JPS638126B2 - - Google Patents

Info

Publication number
JPS638126B2
JPS638126B2 JP13509079A JP13509079A JPS638126B2 JP S638126 B2 JPS638126 B2 JP S638126B2 JP 13509079 A JP13509079 A JP 13509079A JP 13509079 A JP13509079 A JP 13509079A JP S638126 B2 JPS638126 B2 JP S638126B2
Authority
JP
Japan
Prior art keywords
polymer
ester
crosslinked polymer
epoxysuccinic
unsaturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13509079A
Other languages
Japanese (ja)
Other versions
JPS5659811A (en
Inventor
Kazuo Yomo
Osamu Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP13509079A priority Critical patent/JPS5659811A/en
Publication of JPS5659811A publication Critical patent/JPS5659811A/en
Publication of JPS638126B2 publication Critical patent/JPS638126B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は新芏な架橋重合䜓及びその補造方法を
提䟛する。詳しくは、䞀般匏、 ただし、はたたはCH3で瀺される゚ポ
キシコハク酞゚ステル重合単䜍を有する重合䜓
で、該重合䜓の屈折率が1.50〜1.57でか぀融点を
有しない架橋重合䜓である。かかる重合䜓は、通
垞䞀般匏、 ただし、はたたはCH3であるで瀺され
る゚ポキシコハク酞䞍飜和゚ステルたたは該゚ポ
キシコハク酞䞍飜和゚ステルの゚チレン性二重結
合郚分ず共重合可胜な他のモノマヌずの単独重合
䜓たたは共重合䜓である。たた本発明は䞊蚘゚ポ
キシコハク酞䞍飜和゚ステル又は該゚ポキシコハ
ク酞䞍飜和゚ステルず共重合可胜な他のモノマヌ
ずをラゞカル重合開始剀の存圚䞋に重合する架橋
重合䜓の補造方法も提䟛する。曎に本発明は前蚘
架橋重合䜓を䞻成分ずする光孊ガラスをも提䟛す
るものである。 埓来無機ガラスに代る合成暹脂に぀いおは皮々
研究され、提案されおいる。䟋えばゞ゚チレング
リコヌルビスアリルカヌボネヌト、メチルメ
タクリレヌト等の単量䜓又は単量䜓混合物を重合
し無機ガラスの代替物ずする提案がある。これら
の重合䜓は無機ガラスに比べるず軜量であるこ
ず、耐衝撃性が良奜であるこず等の長所を有しお
いるが耐摩耗性に劣り、屈折率がやや小さい等の
欠点を有するため必ずしも十分満足出来るもので
はない。 本発明者等は䞊蚘欠点を補う重合䜓に぀き長幎
鋭意研究を重ねお来た結果、゚ポキシコハク酞䞍
飜和゚ステルの架橋重合䜓が著しくすぐれた性状
を有するこずを芋出し本発明を完成させるに至぀
た。 すなわち、本発明は、分子䞭に構成成分ずしお
少なくずも䞀般匏、 ただし、はたたはCH3であるで瀺され
る゚ポキシコハク酞゚ステル重合単䜍を有する重
合䜓で、該重合䜓の屈折率が1.50〜1.57でか぀融
点を有しない架橋重合䜓である。 たた本発明な䞀般匏 ただし、はたたはCH3であるで瀺され
る゚ポキシコハク酞䞍飜和゚ステルたたは該゚ポ
キシコハク酞䞍飜和゚ステルず共重合可胜な他の
モノマヌずの架橋重合䜓を䞻成分ずする光孊ガラ
スを提䟛するものである。 本発明の重合䜓は䞊蚘䞍飜和結合に基因した架
橋重合䜓である。この点は前蚘架橋重合䜓が皮々
の有機溶媒あるいは氎系溶媒に溶解しないこずか
らも刀明する。たた䞊蚘架橋重合䜓は加熱するず
溶融するこずなく分解する性状を有するので融点
を有さない。 本発明の架橋重合䜓は有機溶媒氎溶媒に溶解
しないのでその分子量は枬定するこずが出来な
い。たた䞊蚘架橋重合䜓を加熱するず溶融せず分
解する。該分解枩床は原料の皮類特に゚ステルの
皮類によ぀お異なり、䟋えば゚ポキシコハク酞ア
リル゚ステルの架橋重合䜓にあ぀おは玄340℃
゚ポキシコハク酞メタアリル゚ステルの架橋重合
䜓にあ぀おは玄330℃である。これらの分解枩床
に぀いおは熱倩秀で枬定するこずにより確認する
こずが出来る。 たた本発明の架橋重合䜓は線回析によ぀お無
定圢物であるこずが確認出来る。曎にたた本発明
の架橋重合䜓は屈折率が1.50〜1.57である。䞀般
にメチルメタクリレヌトがゞ゚チレングリコヌル
ビスアリルカヌボネヌト等の重合䜓は光孊ガ
ラスずしお䜿甚されるが、その屈折率は玄1.49で
無機ガラスの1.52に比范するず小さい欠点があ぀
た。これに察しお本発明の架橋重合䜓はほが無機
ガラスの屈折率に盞圓するものである。曎に本発
明の架橋重合䜓は透明床光透過率が著しく良
奜で、䞀般に91mm厚さ以䞊の透明床を有す
る。通垞該透明床は91〜93mm厚さの範囲の
ものが最も倚い。曎にたた本発明の架橋重合䜓は
玫倖線遮断効果が著しくすぐれおいお、䟋えば
mm厚さの架橋重合䜓の玫倖線透過率は280mmたで
で300mmたでは玄10である。 前蚘説明から明らかな劂く、本発明の架橋重合
䜓は架橋構造を有するこずに基因し寞法安定性に
すぐれ耐薬品性も著しく良奜である。たた埌述す
る劂く、本発明の架橋重合䜓は皮々の厚みに重合
成圢出来る。埓぀お本発明の架橋重合䜓は無機ガ
ラスずほが同様な甚途に䜿甚出来、特に顕埮鏡
カメラメガネ等のレンズ或いはプリズム防塵
ガラス颚防ガラス等のガラスに奜適に䜿甚され
る。 本発明で甚いる゚ポキシコハク酞䞍飜和゚ステ
ルの補法は特に限定されるものではないが、䞀般
にシス又はトランス―゚ポキシコハク酞を䞍飜和
アルコヌルずを鉱酞有機スルホン酞の觊媒の存
