are employed in the continuous procedure with the flow of the mix, for example, being alternated between settling vessels, e.g., one being filled while recovering the separated layer from the other. Another approach would be to connect a number of settling vessels in series, introducing the mix into the first of the series and withdrawing the clarified oilketone layer from the last of the series. Still another approach would I be to feed the used oilmethylethylketone mix directly into a number of high speed centrifuges and alternating such feed between the centrifuges.
In the method of the invention it is theorized the methylethylketone functions to solubilize a yet unidentified resin, said resin believed to provide a chemical bond between the lead impurity and lube oil dispersants, the latter maintaining the lead impurity in the dispersed state. Once this bond is broken via solubilization the lead and other metallic materials become desolubilized, coagulate and separate from the oilmethylethylketone layer.
In regard to the material and unexpected features of the inventiomthe ability of methylethylketone to function in desolubilizing lead impurities is surprising since many materials utilized in the solvent refining of virgin lubricating oils such as pentane, heptane, benzene and N-methyl-pyrrolidone were not effective in facilitating the removal of lead impurity from the used lubricating oil. Further, even closely related acetone is substantially unsatisfactory in lead impurity removal.
Another surprising material feature of the invention is that normally in purifying processes elevated temperatures of the order of 100 to 300F., preferably above l50F., are employed. In contrast, our procedure preferably employs ambient temperatures, that is, of the order of 65 to F., and therefore, affords a substantial saving in process costs since normally heat does not have to be supplied to the desolubilizing reaction. Temperatures above about 95F. in our procedure result in somewhat reduced lead removal.
Another feature of the invention is that a volume ratio of methylethylketone to used oil of at least about 2:1 is advantageous. Volume ratios substantially below 2:1 such as 1:1, except when high speed centrifuge separation is employed, result in a treated oil have an unsatisfactory high lead content, that is, above about 0.1 wt. percent.
Still another material feature is the requirement that the desolubilization be conducted under anhydrous conditions, i.e., the initial oil-ketone mixture have a water content below about 0.5 wt. percent. Higher water contents prevent separation of.the lead impurity layer. If the oil to be treated has a water content which would bring the oil-ketone mixture above the aforementioned maximum value, it is subjected to a dehydration pretreatment. Such dehydration can be accomplished by standard means such as by passing used oil over a hot surface to flash off the water, by blowing with hot air or with steam above about 250F. or by vacuum treatment at ambient or elevated temperatures, preferably at about 150F.
Hereinbefore and hereinafter by the term used hydrocarbon lubricating oil it is intended to mean oils removed from the crankcases after extended use in operating internal combustion engines, wherein the lead therein has been solubilized by dispersant additive(s) in said oil and the initial lead content therein is at least about 0.5 wt. percent.
The used hydrocarbon lubricating oil compositions contemplated herein are derived from the hydrocarbon lubricating compositions, normally lead free, comprising between about 85 and 99 wt. percent hydrocarbon lubricating oil and between about 1 and wt. percent additives. These additives in addition to the aforementioned dispersants normally comprise one or more of the following: pour depressors, anti thickening agents, antioxidants, corrosion inhibitors, VI improvers, and oiliness agents.
Examples of lube oil dispersants are overbased calcium alkylsulfonates, overbased sulfurized calcium alkyl-phenolates and polyisobutylene (e.g. 50 to 200 carbons) succinimide of tetraethylenepentamine.
The base oils employed in formulating the initial lubricating oil compositions from which the used oils are derived include a wide variety of hydrocarbon lubricating oils such as naphthenic base, paraffinic base and mixed base mineral oils or other hydrocarbon lubricating oils such as derived from coal products, synthetic oils, e.g., alkylene polymers such as polypropylene, polyisobutylene, of a molecular weight between 250 and 2500. Advantageously, the lubricating base oils employed have an SUS viscosity at 100F. between about 50 and 2000.
The following examples further illustrate the method of the invention but are not to be construed as limitations thereof.
EXAMPLE I This example illustrates the method of the invention as practiced as a batch process.
The used crankcase lubricating oil employed in the following procedure was obtained from the waste oil disposal tank at a service station catering to automobiles. It was derived-from motor oils which initially contained no lead. The used oil was introduced into a mixing kettle where it was stirred at ambient temperature to assure uniform distribution of materials therein and then stored in l-gallon cans. Before use, the gallon cans- Used crankcase oil results Lead as Pb, wt. l.25 Sulfated ash, wt. 2.95 Viscosity at l00F., SUS 3|) Viscosity at 2l0F., SUS 6L6 Viscosity Index 158 Pour, F. -35 Chlorine, wt. 0.95 Bromine, wt. 0.30 Water, wt: 0.4 Fuel Dilution 0.8
The overall procedure employed was as follows:
To a cylinderical tank there was sequentially charged the used crankcase oil and methylethylketone. The resultant mixture was mixed to assure uniform contact between the used oil and ketone. The mixing was then ceased and the mixture was left undisturbed until coagulated insolubles settled to the bottom of the vessel leaving a clarified used oil MEK upper solution. The separated insolubles represented about 10 percent of the total volume and the used oil MEK solution about 90 percent. Coagulation was relatively rapid. It took no longer than six hours under laboratory conditions. This translated into commercial operating conditions would be expected to be about 24 hours. The clarified methylethylketone-oil solution was transferred to a distillation unit and methylethylketone was distilled off and returned to storage for reuse. The clarified oil residue was forwarded to storage for subsequent disposal. As an alternative, centrifuging was also employed.
