JPS6381326A - Liquid crystal element - Google Patents

Liquid crystal element

Info

Publication number
JPS6381326A
JPS6381326A JP22674286A JP22674286A JPS6381326A JP S6381326 A JPS6381326 A JP S6381326A JP 22674286 A JP22674286 A JP 22674286A JP 22674286 A JP22674286 A JP 22674286A JP S6381326 A JPS6381326 A JP S6381326A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal element
substrates
impact
per
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22674286A
Other languages
Japanese (ja)
Other versions
JP2703217B2 (en
Inventor
Akio Murayama
昭夫 村山
Hitoshi Hado
羽藤 仁
Shinichi Kamagami
信一 鎌上
Shoichi Matsumoto
正一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61226742A priority Critical patent/JP2703217B2/en
Publication of JPS6381326A publication Critical patent/JPS6381326A/en
Application granted granted Critical
Publication of JP2703217B2 publication Critical patent/JP2703217B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To prevent the generation of orientation disorder due to impulsions of impact and pressure by controlling particle number scattered between substrates to >=50-<=2,000 numbers per 1mm<2>. CONSTITUTION:The titled element is interposed a ferroelectric liquid crystal 10 between a pair of substrates 1 and 2 in which at least one of the substrates is transparent. In said element, the number of the particles 9 scattered between the substrates 1 and 2 are controlled to >=50-<=2,000 number per 1mm<2> and the diameter of the particle 9 is a range of 1-4mum. Thus, the impact resistance and the proof resistance strength with respect to the ferroelectric liquid crystal 10 are improved, and a phenomenon of the orientation disorder due to an external cause does not appear within a practical use.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、強誘電性液晶を用いた液晶素子に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a liquid crystal element using ferroelectric liquid crystal.

(従来の技術) 一般に液晶素子は、腕時計、電卓を初めとしてパーソナ
ル・コンピュータ用ディスプレイ、ポケット・カラーテ
レビなど幅広く電気光学装置に利用されている。
(Prior Art) Generally, liquid crystal elements are used in a wide range of electro-optical devices such as wristwatches, calculators, personal computer displays, and pocket color televisions.

しかし、現在使用されているネマチック液晶は電気光学
応答時間が約50m秒と遅いため、高速応答が要求され
る分野での利用には制限がある。
However, the currently used nematic liquid crystal has a slow electro-optic response time of about 50 msec, which limits its use in fields where high-speed response is required.

又、現在のTN(ツイスト・ネマチック)方式では、そ
の表示容量が限界に達しつつあり、TN方式を超える新
しい方式が精力的に模索されている。
Furthermore, the display capacity of the current TN (twisted nematic) system is reaching its limit, and new systems that exceed the TN system are being actively sought.

中でも、強誘電性液晶はμ秒単位の高速応答を示すこと
や、メモリー性があることから表示容量に制限がない等
の点で、その実用化が期待されている。
Among these, ferroelectric liquid crystals are expected to be put to practical use because they exhibit high-speed response on the microsecond scale and have memory properties, so there is no limit to display capacity.

(発明が解決しようとする問題点) 上記のような強誘電性液晶を用いた液晶素子は、衝撃や
圧力の印加によって配向が乱れる欠点を有する。ネマチ
ック液晶を用いた液晶素子においても、衝撃や圧力によ
る配向の乱れは生じる。しかし、ネマチック液晶は液体
に近い性質を有するために、−直配向が乱れても初期配
向への回復は容易である。
(Problems to be Solved by the Invention) Liquid crystal elements using ferroelectric liquid crystals as described above have a drawback that alignment is disturbed by application of impact or pressure. Even in liquid crystal elements using nematic liquid crystals, alignment disturbances occur due to impact or pressure. However, since nematic liquid crystals have properties similar to liquids, even if the -direct alignment is disturbed, recovery to the initial alignment is easy.

一方、強誘電性液晶は固体に近い性質を持つために、−
変乱れた配向の自発的回復は困難である。
On the other hand, ferroelectric liquid crystals have properties close to solids, so -
Spontaneous recovery of perturbed orientation is difficult.

この配向の乱れた部分は、電界の印加による所望の光学
的応答を示さなくなり、液晶素子としての性能を著しく
低下させる。つまり強誘電性液晶を使用した液晶素子に
おいて、配向層れの現象は致命的な問題である。
This misaligned portion no longer exhibits the desired optical response upon application of an electric field, significantly deteriorating its performance as a liquid crystal element. In other words, in a liquid crystal element using ferroelectric liquid crystal, the phenomenon of alignment layer deviation is a fatal problem.