圚䞋に゚ステル化反応を行うこずによ぀お埗られ
る。これらの゚ステル化反応条件は公知の酞ずア
ルコヌルずの゚ステル化反応条件をそのたた又は
倚少倉曎しお遞べばよい。前蚘䞀般匏で瀺される
゚ポキシコハク酞䞍飜和゚ステルのは又は
CH3が奜たしく、該が゚チル基より高玚になる
ず高䟡になるだけでなく、重合性が劣る傟向があ
るので奜たしくない。埓぀お、安䟡に補造する意
味から或いは重合性が良奜な意味からも通垞ぱ
ポキシコハク酞ゞアリル゚ステル゚ポキシコハ
ク酞ゞメタリル゚ステル等が最も奜適に䜿甚され
る。 本発明で甚いる゚ポキシコハク酞䞍飜和゚ステ
ルを共重合可胜な他のモノマヌは特に限定され
ず、䞀般に該゚ポキシコハク酞䞍飜和゚ステルず
盞溶性のある䞍飜和化合物が䜿甚出来る。゚ポキ
シコハク酞䞍飜和゚ステルの重合速床操䜜性等
を改良する目的で或いぱポキシコハク酞䞍飜和
゚ステルの架橋重合䜓の物性を改良する目的で、
䞀般に最も䜿甚されるのは䞍飜和カルボン酞カ
ルボン酞䞍飜和゚ステル䞍飜和カルボン酞゚ス
テル等のカルボン酞系モノマヌである。これらの
代衚的なものを䟋瀺するず次ぎの通りである。䟋
えばアクリル酞メタクリル酞無氎マレむン
酞むタコン酞クロトン酞等の䞍飜和カルボン
酞アクリル酞メチルアクリル酞゚チルアク
リル酞―ブチルアクリル酞む゜ブチルアク
リル酞プニルメタクリル酞メチルメタクリ
ル酞゚チルメタクリル酞―ブチルメタクリ
ル酞む゜ブチルメタクリル酞グリシゞルメタ
クリル酞プニルマレむン酞ゞメチルマレむ
ン酞ゞ゚チルフマル酞ゞメチルフマル酞ゞ゚
チル等の䞍飜和ゞカルボン酞゚ステルプロピオ
ン酞アリルα―クロルプロピオン酞アリル安
息銙酞ビニル安息銙酞アリル酢酞ビニル酢
酞アリルクロル酢酞アリルゞクロル酢酞アリ
ルケむ皮酞メチルステアリン酞ビニル酢酞
メタリルフタル酞ゞアリルフタル酞む゜アリ
ルフタル酞ステアリル酒石酞ゞアリルリン
ゎ酞ゞアリルコハク酞ゞアリルマロン酞ゞア
リルシナり酞ゞアリルグルタン酞ゞアリル
アゞピン酞ゞアリルスベリン酞ゞアリルセバ
シン酞ゞアリルシナり酞゚チルビニルシナり
酞゚チルアリル等のカルボン酞䞍飜和゚ステル
等マレむン酞メチルアリルフマル酞メチルア
リルマレむン酞ゞアリルフマル酞ゞアリル
アクリル酞アリルメタクリル酞アリルクロト
ン酞アリル等の䞍飜和カルボン酞䞍飜和゚ステ
ル゚チレングリコヌルゞメタクリレヌトゞ゚
チレングリコヌルゞメタクリレヌトトリ゚チレ
ンゞメタクリレヌトテトラ゚チレンゞメタクリ
レヌトハむドロキノンゞメタクリレヌトビス
プノヌルゞメタクリレヌトビス
―メタクリロキシ゚トキシプニルプロパン
ネオペンチルグリコヌルゞメタクリレヌトプロ
ピレングリコヌルゞメタクリレヌトブチレング
リコヌルゞメタクリレヌトゞ゚チレングリコヌ
ルビスアリルカヌボネヌト゚チレングリコ
ヌルマレ゚ヌトブチレングリコヌルマレ゚ヌ
ト゚チレングリコヌルフマレヌトブチレング
リコヌルマレ゚ヌトなどのゞアルコヌル䞍飜和カ
ルボン酞等である。 前蚘゚ポキシコハク酞䞍飜和゚ステルず共重合
可胜な他のモノマヌぱポキシコハク酞䞍飜和゚
ステル100重量郚に察しお10重量郚〜900重量郚の
範囲で䜿甚できるが、䞀般には20〜800重量郚の
範囲で甚いるのが最も倚い。 前蚘゚ポキシコハク酞䞍飜和゚ステルに䞍飜和
結合郚分が重合し、これらの゚ポキシコハク酞䞍
飜和゚ステルから導かれる前蚘重合単䜍を圢成
し、同時に該゚ポキシコハク酞䞍飜和゚ステルず
共重合可胜な他のモノマヌを䜿甚する堎合は、該
共重合可胜な他のモノマヌから導かれる重合単䜍
がランダムに結合した架橋重合䜓ずなる。 本発明の架橋重合䜓の補法は前蚘゚ポキシコハ
ク酞䞍飜和゚ステル又は該゚ポキシコハク酞䞍飜
和゚ステルず共重合可胜な他のモノマヌずをラゞ
カル重合開始剀の存圚䞋で重合するず埗られる。 䞊蚘ラゞカル重合開始剀は特に限定されず公知
のものが䜿甚出来る。䞀般に奜適に䜿甚される代
衚的なラゞカル重合開始剀を䟋瀺するず、䟋えば
ベンゟむルパヌオキサむドゞむ゜プロピルパヌ
オキシカヌボネヌトゞノルマルプロピルパヌオ
キシゞカヌボネヌトゞセカンダリブチルパヌオ
キシゞカヌボネヌトゞ―゚チルヘキシルパヌ
オキシゞカヌボネヌトアセチルパヌオキサむド
ゞ゚チルパヌオキサむド等の過酞化物或いはアゟ
ビスむ゜ブチロニトリルなどのアゟ系化合物が奜
適に䜿甚される。該ラゞカル重合開始剀の䜿甚量
は重合圢匏重合条件゚ポキシコハク酞䞍飜和
゚ステルの皮類等によ぀お異なり䞀抂に限定出来
ないが、䞀般にぱポキシコハク酞䞍飜和゚ステ
ルに察しお0.1〜10重量の範囲で甚いるのが
最も奜適である。 本発明における゚ポキシコハク酞䞍飜和゚ステ
ルの重合方法は特に限定的ではなく、公知の重合
方法を採甚出来る。代衚的な重合方法を䟋瀺する
ず泚型重合方法である。䟋えば゚ラストマヌガス
ケツトで保持されおいるモヌルド間にラゞカル重
合開始剀を含む゚ポキシコハク酞䞍飜和゚ステル
又ぱポキシコハク酞䞍飜和゚ステルず共重合可
胜な他のモノマヌずを泚入し、空気炉䞭で硬化さ
せた埌取出すずよい。重合条件のうち特に枩床は
埗られる架橋重合䜓の性状に圱響を䞎える。䞀般
に比范的䜎枩䞋でゆ぀くり重合を開始し、硬化終
了時に高枩䞋に硬化させる所謂段重合を行うの
が奜適である。䟋えば宀枩〜50℃皋床で重合を開
始し、重合終結を70〜120℃皋床の高枩にするず
奜たしい。特に埗られる架橋重合䜓の厚みが厚い
ものを目的ずする堎合は䜎枩での重合時間を長く
するようにするのが奜たしい。しかしながら、該
重合時間が長すぎるず特に高枩䞋での重合時間が
長すぎるず該架橋重合䜓が着色䟋えば黄色或いは
黄耐色を垯びる堎合があるので必芁以䞊の重合時
間を遞定するのは奜たしくない。䞀般に〜30時
間奜たしくは10〜25時間皋床で重合が完結するよ
うに条件を遞ぶのが奜たしい。該重合時間は皮々
の条件によ぀お異なるので予めこれらの条件に応
じた最適の時間を決定するのが奜適である。勿
論、前蚘重合に際し、離型剀、玫倖線吞収剀各
皮安定剀着色防止剀等の添加剀の添加は必芁に
応じお遞択しお䜿甚するこずが出来る。 本発明を曎に具䜓的に説明するため以䞋実斜䟋
を挙げお説明するが、本発明はこれらの実斜䟋に
