JPS6381306A - Optical fiber core and its production - Google Patents

Optical fiber core and its production

Info

Publication number
JPS6381306A
JPS6381306A JP61227014A JP22701486A JPS6381306A JP S6381306 A JPS6381306 A JP S6381306A JP 61227014 A JP61227014 A JP 61227014A JP 22701486 A JP22701486 A JP 22701486A JP S6381306 A JPS6381306 A JP S6381306A
Authority
JP
Japan
Prior art keywords
optical fiber
thermoplastic resin
coating
coated
fiber strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61227014A
Other languages
Japanese (ja)
Inventor
Fumio Suzuki
文雄 鈴木
Yoichi Nagase
陽一 永瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Toyokuni Electric Cable Co Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Toyokuni Electric Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Toyokuni Electric Cable Co Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61227014A priority Critical patent/JPS6381306A/en
Publication of JPS6381306A publication Critical patent/JPS6381306A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To decrease an optical transmission loss and an increase in the loss by a temp. change by forming a protective coating layer consisting of a thermoplastic resin formed on an optical fiber strand in a manner as to have compressive strain. CONSTITUTION:The thermoplastic resin 4 flows a double pipe flow passage between a die 1 and a nipple 2 and the thermoplastic resin is coated on the optical fiber strand 3 where the strand emits from the nipple 2. The thermoplastic resin 4 is extrusion-coated under pressurization on the optical fiber strand 3 at the amt. required for coating said thermoplastic resin on the optical fiber strand to the outside diameter which is the same as the bore of the nozzle of the die 1 or the amt. in excess thereof as the output of the above-mentioned resin. Since the thermoplastic resin 4 coated on the optical fiber strand 3 is molded while the resin is held pressurized in the longitudinal direction of the optical fiber, the shrinkage of the coating to be generated right after the extrusion coating and after heat history does not grow to the shrinkage rate to the extent of generating microbending in the optical fiber strand and rather acts in the direction to elongate the optical fiber. The transmission characteristic of the optical fiber is thereby improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光フ1イパ素線に保護被覆層を設けた光ファイ
バ心線とその製造方法に関し、とくに保心線とその製造
方法に関するものでらる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical fiber core wire in which a protective coating layer is provided on an optical fiber wire and a method for manufacturing the same, and particularly relates to a core wire and a method for manufacturing the same. It comes out.

〔従来の技術〕[Conventional technology]