従来、ネマチック液晶を用いた液晶素子においては、例
えば特公昭58−56850号公報で示されるように、
液晶素子の基板間に1mm当り0.7〜9個のスペーサ
が用いられている。
Conventionally, in liquid crystal elements using nematic liquid crystal, as shown in Japanese Patent Publication No. 58-56850, for example,
0.7 to 9 spacers per 1 mm are used between the substrates of a liquid crystal element.

しかし、上記分布密度のスペーサを使って、強誘電性液
晶素子を作製した場合、耐衝撃、耐圧力強度が不足して
、上記の配向層れが簡単に出現してしまう。
However, when a ferroelectric liquid crystal element is manufactured using spacers having the above distribution density, the impact resistance and pressure resistance strength are insufficient, and the above-mentioned alignment layer deterioration easily appears.

又、スペーサの数が1m況当り2000個を超えると、
液晶配向中に欠陥線が生ずるようになり、衝撃や圧力の
印加によって生ずる配向層れと同様の現象が観測される
Also, if the number of spacers exceeds 2000 per 1m,
Defect lines begin to appear during liquid crystal alignment, and a phenomenon similar to alignment layer deformation caused by impact or pressure application is observed.

一方、散布する粒子の径は1〜4μmの範囲にあること
が望ましい。粒子の径が1μm以下では、基板面積を大
きくした時に、基板間の空隙を均一な厚さにコントロー
ルすることが困難である。又、粒子の径を4μm以上に
した場合は、液晶素子にメモリー効果が見られず、素子
としての機能を果たさなくなる。
On the other hand, the diameter of the particles to be dispersed is preferably in the range of 1 to 4 μm. If the diameter of the particles is 1 μm or less, it is difficult to control the gaps between the substrates to have a uniform thickness when the substrate area is increased. If the diameter of the particles is 4 μm or more, no memory effect will be observed in the liquid crystal device, and the device will no longer function as a device.

この発明は、強誘電性液晶における衝撃や圧力に対する
強度を増強することによって、衝撃や圧力の印加に伴う
配向層れの発生を防止した液晶素子を提供することを目
的とする。
An object of the present invention is to provide a liquid crystal element that prevents the occurrence of alignment layer deterioration due to the application of impact or pressure by increasing the strength of ferroelectric liquid crystal against impact or pressure.

[発明の構成] (問題点を解決するための手段) この発明は、少なくとも一方が透明な一対の基板間に強
誘電性液晶を挟持させた液晶素子において、上記基板間
に散布する粒子の数を1mm当り50個以上2000個
以下に設定しており、粒子の径は1〜4μmの範囲にあ
る液晶素子である。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a liquid crystal element in which a ferroelectric liquid crystal is sandwiched between a pair of substrates, at least one of which is transparent, in which the number of particles scattered between the substrates is reduced. is set to 50 or more and 2000 or less per 1 mm, and the particle diameter is in the range of 1 to 4 μm.

(作用) この発明によれば、上記のような手段を講じているので
、強誘電性液晶に対する耐衝撃、耐圧力強度は増加し、
実用的な範囲内で、外的要因による配向層れの現象は見
られなくなった。
(Function) According to the present invention, since the above-mentioned measures are taken, the impact resistance and pressure resistance of the ferroelectric liquid crystal are increased,
Within a practical range, the phenomenon of alignment layering due to external factors is no longer observed.

(実施例) 以下、図面を参照して、この発明のいくつかの実施例に
つき説明する。
(Embodiments) Hereinafter, some embodiments of the present invention will be described with reference to the drawings.

[実施例1] 第1図はこの発明の一実施例に係る液晶素子を示したも
ので、透明ガラスからなる面積が90x90I1mにし
て厚さ1M1の一対の基板1.2が相対向して配設され
ている。そして、各基板1.2の対向面には夫々電極3
.4が形成され、この電極3.4上には水平配向層5.
6が各々被着されている。更に、これら各基板1.2間
には、微小粒子9と強誘電性液晶10が水平配向層5.
6に接して挟持され、液晶素子11が構成されている。
[Example 1] Fig. 1 shows a liquid crystal element according to an example of the present invention, in which a pair of substrates 1.2 made of transparent glass and having an area of 90x90I1m and a thickness of 1M1 are arranged facing each other. It is set up. Then, electrodes 3 are provided on the opposing surfaces of each substrate 1.2.
.. 4 is formed, and on this electrode 3.4 a horizontal alignment layer 5.4 is formed.
6 are respectively deposited. Further, between each of these substrates 1.2, microparticles 9 and ferroelectric liquid crystal 10 are formed in a horizontal alignment layer 5.2.
The liquid crystal element 11 is sandwiched in contact with the liquid crystal element 6.