Following Table I represents the procedure of the invention utilizing gravity separation and demonstrates in Run E the gravity separation of 1:1 volume ratio is ineffective. Table 11 represents the method of the invention utilizing centrifugal separation and gravity separation. Table II further demonstrates in comparative Run F the ineffectiveness of comparative known lube oil solvent materials. Table III shows the property difference between the untreated used oiland the clarified oil resulting from treatment of the used oil via the method of the invention.
TABLE I METHYLETHYLKETONE TREATMENT OF USED CRANKCASE OIL Run A B C D Ingredients Methylethylketone. mls.
Used Oil,
yes yes no Sulfated Ash, wt. 0.64
TABLE I1 METHYLETl-IYLKETONE CLEAN-UP or USED CRANKCASE OIL Reference Run Used Oil F G H I Ingredients 1 Methylethylketone, mls. 600 2800 s00 Benzene, mls. 600 Used Oil. mls. 600 300 I400 800 SolventzOil. 1:1 2:1 2: 1 1:1 wt. ratio Treating Temp., F. 70-80 70-80 70-80 70-80 Sludge Separation partial yes yes yes Method Sludge Sepagravity gravity gravity centriration fuge Tests on Recovered Oil Lead as Pb, wt. 70 1.25 0.88 0.10 0.03 0.06 Sulfated Ash, wt. 2.95 2.55 0.81
TABLE III ;EFFECT OF MEK TREATMENT (RUN D) ON OIL PROPERTIES l MEK treated Used Oil 2:l MEKzused oil 1 SUS Viscosity, 100F. 319 283 SUS Viscosity, 210F. 61.6 55.4 Viscosity Index 155 l 3 Pour, F. -35 i 40 Sulfated Ash, wt. 2.95 0.64 Lead as Pb, wt. 1.25 0.02 311.90%, sta 1' W: "Bromine, wt. 0.30 0.05 i
EXAMPLE II This example illustrates the method of invention as practiced as a continuous process.
From two one-gallon storage vessels there was respectively drawn used crankcase oil and methylethyl-. ketone via proportioning pumps for inline blending of the materials at the desired ratio. The proportioning pumps were adjusted to provide the desired volume ratio of used oil to methylethylketone and also the desired flow rate. The mixture was then passed through 5 to 6 receiving vessels connected in series. The coagulation of the insoluble was accelerated by the inline blending and was completed in the receiving vessels. Rapid settling occurred providing a clear, dark brown used oil methylethylketone affluent equivalent to that obtained in the batch operation. The clearest fluid from the last vessel was continuously directed to a rotary. evaporating distillation unit where the methylethylketone was distilled off leaving the treated used oil. The methylethylketone was returned to the methylethylketone storage vessel for reuse. The recovered oil was transferred to oil storage for subsequent disposal.
The test data and results are reported below in Table IV. The data further demonstrates the importance of maintaining a MEKzUsed Oil volume ratio of at least about 2:1 under gravity separation conditions as can be seen from the high lead content in No. 5 and No. 6 Receivers of Run L.
TABLE IV METHYLETHYLKETONE TREATMENT CONTINUOUS OPERATION Run J K L MEK:Used Oil Ratio 2.211 2:1 1.1:1
liters/hr. (MEK+ 2.05 5.75 2.05
Used Oil) Total hours 4.25 6.0 8.5
Processed Volume. 13 34.5 16.3
liters Type Separation Gravity gravity gravity Temperature. F. -90 80-90 80-90 Lead as Pb., wt.
Original Used Oil 1.25 1.25 1.25
Receivers as Filled No. l (4liters) 0.039 0.040 0.043
No. 2 (2 liters) 0.069 0.040 0.068
No. 3 (2 liters) 0.065 0.040 0.094
No. 4 (2 liters) 0.057 0.035 0.093
No. 5 (2 liters) 0.043 0.035 0.163 No. 6 (2 liters) 0.200
EXAMPLE III This example illustrates the ineffectiveness of closely related materials to methylethylketone in separating lead from used crankcase oil.
The procedure of Example I (gravity separation) was repeated utilizing pentane, heptane, N-methyl-lpyrrolidone, N-methyl-Z-pyrrolidone and acetone.
These materials were substantially ineffective in coagulatin'g and settling out the dispersed lead and other suspended materials.in the used crankcase oil.
EXAMPLE IV This example illustrates the importance of conducting the reaction under essentially anhydrous conditions. The procedure of Example I was employed utilizing a 10 volume percent water content in a 1:2 volume ratio of used oil to methylethylketone. An emulsion was formed which was stable for several days with no significant sludge coagulation being evidenced.
We claim:
1. A method of reducing dispersed lead impurities in a used hydrocarbon lubricating oil composition having dispersed lead content of at least about 0.5 wt. percent consisting essentially of mixing under anhydrous conditions said composition with methylethylketone utilizing a methylethylketone to used oil composition volume ratio of at least about 2:1, forming a methylethylketone-clarified oil upper layer and a lead containing insoluble lower layer, separating the resultant methylethylketone-oil upper layer from said lead containing insoluble lower layer, and recovering from said methylethylketone-clarified oil upper layer, a lubricating oil composition of reduced lead content, said mixing, said forming, and said separating conducted at a temperature of between about 65 and F.
2. A method in accordance with claim 1 wherein said forming comprises passing the used oilmethylethylketone mixture to a settling tank and maintaining said mixture in said tank until said methylethylketone-clarified oil layer is formed as an upper layer and said lead containing insoluble layer is formed as a lower layer, said separating comprising subsequently decanting from said tank said methylethylketone-clarified oil upper layer, and. said recovering comprising passing the decanted methylethylketoneclarified oil upper layer to a distillation zone, recovering methylethylketone as distillation overhead, recovering a lubricating oil composition of reduced lead content as a distillation residue, and recycling the recovered methylethylketone to said mixing step.
3. A method in accordance with claim 1 wherein said forming comprises centrifuging the used oilmethylethylketone mixture to separate methylethylketone-clarified oil solution as an upper layer and lead containing coagulated insolubles as a lower layer, decanting said methylethylketone-clarified oil upper layer from the centrifuge, said recovering comprising passing the decanted methylethylketone-clarified oil upper layer to a distillation zone, recovering methylethylketone as distillation overhead, recovering a lubricating oil composition of reduced lead content as distillation residue, and recycling the recovered methylethylketone to said mixing step.
4. A method in accordance with claim 1 wherein said