限定されるものではない。 なお、実斜䟋においお埗られる架橋重合䜓は䞋
蚘の詊隓法により諞物性を枬定した。 (1) 密床 JIS Z8807に準じお枩床20℃で枬定した。 (2) 屈折率 Abbの屈折蚈を甚いお枩床20℃における屈折
率を枬定した。接觊液にはモノブロムナフタリ
ンを䜿甚した。 (3) 光透過率 ヘむズメヌタヌ東掋粟機補䜜所を甚いお
厚さmmの詊隓片に぀いお枬定した。 (4) 玫倖線透過率 分光光床蚈日立補䜜所を甚いお厚さmm
の詊隓片に぀いお波長210〜360mΌで枬定した。 (5) 硬床 ロツクり゚ル硬床蚈を甚いお鋌球1/4むンチ
倧荷重60Kgでの倀を求めた。 (6) 耐衝撃詊隓 アむゟフト耐衝撃詊隓機東掋粟機補䜜所
を甚いおASTM D256の方法に準じお枬定し
た。 (7) 耐摩耗詊隓 テヌバヌ・ロヌタリヌ耐摩耗詊隓機東掋粟
機補䜜所を甚い、750Kgの荷重をかけお1000
回転埌の重量枛少を枬定しこの倀を垂販のメタ
クリル酞メチルの重合板ずの比で衚わしたもの
である。 たた、実斜䟋で甚いた略蚘は次ぎの通りであ
る。 BACゞ゚チレングリコヌルビスアリルカヌ
ボネヌト MMAメタクリル酞メチル MAアクリル酞メチル VAc酢酞ビニル AAc酢酞アリル ―TA―酒石酞ゞアリル DAPフタル酞ゞアリル EDMA゚チレンゞメタクリレヌト EGM゚チレングリコヌルマレ゚ヌト MAN無氎マレむン酞 DAMマレむン酞ゞアリル 実斜䟋  粟補した゚ポキシコハク酞ゞアリル゚ステル
100重量郚にラゞカル重合開始剀ずしお第衚に
瀺す配合量のゞむ゜プロピルパヌオキシカヌボネ
ヌトず離型剀ずしおリン酞ゞ―ブチルリン酞
モノブチル45重量含む300ppmを加えおよく
混合した。この混合液は枚のガラス板をガスケ
ツトで固定したモヌルド型の䞭ぞ泚入し泚型重合
した。重合は空気炉を甚いお最初30℃から始め、
埐々に枩床を䞊げおゆき16時間で75℃ずなるよう
にしお行な぀た。曎に重合終了前に90℃たで枩床
を䞊げお埌硬化を行な぀た。重合終了埌モヌルド
型を空気炉から取り出しお攟冷埌重合䜓をモヌル
ドのガラスからはがした。このようにしお埗られ
た゚ポキシコハク酞ゞアリル゚ステルの架橋重合
䜓の玫倖線透過率は280mmたではで、300mmで
は玄10であり、分解枩床は熱倩秀で枬定した結
果玄340℃であ぀た。又、赀倖吞収スペクトルに
より単量䜓ず本䟋の重合䜓ずを比范するず第図
に瀺す単量䜓のスペクトルにおける1646cm-1の
結合に起因するピヌクが、第図に瀺す重合
䜓のスペクトルにおいおはほずんど消滅しおお
り、実質的に完党に架橋重合が行われたこず及び
第図においお゚ポキシ環に起因する3030cm-1の
ピヌク及び゚ステル基に起因する1732cm-1のピヌ
クが残存しおいるこずから、本発明の重合䜓が
The present invention provides a novel crosslinked polymer and a method for producing the same. For details, see the general formula, (However, R is H or CH 3 ) A crosslinked polymer having an epoxysuccinic acid ester polymer unit having a refractive index of 1.50 to 1.57 and no melting point. Such polymers usually have the general formula: (However, R is H or CH3 ) or a homopolymer of the epoxysuccinic unsaturated ester with another monomer copolymerizable with the ethylenically double bond portion of the epoxysuccinic unsaturated ester; or It is a copolymer. The present invention also provides a method for producing a crosslinked polymer by polymerizing the unsaturated epoxysuccinic ester or another monomer copolymerizable with the unsaturated epoxysuccinic ester in the presence of a radical polymerization initiator. Furthermore, the present invention also provides an optical glass containing the above-mentioned crosslinked polymer as a main component. Conventionally, various studies have been conducted and proposals have been made regarding synthetic resins to replace inorganic glass. For example, there have been proposals to polymerize monomers or monomer mixtures such as diethylene glycol bis(allyl carbonate) and methyl methacrylate as a substitute for inorganic glass. These polymers have advantages such as being lightweight and having good impact resistance compared to inorganic glass, but they have disadvantages such as