従来この種の光ファイバ心線を製造する方法は、光ファ
イバ素線に熱可塑性樹脂を押出被覆する方法として、す
べてバイブ成形または引落し成形と称されるチェープ押
出成形と呼ばれる方法が採用されている。第2図に従来
の熱可塑性樹脂被覆のチ為−ブ押出成形を行う被覆部の
要部を説明する図を示す。すなわち、被覆を成形するダ
イス1の2重管流路の流れの厚みよりt1光ファイバ素
線3への被覆厚みの方が小さくなるように%たとえばナ
イロンなどの熱可塑性樹脂4を引き落しなから押出被覆
する方法が採られている。2はチ為−フ押出成形用のニ
ップルである。
Conventional methods for manufacturing this type of optical fiber have all adopted a method called chain extrusion molding, also known as vibe molding or draw-down molding, to extrude and coat the optical fiber with thermoplastic resin. There is. FIG. 2 is a diagram illustrating the main parts of a coating section for carrying out conventional extrusion molding of a thermoplastic resin-coated chip. In other words, the thermoplastic resin 4, such as nylon, is drawn down so that the thickness of the coating on the t1 optical fiber 3 is smaller than the thickness of the flow in the double pipe channel of the die 1 for forming the coating. An extrusion coating method has been adopted. 2 is a nipple for extrusion molding of the tip.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の光ファイバ心線の製造におけるチ晶−プ押出成形
による被覆方法においては、光フフイバ素線に熱可塑性
樹脂を押出被覆する際、熱可塑性樹脂を引っ張ルながら
光フフイパ素線に被覆してゆくため、熱可塑性樹脂が冷
却するときの成形収縮、または押出被覆時の熱可塑性樹
脂の配向に起因する成形残留歪が緩和する際に起る寸法
変化によって、光ファイバ素線を長手方向に縮める方向
に力がかかフ、その結果、光ファイバ素線が極めて小さ
な周期で曲げられる、いわゆるマイクロベンディングが
生じるため、光伝送損失が増加する傾向がある。また光
ファイバ心線は、被覆後に熱履歴を受けることによシ、
成形残留歪の緩和が更に進み、同時に結晶化も進行する
結果、被覆が収縮し、光伝送損失の温度特性が悪化する
現象が見られるという問題がある。
In the conventional coating method using chip extrusion molding in the production of optical fiber cores, when extrusion coating a thermoplastic resin onto an optical fiber strand, the thermoplastic resin is coated on the optical fiber strand while being pulled. As a result, the optical fiber is shrunk in the longitudinal direction due to molding shrinkage when the thermoplastic resin cools, or dimensional changes that occur when molding residual strain due to the orientation of the thermoplastic resin during extrusion coating is relaxed. As a result, the optical fiber is bent at an extremely small period, so-called microbending, which tends to increase optical transmission loss. In addition, optical fiber cores suffer from thermal history after being coated.
As a result of the further relaxation of the molding residual strain and the simultaneous progress of crystallization, there is a problem in that the coating shrinks and the temperature characteristics of optical transmission loss deteriorate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は従来の問題点を解決し、光伝送損失の低減と温
度変化による損失増加を低減する光ファイバ心線とその
製造方法を提供するもので、光ファイバ素線に施された
熱可塑性樹脂からなる保護被覆層は圧縮歪を有した構造
を備えていることを特徴とし、本発明の圧縮歪を有する
保護被覆層を光ファイバ素線に形成する工程として、加
圧押出成形用のダイスとニップルを使用し、とくにニッ
プルの出口先端部をダイスのノズル内に位置した状態で
、ダイスのノズル径と同じか同等以上の寸法の外径の被
覆を施すのに要する押出量の熱可塑性樹脂を押出し被覆
することを特徴としている。
The present invention solves the conventional problems and provides a coated optical fiber and a method for manufacturing the same that reduce optical transmission loss and increase in loss due to temperature changes. The protective coating layer is characterized in that it has a compressive strain structure, and the step of forming the compressive strain protective coating layer of the present invention on an optical fiber strand is performed using a die for pressure extrusion molding. Using a nipple, in particular, with the outlet tip of the nipple located within the nozzle of the die, extrude the amount of thermoplastic resin necessary to apply a coating with an outer diameter that is equal to or greater than the nozzle diameter of the die. It is characterized by extrusion coating.

〔作用〕[Effect]

本発明は加圧押出成形用のニップルの出口端子部をダイ
スのノズル内に位置した状態で、熱可塑性樹脂を光ファ
イバ素線に加圧押出して被覆を行うことから、光ファイ
バ素線に被覆された熱可塑性樹脂は、光ファイバ素線の
長手方向に加圧された状態で成形されるため、冷却後の
成形収縮が起ったとしても、主に径方向の収縮でろシ、
長手方向の寸法変化は極めて微小で、光ファイバ素線に
マイクロベンディングを生起させるほどの収縮力を発生
するには至らない。また押出被覆時の熱可径方向に配向
し、その配向度は微小でおるため、残留歪の緩和による
光ファイバの長手方向の収縮はほとんどなく、むしろ伸
びることになる。また光ファイバ心線は、被覆後に熱履
歴を受けたとき、成形残留歪の緩和と結晶化が進行した
としても、その結果生ずる被覆の収縮は、従来のチェー
ブ押出成形による引落し法に比べ極めて小さく、むしろ
収縮でなく伸びることになる。
The present invention covers the optical fiber by extruding thermoplastic resin under pressure with the outlet terminal of the nipple for pressure extrusion molding positioned in the nozzle of the die. The thermoplastic resin is molded under pressure in the longitudinal direction of the optical fiber, so even if molding shrinkage occurs after cooling, it is mainly due to radial shrinkage.
The dimensional change in the longitudinal direction is extremely small and does not generate enough contractile force to cause microbending in the optical fiber. In addition, since the optical fiber is oriented in the thermoradial direction during extrusion coating and the degree of orientation is minute, the optical fiber will hardly shrink in the longitudinal direction due to relaxation of residual strain, but will rather elongate. Furthermore, when optical fibers are subjected to thermal history after coating, even if molding residual strain is relaxed and crystallization progresses, the resulting shrinkage of the coating is much smaller than in the conventional draw-down method using tube extrusion. It is small and will actually expand rather than shrink.