尚、使用時には、この液晶素子1上の両側に、第2図に
示すように偏光板12.13が配設される。
In use, polarizing plates 12 and 13 are provided on both sides of the liquid crystal element 1, as shown in FIG.

次に、この液晶素子11の製造方法について説明する。Next, a method for manufacturing this liquid crystal element 11 will be explained.

先ず、基板1.2の各々一方の面にネサ膜からなる所定
形状の透明な電極3.4を形成する。次に、電極3.4
を形成した基板1.2上にポリイミド樹脂(Lx140
0:日立化成社製)をスピナーにより500人の厚さに
塗布し、これをラビングマシンにより一軸方向7.8に
ラビングし、水平配向層5.6を形成する。
First, transparent electrodes 3.4 of a predetermined shape made of Nesa film are formed on one side of each substrate 1.2. Next, electrode 3.4
Polyimide resin (Lx140
0: manufactured by Hitachi Chemical Co., Ltd.) was applied to a thickness of 500 mm using a spinner, and rubbed in a uniaxial direction of 7.8 mm using a rubbing machine to form a horizontal alignment layer of 5.6 mm.

その侵、基板1.2の間に微小粒子9として直径2μm
のアルミナ結晶(アルフィツト:昭和電工社製)を1m
尻単位面積当りの分布数がおよそ100個となるように
散布して、基板1.2を貼り合わせる。尚、アルフィツ
トの分布数は場所によって異なり、実際には80〜15
0個であった。
The invasion occurs between the substrates 1.2 as microparticles 9 with a diameter of 2 μm.
1 m of alumina crystal (Alfit: manufactured by Showa Denko)
The substrates 1.2 are bonded together by scattering so that the number of distributions per unit area is approximately 100. In addition, the distribution number of alfits varies depending on the location, and is actually 80 to 15.
There were 0 pieces.

次いで、これら基板1.2間に室温で誘電体性を示す液
晶(cs−1001:チッソ社製)を封入して、液晶素
子11を形成する。
Next, a liquid crystal (CS-1001: manufactured by Chisso Corporation) exhibiting dielectric properties at room temperature is sealed between these substrates 1.2 to form a liquid crystal element 11.

次に、第2図に示すように、水平配向層5のラビング方
向7から偏光軸13aを22度ずらした偏光板13を基
板1に設置し、又、偏光板13の偏光軸13aと偏光軸
12aが直交する他の偏光板12を基板2に設置する。
Next, as shown in FIG. 2, a polarizing plate 13 with a polarizing axis 13a shifted by 22 degrees from the rubbing direction 7 of the horizontal alignment layer 5 is installed on the substrate 1, and the polarizing axis 13a of the polarizing plate 13 and the polarizing axis Another polarizing plate 12 with orthogonal polarizing plates 12a is installed on the substrate 2.

さて、上記の液晶素子工1を用いて、樫の木製の板上3
0αからの落下試験を10回繰返したが、配向には全く
乱れを生じないことを、偏光顕微鏡を用いた観察により
確認した。
Now, using the above liquid crystal element manufacturing method 1,
Although the drop test from 0α was repeated 10 times, it was confirmed by observation using a polarizing microscope that there was no disturbance in the orientation at all.

又、樫の木製の板上80cmからの落下試験を行なった
ところ、液晶素子のガラス基板が破損した。
Further, when a drop test was conducted from 80 cm on an oak wooden board, the glass substrate of the liquid crystal element was damaged.

更に、衝撃試験機を用いて耐衝撃試験を行ない、液晶素
子に30’Gx11m秒の衝撃を与えたが、配向の乱れ
は生じなかった。
Furthermore, an impact resistance test was conducted using an impact tester, and an impact of 30'G x 11 ms was applied to the liquid crystal element, but no disturbance in alignment occurred.