poor abrasion resistance and a slightly low refractive index, so they are not necessarily suitable for use. It's not completely satisfying. As a result of many years of intensive research into polymers that compensate for the above-mentioned drawbacks, the present inventors have discovered that crosslinked polymers of unsaturated epoxysuccinic esters have extremely excellent properties, and have completed the present invention. . That is, the present invention provides at least the general formula, (However, R is H or CH3 ) A crosslinked polymer having a refractive index of 1.50 to 1.57 and no melting point. Also, the general formula of the present invention Optical glass whose main component is an epoxysuccinic unsaturated ester represented by (R is H or CH3 ) or a crosslinked polymer of the epoxysuccinic unsaturated ester and another monomer copolymerizable with the epoxysuccinic unsaturated ester. This is what we provide. The polymer of the present invention is a crosslinked polymer based on the above-mentioned unsaturated bonds. This point is also clear from the fact that the crosslinked polymer does not dissolve in various organic solvents or aqueous solvents. Further, the above-mentioned crosslinked polymer has a property of decomposing without melting when heated, and therefore does not have a melting point. Since the crosslinked polymer of the present invention does not dissolve in organic solvents or aqueous solvents, its molecular weight cannot be measured. Moreover, when the above-mentioned crosslinked polymer is heated, it does not melt but decomposes. The decomposition temperature varies depending on the type of raw material, especially the type of ester; for example, in the case of a crosslinked polymer of epoxysuccinic acid allyl ester, it is about 340°C,
In the case of a crosslinked polymer of epoxysuccinic acid metaallyl ester, the temperature is about 330°C. These decomposition temperatures can be confirmed by measuring with a thermobalance. Further, the crosslinked polymer of the present invention can be confirmed to be amorphous by X-ray diffraction. Furthermore, the crosslinked polymer of the present invention has a refractive index of 1.50 to 1.57. Generally, polymers such as methyl methacrylate and diethylene glycol bis(allyl carbonate) are used as optical glasses, but their refractive index is about 1.49, which is smaller than that of inorganic glasses, which is 1.52. On the other hand, the crosslinked polymer of the present invention has a refractive index approximately corresponding to that of inorganic glass. Further, the crosslinked polymer of the present invention has extremely good transparency (light transmittance), and generally has a transparency of 91%/2 mm or more. Usually, the transparency is most often in the range of 91-93%/2mm thickness. Furthermore, the crosslinked polymer of the present invention has an extremely excellent ultraviolet blocking effect, for example, 2