以上の理由によル、本発明は、熱可塑性樹脂を光ファイ
バ素線に、加圧押出方式によシ被覆する方法であること
から、押出被覆直後および熱履歴後に発生する被覆の収
縮は、光ファイバ素線のマイクロベンディングを発生さ
せるはどの収縮量には至らず、むしろ光ファイバを引き
伸ばす方向に働くので、光ファイバの光伝送特性を大幅
に改善できる。以下因面にもとづき実施例について説明
する。
For the above reasons, since the present invention is a method of coating a thermoplastic resin on an optical fiber by a pressure extrusion method, the shrinkage of the coating that occurs immediately after extrusion coating and after thermal history is Micro-bending of the optical fiber does not result in any amount of contraction, but rather works in the direction of stretching the optical fiber, so the optical transmission characteristics of the optical fiber can be significantly improved. Examples will be described below based on the factors.

〔実施例〕〔Example〕

押出成形を行う被覆部の要部を説明する図を示す。 The figure explaining the main part of the covering part which performs extrusion molding is shown.

1は加圧押出成形用のダイス、2はニップルで6シ、ニ
ップル2の中心を矢印の方向に光ファイバ素Hsが通ル
、ダイス1とニップル2の間の2重管流路を、熱可塑性
樹脂4が光ファイバ素線5と同方向に流れ、光ファイバ
素線5がニップル2を出たところで、光ファイバ素線3
に熱可塑性樹脂が被覆される。このとき熱可塑性樹脂4
の押出量ハ、光ファイバ素線3に、ダイス1のノズルの
口径と同じ外径を有して被覆するのに要する量またはそ
れを越える量を加圧押出被覆することによシ、2重管流
路内では、熱可塑性樹脂4は加圧された状態となシ、そ
の結果、ダイス1から押出された光ファイバ心線の外径
は、ダイス1のノズルを出た直後はダイス1のノズル口
径と同じか、またはこれを越える外径を有する。
1 is a die for pressure extrusion molding, 2 is a nipple, an optical fiber element Hs is passed through the center of the nipple 2 in the direction of the arrow, and the double pipe flow path between the die 1 and the nipple 2 is heated. The plastic resin 4 flows in the same direction as the optical fiber 5, and when the optical fiber 5 exits the nipple 2, the optical fiber 3
is coated with thermoplastic resin. At this time, thermoplastic resin 4
The extrusion amount C is doubled by pressurizing and extruding the amount required to coat the optical fiber strand 3 with the same outer diameter as the nozzle diameter of the die 1, or an amount exceeding that amount. Inside the tube flow path, the thermoplastic resin 4 is in a pressurized state, and as a result, the outer diameter of the optical fiber core extruded from the die 1 is the same as that of the die 1 immediately after exiting the nozzle of the die 1. It has an outer diameter that is the same as or exceeds the nozzle diameter.

これによ)、光ファイバ素I13に被覆された熱可塑性
樹脂4は、光ファイバの長手方向に加圧された状態で成
形されるため、冷却後の成形収縮が起ったとしても、主
に光ファイバの径方向の収縮でラフ、長手方向の寸法変
化は光ファイバ素線3にマイクロベンディングを起ζさ
せるほどの収縮力を発生するに至らなφ。また加圧押出
被覆時の黒豆m性樹脂40配向も、光7フイパの長手方
向よシも径方向に配向し、その配向度は微小であるため
、残留歪の緩和による長手方向の収縮は殆んどなく、む
しろ伸びることになる。
As a result, since the thermoplastic resin 4 coated on the optical fiber element I13 is molded under pressure in the longitudinal direction of the optical fiber, even if molding shrinkage occurs after cooling, the thermoplastic resin 4 is The contraction of the optical fiber in the radial direction is rough, and the dimensional change in the longitudinal direction does not generate enough contraction force to cause microbending in the optical fiber strand 3. In addition, the black bean m-type resin 40 orientation during pressure extrusion coating is also oriented in the radial direction in the longitudinal direction of the Hikari 7 fiber, and the degree of orientation is minute, so there is almost no contraction in the longitudinal direction due to relaxation of residual strain. In fact, it will grow.