[実施例2] この実施例2では、上記実施例1で用いたアルフィツト
の分布数を1TrL−単位面積当りおよそ200個とな
るように設定している。尚、アルフィツトの実際の分布
数は、180〜240個となった。この場合においても
、液晶素子の落下試験、耐衝撃試験共に上記実施例1と
全く同様の結果を示した。
[Example 2] In this Example 2, the number of Alfit distributions used in the above Example 1 is set to approximately 200 per 1 TrL-unit area. Incidentally, the actual number of distributed Alfits was 180 to 240. In this case as well, both the drop test and impact resistance test of the liquid crystal element showed exactly the same results as in Example 1 above.

[実施例3] この実施例3では、上記実施例1で用いたアルフィツト
を直径3μmのミクロバール(積水ファインケミカル社
製)に変えて、1mff1単位面積当り100個の分布
数となるように散布した。そして、ミクロバールの実際
の分布数は、80〜160個であった。この場合におい
ても、液晶素子の落下試験、耐衝撃試験共に上記実施例
1と全く同様の結果を示した。
[Example 3] In this Example 3, Alfit used in Example 1 above was replaced with microbars (manufactured by Sekisui Fine Chemical Co., Ltd.) having a diameter of 3 μm, and the particles were dispersed at a distribution rate of 100 per unit area of 1 mff. . The actual distribution number of microbars was 80 to 160. In this case as well, both the drop test and impact resistance test of the liquid crystal element showed exactly the same results as in Example 1 above.

[比較例1] この比較例1では、上記実施例1においてアルフィツト
の分布数は1TrLTft単位面積当り3個となるよう
に液晶素子を作製した。アルフィツトの実際の分布数は
1TrLTd単位面積当り0.7〜9個であった。
[Comparative Example 1] In Comparative Example 1, a liquid crystal element was manufactured so that the number of alphanumeric distributions in Example 1 was 3 per 1 TrLTft unit area. The actual distribution number of alfits was 0.7 to 9 per unit area of TrLTd.

この液晶素子を用いて、上記実施例と同様に樫の木製板
上30CW1からの落下試験を行なったところ、36d
の面積に配向の乱れが発生した。この配向の乱れは、1
日放置しても回復せず、±10 。
Using this liquid crystal element, a drop test from 30CW1 on an oak wooden board was conducted in the same manner as in the above example.
Disturbance of orientation occurred in the area of . This disorder of orientation is 1
Even after leaving it for a day, it did not recover, ±10.

■の直流電界の印加に対しても光学的応答を示さず、液
晶素子としての性能が失われていることを確認した。
It was confirmed that the device showed no optical response even to the application of a direct current electric field (2), and that its performance as a liquid crystal element was lost.

更に、実施例1と同様の耐衝撃試験を行なったところ、
20mの面積に配向の乱れを生じた。この配向の乱れの
部分も、1日放置しても回復せず、±10Vの直流電界
の印加に対しても電気光学的応答は全く示さなくなった
Furthermore, when the same impact test as in Example 1 was conducted,
Disturbance of orientation occurred in an area of 20 m. This portion of disordered orientation did not recover even after being left for one day, and no electro-optical response was exhibited at all even when a DC electric field of ±10 V was applied.

[比較例2コ この比較例2では、上記実施例1で用いたアルフィツト
の分布数を1mTd単位面積当り30個となるようにし
て液晶素子を作製した。アルフィツトの実際の分布数は
、20〜40個であった。
[Comparative Example 2] In Comparative Example 2, a liquid crystal element was manufactured by changing the distribution number of Alfit used in Example 1 to 30 per 1 mTd unit area. The actual distribution number of Alfits was 20-40.

この液晶素子を用いて、上記実施例と同様に樫の木製板
上30cIlからの落下試験を行なったところ、12d
の面積に配向の乱れが発生した。この配向の乱れは、1
日放置しても回復せず、±10Vの直流電界の印加に対
しても光学的応答を示さず、液晶素子としての性能が失
われていることを確認した。
Using this liquid crystal element, a drop test from 30 cIl on an oak wooden board was conducted in the same manner as in the above example.
Disturbance of orientation occurred in the area of . This disorder of orientation is 1
It did not recover even after being left in the sun, and showed no optical response to the application of a DC electric field of ±10 V, confirming that its performance as a liquid crystal element had been lost.