The ultraviolet transmittance of crosslinked polymers with a thickness of mm is 0% up to 280 mm and about 10% up to 300 mm. As is clear from the above description, the crosslinked polymer of the present invention has excellent dimensional stability and extremely good chemical resistance due to its crosslinked structure. Further, as will be described later, the crosslinked polymer of the present invention can be polymerized into various thicknesses. Therefore, the crosslinked polymer of the present invention can be used for almost the same purposes as inorganic glass, especially for microscopes,
Suitable for use in lenses or prisms of cameras, glasses, etc., dustproof glasses, windshield glasses, etc. The method for producing the unsaturated ester of epoxysuccinic acid used in the present invention is not particularly limited, but generally cis- or trans-epoxysuccinic acid is esterified with an unsaturated alcohol in the presence of a mineral acid or organic sulfonic acid catalyst. Obtained by conducting a reaction. These esterification reaction conditions may be selected from known esterification reaction conditions between an acid and an alcohol as they are or with some modification. R of the epoxysuccinic acid unsaturated ester represented by the above general formula is H or
CH 3 is preferred, and if R is higher than ethyl, it is not preferred because it not only becomes expensive but also tends to have poor polymerizability. Therefore, epoxysuccinic acid diallyl ester, epoxysuccinic acid dimethallyl ester, etc. are most preferably used from the viewpoint of low cost production or good polymerizability. Other monomers that can be copolymerized with the epoxysuccinic unsaturated ester used in the present invention are not particularly limited, and generally, unsaturated compounds that are compatible with the epoxysuccinic unsaturated ester can be used. For the purpose of improving the polymerization rate, operability, etc. of epoxysuccinic acid unsaturated esters, or for the purpose of improving the physical properties of crosslinked polymers of epoxysuccinic acid unsaturated esters,