また被覆後に熱履歴を受けたとき、熱可塑性樹脂4の残
留歪の緩和と結晶化が進行したとしても、その結果生ず
る被覆の収縮は、従来の引落し成形に比べ極めて小さく
、むしろ収縮で麦く伸びることになる。
Furthermore, even if the residual strain of the thermoplastic resin 4 is relaxed and crystallization progresses when it is subjected to thermal history after coating, the resulting shrinkage of the coating is extremely small compared to conventional draw-down molding. It will grow longer.

以上の理由から明らかなように、本発明の加圧押出方式
による光ファイバ素線への熱可塑性樹脂被覆は、押出被
覆直後および熱履歴後に発生する被覆の収縮が光7フイ
パ素線にマイクロベンディ・ングを発生させるはどの収
縮量には至らず、むしろ光ファイバを引き伸ばす方向に
働くので、光ファイバの伝送特性を大幅に改善できると
とKなる。
As is clear from the above reasons, when coating an optical fiber with a thermoplastic resin using the pressure extrusion method of the present invention, shrinkage of the coating that occurs immediately after extrusion coating and after thermal history causes micro-bends on the fiber optic fiber. Since the generation of de-ing does not lead to any amount of contraction, but rather works in the direction of stretching the optical fiber, it is possible to significantly improve the transmission characteristics of the optical fiber.

次に本発明によシ製造試作した光ファイバ心線の実施例
と、従来の引落し成形による光ファイバ心111の比較
例についてヒートサイクル試験を行っ九実験結果につい
て説明する。
Next, a heat cycle test was conducted on an example of an optical fiber core 111 prototyped according to the present invention and a comparative example of an optical fiber core 111 manufactured by conventional draw-down molding, and the results of nine experiments will be described.

外径cL3mm#のプラスチッククラッドファイバ素線
の外周にナイロン12(たとえばダイアミドZ、−16
40ダイセル化学(株)ンを加圧押出方式によシ押出被
覆し、外径α9−−の本発明の実施例の光ファイバ心線
を製造した。この際、加圧押出成形に使用したダイスの
口径は0.9*mφ、ニップルの径はα40qn帽1ダ
ーボは511&鵠、引落し率は1.0とした。本実施例
O光ファイバ心線と、従来のチェーブ押出成形によシ製
造した比較例の光ファイバ心at、−so°C〜+80
6Cの温度範囲でヒートサイクル試験を10サイクル実
施した。次光に本発明の実施例および従来の比較例のヒ
ートサイクル試験結果を示す。
Nylon 12 (for example, Diamid Z, -16
EXAMPLE 40 Daicel Chemical Co., Ltd. was extruded and coated using a pressure extrusion method to produce an optical fiber core of an example of the present invention having an outer diameter of α9. At this time, the diameter of the die used for pressure extrusion molding was 0.9*mφ, the diameter of the nipple was α40qn, the diameter of one dowel was 511 mm, and the drawdown rate was 1.0. The present example O optical fiber core and the comparative example optical fiber core manufactured by conventional tube extrusion at, -so°C to +80°C.
A heat cycle test was conducted for 10 cycles in a temperature range of 6C. The following figure shows the heat cycle test results of an example of the present invention and a conventional comparative example.