Claims (3)

  1. 2. A method in accordance with claim 1 wherein said forming comprises passing the used oil-methylethylketone mixture to a settling tank and maintaining said mixture in said tank until said methylethylketone-clarified oil layer is formed as an upper layer and said lead containing insoluble layer is formed as a lower layer, said separating comprising subsequently decanting from said tank said methylethylketone-clarified oil upper layer, and said recovering comprising passing the decanted methylethylketone-clarified oil upper layer to a distillation zone, recovering methylethylketone as distillation overhead, recovering a lubricating oil composition of reduced lead content as a distillation residue, and recycling the recovered methylethylketone to said mixing step.
  2. 3. A method in accordance with claim 1 wherein said forming comprises centrifuging the used oil-methylethylketone mixture to separate methylethylketone-clarified oil solution as an upper layer and lead containing coagulated insolubles as a lower layer, decanting said methylethylketone-clarified oil upper layer from the centrifuge, said recovering comprising passing the decanted methylethylketone-clarified oil upper layer to a distillation zone, recovering methylethylketone as distillation overhead, recovering a lubricating oil composition of reduced lead content as dis-tillation residue, and recycling the recovered methylethylketone to said mixing step.
  3. 4. A method in accordance with claim 1 wherein said mixing comprises in-line blending the methylethylketone and used oil composition, said forming and said separating comprising passing the resultant mixture into a series of settling vessels so that at least one of said vessels is continuously filling with said mixture while simultaneously continually removing from another vessel formed methylethylketone-clarified oil upper layer, and said recovering comprising passing to a distillation zone the removed methylethylketone-clarified oil upper layer, recovering methylethylketone as distillation overhead, recovering lubricating oil composition of reduced lead content as distillation residue, and recycling the recovered methylethylketone to said mixing step.
US00224222A 1972-02-07 1972-02-07 A method of reducing the lead content of a used hydrocarbon lubricating oil by adding methylethyl ketone to separate the resulting mixture into a coagulated insoluble phase Expired - Lifetime US3763036A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22422272A 1972-02-07 1972-02-07