Generally, carboxylic acid monomers such as unsaturated carboxylic acids, unsaturated carboxylic esters, and unsaturated carboxylic esters are most commonly used. Typical examples of these are as follows. Unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic anhydride, itaconic acid, crotonic acid; methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, phenyl acrylate, methyl methacrylate, methacrylate Unsaturated dicarboxylic acid esters such as ethyl acid, n-butyl methacrylate, isobutyl methacrylate, glycidyl methacrylate, phenyl methacrylate, dimethyl maleate, diethyl maleate, dimethyl fumarate, diethyl fumarate; allyl propionate, α- Allyl chloropropionate, vinyl benzoate, allyl benzoate, vinyl acetate, allyl acetate, allyl chloroacetate, allyl dichloroacetate, methyl cinnamate, vinyl stearate, methallyl acetate, diallyl phthalate, isoallyl phthalate, stearyl phthalate , diallyl tartrate, diallyl malate, diallyl succinate, diallyl malonate, diallyl oxalate, diallyl glutarate,
Carboxylic acid unsaturated esters such as diallyl adipate, diallyl suberate, diallyl sebacate, ethyl vinyl oxalate, ethyl allyl oxalate, etc.; methyl allyl maleate, methyl allyl fumarate, diallyl maleate, diallyl fumarate,
Unsaturated esters of unsaturated carboxylic acids such as allyl acrylate, allyl methacrylate, allyl crotonate; ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene dimethacrylate, tetraethylene dimethacrylate, hydroquinone dimethacrylate, bisphenol A dimethacrylate, 2,2 screws (4
-Methacryloxyethoxyphenyl)propane,
Dialcohol unsaturated carboxylic acids such as neopentyl glycol dimethacrylate, propylene glycol dimethacrylate, butylene glycol dimethacrylate, diethylene glycol bis(allyl carbonate), ethylene glycol maleate, butylene glycol maleate, ethylene glycol fumarate, butylene glycol maleate etc. Other monomers copolymerizable with the unsaturated epoxysuccinic ester can be used in an amount of 10 to 900 parts by weight, but generally 20 to 800 parts by weight. It is most often used within a range. An unsaturated bond moiety is polymerized to the unsaturated epoxysuccinic ester to form the polymerized unit derived from the unsaturated epoxysuccinic ester, and at the same time, another monomer copolymerizable with the unsaturated epoxysuccinic ester. When used, a crosslinked polymer is obtained in which polymerized units derived from the other copolymerizable monomer are randomly bonded. The method for producing the crosslinked polymer of the present invention is obtained by polymerizing the unsaturated epoxysuccinic ester or another monomer copolymerizable with the unsaturated epoxysuccinic ester in the presence of a radical polymerization initiator. The above-mentioned radical polymerization initiator is not particularly limited, and known ones can be used. Typical radical polymerization initiators that are generally suitably used include, for example, benzoyl peroxide, diisopropyl