上式のヒートサイクル試験結果からも明らかなように、
本発明の加圧押出成形による熱可塑性樹脂被覆を施した
光7フイパ心線は、従来のチェープ押出成形による光フ
ァイバ心線に比し、被覆変形による光ファイバへの影響
は少なく、温度変化に対して安定な光伝送特性を備えて
いる。
As is clear from the heat cycle test results in the above equation,
The Hikari 7 fiber core wire coated with thermoplastic resin by pressure extrusion molding of the present invention has less influence on the optical fiber due to coating deformation than optical fiber core wires manufactured by conventional chain extrusion molding, and is resistant to temperature changes. It has stable optical transmission characteristics.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、従来のチェーブ押出成形によシ黒
豆m性樹脂を光ファイバ素線に被覆する光ファイバ心線
の製造方法では、押出被覆時の熱可塑性樹脂被覆の成形
収縮などによる光ファイバの伝送損失の増加、t&温度
環境変化による熱可塑性樹脂被覆の収縮に起因する光フ
ァイバの伝送損失の増加が発生するのに対し、本発明の
加圧押出成形によシ黒豆息性樹脂を光ファイバ素線に被
覆する光ファイバ心線の製造方法は、熱可塑性樹脂被覆
の長手方向の収縮を抑止することによる光ファイバの光
伝送損失の低減と、温度変化による光ファイバの光伝送
損失増加の低減を実現することができ、その効果が大き
い。
As explained above, in the conventional optical fiber manufacturing method in which the optical fiber core is coated with a black bean-based resin through the extrusion molding, the optical fiber is In contrast, the pressure extrusion method of the present invention allows the black bean-breathable resin to be made into light. The manufacturing method of the optical fiber coated wire coated on the fiber wire reduces the optical transmission loss of the optical fiber by suppressing the shrinkage of the thermoplastic resin coating in the longitudinal direction, and also reduces the optical transmission loss of the optical fiber due to temperature changes. It is possible to achieve a reduction, and the effect is large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る熱可塑性樹脂被覆の加圧押出成形
要部構成図、 第2図は従来の熱可塑性樹脂被覆のチェープ押出成形要
部構成図である。 1・・・ダイス 2・・・ニップル 3・・・光ファイバ素線 4・・・黒豆嵐性樹脂 特許出願人 住友電気工業株式会社(りHh)代理人弁
理士 玉 蟲 久 五 部 本発明に係る熱可塑性樹脂被覆の加圧押出成形要部構成
図1s1図 従来の熱可塑性樹脂被覆のチニーブ押出成形要部構成図
1s2図
FIG. 1 is a diagram showing the main part of a pressure extrusion molding of a thermoplastic resin coating according to the present invention, and FIG. 2 is a diagram of the main part of a conventional chain extrusion molding of a thermoplastic resin coating. 1... Dice 2... Nipple 3... Optical fiber strand 4... Kuromame Arashi Resin Patent Applicant Sumitomo Electric Industries, Ltd. (RIH) Representative Patent Attorney Hisashi Tamamushi Five Departments Regarding the Invention Figure 1s1 shows the configuration of the main parts of pressure extrusion molding of the thermoplastic resin coating. Figure 1s2 shows the construction of the main parts of the conventional chinibu extrusion molding of the thermoplastic resin coating.

Claims (4)