Publications (1)

Publication Number Publication Date
US3763036A true US3763036A (en) 1973-10-02

Family

ID=22839759

Family Applications (1)

Application Number Title Priority Date Filing Date
US00224222A Expired - Lifetime US3763036A (en) 1972-02-07 1972-02-07 A method of reducing the lead content of a used hydrocarbon lubricating oil by adding methylethyl ketone to separate the resulting mixture into a coagulated insoluble phase

Country Status (10)

Country Link
US (1) US3763036A (en)
JP (1) JPS4891107A (en)
AU (1) AU469320B2 (en)
BE (1) BE794876A (en)
CA (1) CA1005007A (en)
DK (1) DK139074B (en)
FR (1) FR2171106B1 (en)
IT (1) IT978839B (en)
NL (1) NL7300786A (en)
SE (1) SE390976B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923643A (en) * 1974-06-14 1975-12-02 Shell Oil Co Removal of lead and other suspended solids from used hydrocarbon lubricating oil
US4028226A (en) * 1975-11-12 1977-06-07 The Lubrizol Corporation Method of rerefining oil with recovery of useful organic additives
US4071438A (en) * 1976-06-03 1978-01-31 Vacsol Corporation Method of reclaiming waste oil by distillation and extraction
US4073719A (en) * 1977-04-26 1978-02-14 The United States Of America As Represented By The United States Department Of Energy Process for preparing lubricating oil from used waste lubricating oil
US4073720A (en) * 1976-10-22 1978-02-14 The United States Of America As Represented By The United States Department Of Energy Method for reclaiming waste lubricating oils
US4302325A (en) * 1980-10-28 1981-11-24 Delta Central Refining, Inc. Solvent extraction process for rerefining used lubricating oil
US4342645A (en) * 1980-10-28 1982-08-03 Delta Central Refining, Inc. Method of rerefining used lubricating oil
US4360420A (en) * 1980-10-28 1982-11-23 Delta Central Refining, Inc. Distillation and solvent extraction process for rerefining used lubricating oil
US4399025A (en) * 1980-10-28 1983-08-16 Delta Central Refining, Inc. Solvent extraction process for rerefining used lubricating oil
US4491515A (en) * 1981-03-23 1985-01-01 Monash University Treating used automotive lubricating oil to reduce the content of suspended particulate matter, including lead
US5516969A (en) * 1995-01-23 1996-05-14 Ontario Hydro Waste oil decontamination process
US5795463A (en) * 1996-08-05 1998-08-18 Prokopowicz; Richard A. Oil demetalizing process
WO2002018523A1 (en) * 2000-08-30 2002-03-07 Haydock Frederick J A method of reclaiming used motor oil for further use

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1871682A (en) * 1927-06-01 1932-08-16 Westinghouse Electric & Mfg Co Process for refining paraffin and naphthene base oils
US3159571A (en) * 1960-11-28 1964-12-01 Shell Oil Co Residual oil refining process
US3468790A (en) * 1967-03-09 1969-09-23 Inst Francais Du Petrole Process for metal removal from petroleum residues

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1871682A (en) * 1927-06-01 1932-08-16 Westinghouse Electric & Mfg Co Process for refining paraffin and naphthene base oils
US3159571A (en) * 1960-11-28 1964-12-01 Shell Oil Co Residual oil refining process
US3468790A (en) * 1967-03-09 1969-09-23 Inst Francais Du Petrole Process for metal removal from petroleum residues