更に、実施例1と同様の耐衝撃試験を行なったところ、
5dの面積に配向の乱れを生じた。この配向の乱れの部
分も、1日放置しても回復せず、±10■の直流電界の
印加に対しても電気光学的応答は全く示さなくなった。
Furthermore, when the same impact test as in Example 1 was conducted,
Disturbance of orientation occurred in an area of 5d. This portion of disordered orientation did not recover even after being left for one day, and no electro-optical response was exhibited at all even when a DC electric field of ±10 μm was applied.

[実施例4] この実施例4では、上記実施例1で用いたアルフィツト
の分布数を1mm単位面積当り1500個となるように
して液晶素子を作製した。アルフィツトの実際の分布数
は、1400〜2000個であった。
[Example 4] In this Example 4, a liquid crystal element was manufactured in such a manner that the distribution number of Alfit used in Example 1 was 1500 per 1 mm unit area. The actual distribution number of Alfits was 1,400 to 2,000.

この場合においても、液晶素子の落下試験、耐衝撃試験
共に上記実施例1と全く同様の結果を示した。
In this case as well, both the drop test and impact resistance test of the liquid crystal element showed exactly the same results as in Example 1 above.

[実施例5] この実施例5では、上記実施例1で用いた基板1.2の
厚さを2Mに変えて、アルフィツトの分布数を1TrL
Td単位面積当り70個となるように設定している。ア
ルフィツトの実際の分布数は50〜80個であった。こ
の場合においても、液晶素子の落下試験、耐衝撃試験共
に上記実施例1と全く同様の結果を示した。
[Example 5] In this example 5, the thickness of the substrate 1.2 used in the above example 1 was changed to 2M, and the number of alpha distributions was changed to 1TrL.
It is set to be 70 pieces per unit area of Td. The actual distribution number of Alfits was 50-80. In this case as well, both the drop test and impact resistance test of the liquid crystal element showed exactly the same results as in Example 1 above.

[実施例6] この実施例6では、上記実施例5においてアルフィツト
の分布数を1771m単位面積当り1500個となるよ
うに設定している。アルフィツトの実際の分布数は14
00〜2000個であった。この場合においても、液晶
素子の落下試験、耐衝撃試験共に上記実施例1と全く同
様の結果を示した。
[Embodiment 6] In this Embodiment 6, the distribution number of alfits in the above Embodiment 5 is set to 1500 per unit area of 1771 m. The actual distribution number of Alfit is 14
The number was 00 to 2000. In this case as well, both the drop test and impact resistance test of the liquid crystal element showed exactly the same results as in Example 1 above.

[比較例3] この比較例3では、上記実施例5で用いたアルフィツト
の分布数を1TrLコ単位面積当りおよそ3個として液
晶素子を作製した。アルフィツトの実際の分布数は、0
.7〜9個であった。
[Comparative Example 3] In Comparative Example 3, a liquid crystal element was manufactured by changing the distribution number of Alfit used in Example 5 to approximately 3 per unit area of 1 TrL. The actual distribution number of Alfit is 0
.. There were 7 to 9 pieces.

この液晶素子を用いて、上記実施例と同様に樫の木製板
上301からの落下試験を行なったところ、22ciの
面積に配向の乱れが発生した。この配向の乱れは、1日
放置しても回復せず、±10Vの直流電界の印加に対し
ても光学的応答を示さず、液晶素子としての性能が失わ
れていることを確認した。
When this liquid crystal element was subjected to a drop test from an oak wooden board 301 in the same manner as in the above example, alignment disturbance occurred in an area of 22 ci. This disordered orientation did not recover even after being left for one day, and no optical response was shown even when a DC electric field of ±10 V was applied, confirming that the performance as a liquid crystal element was lost.

更に、実施例1と同様の耐衝撃試験を行なったところ、
12iの面積に配向の乱れを生じた。この配向の乱れの
部分も、1日放置しても回復せず、±1“0■の直流電
界の印加に対しても電気光学的応答は全く示さなくなっ
た。
Furthermore, when the same impact test as in Example 1 was conducted,
Disturbance of orientation occurred in the area of 12i. This portion of disordered orientation did not recover even after being left for one day, and no electro-optical response was exhibited at all even when a DC electric field of ±1"0" was applied.

[比較例4] この比較例4では、上記実施例5で用いたアルフィツト
の分布数を1TrL11L単位面積当り30rfAとし
て液晶素子を作製した。アルフィツトの実際の分布数は
、20〜40個であった。
[Comparative Example 4] In Comparative Example 4, a liquid crystal element was manufactured using the Alfit distribution number used in Example 5 above as 30 rfA per 1 TrL 11 L unit area. The actual distribution number of Alfits was 20-40.