【特許請求の範囲】[Claims] (1)光ファイバ素線外周に溶融押出しにより熱可塑性
樹脂からなる保護被覆層を施した光ファイバ心線におい
て、 前記保護被覆層は、圧縮歪を有してなる ことを特徴とする光ファイバ心線。
(1) An optical fiber core in which a protective coating layer made of a thermoplastic resin is applied to the outer periphery of the optical fiber strand by melt extrusion, wherein the protective coating layer has compressive strain. line.
(2)光ファイバ素線外周に熱可塑性樹脂を溶融押出し
て保護被覆層を施し光ファイバ心線を形成する光ファイ
バ心線の製造方法において、 前記熱可塑性樹脂を溶融押出して保護被覆層を施す工程
は、 加圧押出成形用のダイスとニップルを使用し、前記熱可
塑性樹脂を加圧押出成形することにより、 圧縮歪を有する保護被覆層を形成する ことを特徴とする光ファイバ心線の製造方法。
(2) A method for manufacturing an optical fiber coated wire, in which a thermoplastic resin is melt-extruded on the outer periphery of the optical fiber strand to apply a protective coating layer to form an optical fiber coated wire, wherein the thermoplastic resin is melt-extruded and a protective coating layer is applied. The process includes: forming a protective coating layer having compressive strain by pressurizing and extruding the thermoplastic resin using a pressurizing extrusion die and a nipple; Method.
(3)前記熱可塑性樹脂を加圧押出成形する工程は、 前記加圧押出成形用のニップル出口先端部を、前記加圧
押出成形用のダイスのノズル内に位置した状態で、前記
熱可塑性樹脂を押出すことを特徴とする特許請求の範囲
第2項記載の光ファイバ心線の製造方法。
(3) In the step of pressure extrusion molding the thermoplastic resin, the thermoplastic resin is 3. A method for producing a coated optical fiber according to claim 2, which comprises extruding.
(4)前記熱可塑性樹脂を加圧押出成形する工程は、 前記光ファイバ素線に、前記加圧押出成形用のダイスの
ノズル径と同じか同等以上の寸法の外径の被覆を施すの
に要する押出量の前記熱可塑性樹脂を押出し被覆するこ
とを特徴とする特許請求の範囲第2項記載の光ファイバ
心線の製造方法。
(4) Pressure extrusion molding the thermoplastic resin includes coating the optical fiber with an outer diameter equal to or larger than the nozzle diameter of the pressure extrusion die. 3. The method of manufacturing a coated optical fiber according to claim 2, wherein the thermoplastic resin is extruded and coated with a required extrusion amount.
JP61227014A 1986-09-25 1986-09-25 Optical fiber core and its production Pending JPS6381306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61227014A JPS6381306A (en) 1986-09-25 1986-09-25 Optical fiber core and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61227014A JPS6381306A (en) 1986-09-25 1986-09-25 Optical fiber core and its production

Publications (1)

Publication Number Publication Date
JPS6381306A true JPS6381306A (en) 1988-04-12

Family

ID=16854163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61227014A Pending JPS6381306A (en) 1986-09-25 1986-09-25 Optical fiber core and its production

Country Status (1)

Country Link
JP (1) JPS6381306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098498A1 (en) * 2004-04-08 2005-10-20 Fuji Photo Film Co., Ltd. Method and device for coating plastic optical fiber with resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098498A1 (en) * 2004-04-08 2005-10-20 Fuji Photo Film Co., Ltd. Method and device for coating plastic optical fiber with resin

Similar Documents

Publication Publication Date Title
US4919513A (en) Plastic optical fiber
JPS6381306A (en) Optical fiber core and its production
US4854668A (en) Light waveguide having three protective layers of plastic material and a method of manufacture
JPH05213636A (en) Method for coating optical fiber
JPS59217653A (en) Preparation of coated optical fiber
JP5140561B2 (en) Optical fiber ribbon manufacturing method
JPH02233537A (en) Production of optical fiber core
JP4116968B2 (en) FRP tensile body for drop optical fiber cable
JPS615211A (en) Production for optical tape-type unit
JPS61127641A (en) Production of optical fiber cable
JP3346254B2 (en) Optical fiber
JP2006208651A (en) Coated plastic optical fiber ribbon
JP3495221B2 (en) Method of manufacturing optical fiber code
JPS6144825B2 (en)
JPH09265027A (en) Production of single groove spiral slot
JPS60103051A (en) Production of coated optical fiber
JPH09265028A (en) Production of double groove spiral slot
JPS61236636A (en) Coating method for jacket of optical fiber
JPS60242410A (en) Optical fiber cable consisting of acrylic plastic and its preparation
JPS59213647A (en) Preparation of cable core of optical fiber
CN114690354A (en) Special spring flexible optical cable and manufacturing method thereof
JPS6122303A (en) Manufacture of light guide for lighting
JPS6191045A (en) Method and apparatus for coating of optical fiber
JPH05221694A (en) Production of optical fiber tape core line
JPS63259502A (en) Curled cord fiber and its production