peroxycarbonate, di-n-propyl peroxydicarbonate, di-sec-butyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, Carbonates, peroxides such as acetyl peroxide and diethyl peroxide, or azo compounds such as azobisisobutyronitrile are preferably used. The amount of the radical polymerization initiator to be used varies depending on the polymerization type, polymerization conditions, type of epoxysuccinic acid unsaturated ester, etc., and cannot be absolutely limited, but it is generally 0.1 to 10% (per epoxysuccinic acid unsaturated ester). It is most preferable to use a range of % by weight. The method for polymerizing the unsaturated epoxysuccinic ester in the present invention is not particularly limited, and any known polymerization method can be employed. An example of a typical polymerization method is a cast polymerization method. For example, an epoxysuccinic acid unsaturated ester containing a radical polymerization initiator or another monomer copolymerizable with the epoxysuccinic acid unsaturated ester is injected between a mold held by an elastomer gasket, and then cured in an air oven. It is best to take it out after washing. Among polymerization conditions, temperature in particular affects the properties of the crosslinked polymer obtained. Generally, it is preferable to carry out so-called two-stage polymerization in which polymerization is started slowly at a relatively low temperature and then cured at a high temperature when curing is completed. For example, it is preferable to start the polymerization at room temperature to about 50°C and terminate the polymerization at a high temperature of about 70 to 120°C. In particular, when the objective is to obtain a thick crosslinked polymer, it is preferable to lengthen the polymerization time at a low temperature. However, if the polymerization time is too long, especially at a high temperature, the crosslinked polymer may become colored, for example, yellow or yellowish brown, so it is not preferable to select a polymerization time longer than necessary. Generally, conditions are preferably selected so that the polymerization is completed in about 5 to 30 hours, preferably 10 to 25 hours. Since the polymerization time varies depending on various conditions, it is preferable to determine the optimum time according to these conditions in advance. Of course, during the polymerization, additives such as a mold release agent, ultraviolet absorber, various stabilizers, and anti-coloring agents can be selected and used as necessary. EXAMPLES In order to explain the present invention more specifically, the present invention will be described below with reference to