この液晶素子を用いて、上記実施例と同様に樫の木製板
上30cIRからの落下試験を行なったところ、8cI
iの面積に配向の乱れが発生した。この配向の乱れは、
1日放置しても回復せず、±10Vの直流電界の印加に
対しても光学的応答を示さず、液晶素子としての性能が
失われていることを確認した。
Using this liquid crystal element, a drop test from 30cIR on an oak wooden board was conducted in the same manner as in the above example, and the result was 8cI.
Disturbance of orientation occurred in the area of i. This disordered orientation is
It did not recover even after being left for one day, and showed no optical response to the application of a DC electric field of ±10 V, confirming that its performance as a liquid crystal element had been lost.

更に、実施例1と同様の耐衝撃試験を行なったところ、
3cIiの面積に配向の乱れを生じた。この配向の乱れ
の部分も、1日放置しても回復せず、±10Vの直流電
界の印加に対しても電気光学的応答は全く示さなくなっ
た。
Furthermore, when the same impact test as in Example 1 was conducted,
Disturbance of orientation occurred in an area of 3cIi. This portion of disordered orientation did not recover even after being left for one day, and no electro-optical response was exhibited at all even when a DC electric field of ±10 V was applied.

[比較例5コ この比較例5では、上記実施例1で用いたアルフィツト
の分布数を1mゴ単位面積当りおよそ25oO個として
液晶素子を作製した。アルフィツトの実際の分布数は、
2300〜3000個であった。
[Comparative Example 5] In Comparative Example 5, a liquid crystal element was manufactured using the Alfit distribution number used in Example 1 as approximately 2500 per 1 m area. The actual distribution number of Alfit is
The number was 2,300 to 3,000.

この場合、液晶配向中のほぼ全面積に欠陥線が生じ、配
向が乱れた。
In this case, defect lines were generated over almost the entire area of the liquid crystal alignment, and the alignment was disordered.

[比較例6] この比較例6では、上記実施例5で用いたアルフィツト
の分布数を1771m単位面積当りおよそ2500個と
して液晶素子を作製した。アルフィツトの実際の分布数
は、2300〜3000個であった。
[Comparative Example 6] In Comparative Example 6, a liquid crystal element was manufactured using the Alfit distribution number used in Example 5 as approximately 2,500 per unit area of 1,771 m. The actual distribution number of Alfits was 2,300 to 3,000.

この場合、液晶配向中のほぼ全面積に欠陥線が生じ、配
向が乱れた。
In this case, defect lines were generated over almost the entire area of the liquid crystal alignment, and the alignment was disordered.

[発明の効果] 以上述べたように、この発明によれば、2枚の基板1.
2間に散布する微小粒子9の数を1TrLTd当り50
個以上とすることにより、液晶素子の耐衝撃、耐圧力強
度を増強し、配向層れの発生を防止することが可能とな
った。
[Effects of the Invention] As described above, according to the present invention, two substrates 1.
The number of microparticles 9 scattered between 2 and 2 is set to 50 per 1TrLTd.
By increasing the number of layers, it is possible to enhance the impact resistance and pressure resistance of the liquid crystal element, and to prevent the occurrence of alignment layer deterioration.

従って、この発明の液晶素子を用いれば、能動素子を用
いないX−Y単純マトリックス型で大容量の液晶素子等
を実現出来る。
Therefore, by using the liquid crystal element of the present invention, it is possible to realize a large-capacity liquid crystal element of an X-Y simple matrix type that does not use active elements.

尚、基板1.2は視認のため少なくとも一方が透明であ
れば良く、又、強誘電性液晶10は、フェニルピリミジ
ン系等積々の物を選べることは言うまでもない。
It goes without saying that at least one of the substrates 1.2 should be transparent for visual recognition, and that the ferroelectric liquid crystal 10 can be selected from a wide variety of materials such as phenylpyrimidine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る液晶素子を示す斜視
図、第2図は同じく分解して示す斜視図である。 1.2・・・基板 3.4・・・電極 5.6・・・水
平配向層 7.8・・・ラビング方向 9・・・微小粒
子10・・・強誘電性液晶 11−・・液晶素子 12
.13・・・偏光板。
FIG. 1 is a perspective view showing a liquid crystal element according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view of the same. 1.2... Substrate 3.4... Electrode 5.6... Horizontal alignment layer 7.8... Rubbing direction 9... Microparticles 10... Ferroelectric liquid crystal 11-... Liquid crystal Element 12
.. 13...Polarizing plate.