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923643A (en) * 1974-06-14 1975-12-02 Shell Oil Co Removal of lead and other suspended solids from used hydrocarbon lubricating oil
US4028226A (en) * 1975-11-12 1977-06-07 The Lubrizol Corporation Method of rerefining oil with recovery of useful organic additives
US4071438A (en) * 1976-06-03 1978-01-31 Vacsol Corporation Method of reclaiming waste oil by distillation and extraction
US4073720A (en) * 1976-10-22 1978-02-14 The United States Of America As Represented By The United States Department Of Energy Method for reclaiming waste lubricating oils
FR2368534A1 (en) * 1976-10-22 1978-05-19 Us Energy PROCESS FOR RECOVERING WASTE LUBRICATING OILS
US4073719A (en) * 1977-04-26 1978-02-14 The United States Of America As Represented By The United States Department Of Energy Process for preparing lubricating oil from used waste lubricating oil
FR2388880A1 (en) * 1977-04-26 1978-11-24 Us Energy PROCESS FOR THE REGENERATION OF LUBRICATING OILS
US4342645A (en) * 1980-10-28 1982-08-03 Delta Central Refining, Inc. Method of rerefining used lubricating oil
US4302325A (en) * 1980-10-28 1981-11-24 Delta Central Refining, Inc. Solvent extraction process for rerefining used lubricating oil
US4360420A (en) * 1980-10-28 1982-11-23 Delta Central Refining, Inc. Distillation and solvent extraction process for rerefining used lubricating oil
US4399025A (en) * 1980-10-28 1983-08-16 Delta Central Refining, Inc. Solvent extraction process for rerefining used lubricating oil
US4491515A (en) * 1981-03-23 1985-01-01 Monash University Treating used automotive lubricating oil to reduce the content of suspended particulate matter, including lead
US5516969A (en) * 1995-01-23 1996-05-14 Ontario Hydro Waste oil decontamination process
US5795463A (en) * 1996-08-05 1998-08-18 Prokopowicz; Richard A. Oil demetalizing process
WO2002018523A1 (en) * 2000-08-30 2002-03-07 Haydock Frederick J A method of reclaiming used motor oil for further use
US6395166B1 (en) * 2000-08-30 2002-05-28 Frederick J. Haydock Method of reclaiming used motor oil for further use

Also Published As

Publication number Publication date
NL7300786A (en) 1973-08-09
AU469320B2 (en) 1976-02-12
FR2171106B1 (en) 1976-11-05
FR2171106A1 (en) 1973-09-21
IT978839B (en) 1974-09-20
JPS4891107A (en) 1973-11-27
DK139074B (en) 1978-12-11
CA1005007A (en) 1977-02-08
AU5121573A (en) 1974-07-18
DK139074C (en) 1979-05-21
SE390976B (en) 1977-01-31
BE794876A (en) 1973-08-01

Similar Documents

Publication Publication Date Title
US3763036A (en) A method of reducing the lead content of a used hydrocarbon lubricating oil by adding methylethyl ketone to separate the resulting mixture into a coagulated insoluble phase
US4073719A (en) Process for preparing lubricating oil from used waste lubricating oil
US3923643A (en) Removal of lead and other suspended solids from used hydrocarbon lubricating oil
US2861941A (en) Urea-dewaxing lubricating oil
US2453690A (en) Process of producing polyvalentmetal hydrocarbon sulfonate
JPS584759B2 (en) How to recycle used lubricating oil
US6174431B1 (en) Method for obtaining base oil and removing impurities and additives from used oil products
EP0032420A2 (en) Reclamation of coking wastes
US2383521A (en) Process of separating hydrocarbons and waxes and the products so produced
US4105542A (en) Method for removing sludge from oil
US2769768A (en) Method of removing high molecular weight naphthenic acids from hydrocarbon oils
US4169044A (en) Re-refining used lube oil
WO2002018523A9 (en) A method of reclaiming used motor oil for further use
US4336129A (en) Method for treating a water-containing waste oil
US2822332A (en) Lubricating oil additive and method of preparing the same
CA1157414A (en) Reclaiming used motor oil via supercritical solvent extraction and hydrotreating
US2822320A (en) Reclaiming used lubricating oil
US2151147A (en) Process for obtaining organic compounds from the acid sludge from refining of mineral oils
US2351445A (en) Refining mineral oils with clay
US2411819A (en) Method of producing dry metal sulfonates of improved oil solubility
US2862868A (en) Production of low cold-test oils
US3082248A (en) Method of desalting oil solutions of oil soluble salts
US2129752A (en) Settling aid in heavy solvents
US3170881A (en) Superbased barium containing lubricants
US2554395A (en) Lubricant manufacture