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも一方が透明な一対の基板間に強誘電性
液晶を挟持させた液晶素子において、上記基板間に散布
する粒子の数を1mm^2当り50個以上2000個以
下とすることを特徴とする液晶素子。
(1) A liquid crystal element in which a ferroelectric liquid crystal is sandwiched between a pair of substrates, at least one of which is transparent, characterized in that the number of particles scattered between the substrates is 50 or more and 2000 or less per 1 mm^2. A liquid crystal element.
(2)上記粒子の径は1〜4μmの範囲にあることを特
徴とする特許請求の範囲第1項記載の液晶素子。
(2) The liquid crystal element according to claim 1, wherein the diameter of the particles is in the range of 1 to 4 μm.
JP61226742A 1986-09-25 1986-09-25 Liquid crystal element Expired - Lifetime JP2703217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61226742A JP2703217B2 (en) 1986-09-25 1986-09-25 Liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61226742A JP2703217B2 (en) 1986-09-25 1986-09-25 Liquid crystal element

Publications (2)

Publication Number Publication Date
JPS6381326A true JPS6381326A (en) 1988-04-12
JP2703217B2 JP2703217B2 (en) 1998-01-26

Family

ID=16849894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61226742A Expired - Lifetime JP2703217B2 (en) 1986-09-25 1986-09-25 Liquid crystal element

Country Status (1)

Country Link
JP (1) JP2703217B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221998A (en) * 1991-08-01 2001-08-17 Seiko Epson Corp Liquid crystal display element and electronic instrument

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260022A (en) * 1984-06-06 1985-12-23 Sharp Corp Liquid crystal display element
JPS6173131A (en) * 1984-09-19 1986-04-15 Asahi Glass Co Ltd Manufacture of liquid crystal display element
JPS61166525A (en) * 1985-01-18 1986-07-28 Canon Inc Image forming device
JPS62174726A (en) * 1985-09-25 1987-07-31 Toray Ind Inc Liquid crystal electrooptic element and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260022A (en) * 1984-06-06 1985-12-23 Sharp Corp Liquid crystal display element
JPS6173131A (en) * 1984-09-19 1986-04-15 Asahi Glass Co Ltd Manufacture of liquid crystal display element
JPS61166525A (en) * 1985-01-18 1986-07-28 Canon Inc Image forming device
JPS62174726A (en) * 1985-09-25 1987-07-31 Toray Ind Inc Liquid crystal electrooptic element and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221998A (en) * 1991-08-01 2001-08-17 Seiko Epson Corp Liquid crystal display element and electronic instrument

Also Published As

Publication number Publication date
JP2703217B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
US4674839A (en) Ferroelectric liquid crystal apparatus having protective cover means
US3700306A (en) Electro-optic shutter having a thin glass or silicon oxide layer between the electrodes and the liquid crystal
EP0554091B1 (en) Colour liquid crystal electro-optical device and method of manufacturing the same
US20050270463A1 (en) Bistable liquid crystal display device
JPH09197420A (en) Liquid crystal element
US4536059A (en) Liquid crystal display device with ridges
JPH04299311A (en) Liquid crystal cell
JPS6381326A (en) Liquid crystal element
JPH02211422A (en) Liquid crystal shutter
JP2558729B2 (en) Liquid crystal cell manufacturing method
EP0535892B1 (en) Liquid crystal display device
JP2568575B2 (en) Liquid crystal cell manufacturing method
KR19990006887A (en) LCD and its manufacturing method
JP3329721B2 (en) Liquid crystal display
KR0161377B1 (en) Ferroelectric liquid crystal display element
KR0159130B1 (en) Lcd device and its production
JPS6381324A (en) Liquid crystal electrooptic element
JPH01142617A (en) Cell for liquid crystal display element and its production
JPH08328016A (en) Liquid crystal display element using liquid crystal having ferroelectric phase
JPH03118517A (en) Liquid crystal display device
JPH04102828A (en) Liquid crystal element
JPH0385526A (en) Liquid crystal display device
JPH04191823A (en) Liquid crystal display element
JPH045173B2 (en)
KR20000004396A (en) Lcd having improved response speed

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term