Examples, but the present invention is not limited to these Examples. In addition, various physical properties of the crosslinked polymers obtained in the examples were measured by the following test methods. (1) Density Measured at a temperature of 20°C according to JIS Z8807. (2) Refractive index The refractive index at a temperature of 20°C was measured using an Abb refractometer. Monobromnaphthalene was used as a contact liquid. (3) Light transmittance Measured on a 2 mm thick test piece using a haze meter (Toyo Seiki Seisakusho). (4) Ultraviolet transmittance at 2 mm thickness using a spectrophotometer (Hitachi)
The test piece was measured at a wavelength of 210 to 360 mΌ. (5) Hardness Using a Rockwell hardness tester, the value was determined using a 1/4-inch steel ball with a large load of 60 kg. (6) Impact resistance test Izoft impact resistance tester (Toyo Seiki Seisakusho)
It was measured according to the method of ASTM D256. (7) Abrasion test Using a Taber rotary abrasion tester (Toyo Seiki Seisakusho), a load of 750 kg was applied to 1000
The weight loss after rotation was measured and this value was expressed as a ratio to that of a commercially available methyl methacrylate polymer board. Furthermore, the abbreviations used in the examples are as follows. BAC: Diethylene glycol bis(allyl carbonate) MMA: Methyl methacrylate MA: Methyl acrylate VAc: Vinyl acetate AAc: Allyl acetate L-TA: L-Diallyl tartrate DAP: Diallyl phthalate EDMA: Ethylene dimethacrylate EGM: Ethylene glycol maleate MAN: Maleic anhydride DAM: Diallyl maleate Example 1 Purified diallyl epoxysuccinate ester
To 100 parts by weight, diisopropyl peroxycarbonate in the amount shown in Table 1 as a radical polymerization initiator and 300 ppm of di-n-butyl phosphate (containing 45% by weight of monobutyl phosphate) as a mold release agent were added and mixed well. This mixed solution was poured into a mold in which two glass plates were fixed with a gasket, and polymerized by casting. Polymerization was initially started at 30°C using an air oven.
The temperature was gradually raised until it reached 75°C in 16 hours. Furthermore, before the polymerization was completed, the temperature was raised to 90°C for post-curing. After the polymerization was completed, the mold was taken out of the air oven, allowed to cool, and then the polymer was peeled off from the glass of the mold. The ultraviolet transmittance of the crosslinked polymer of epoxysuccinic acid diallyl ester obtained in this way is 0% up to 280 mm, and about 10% at 300 mm, and the decomposition temperature is about 340°C as measured with a thermobalance. Ta. In addition, when comparing the monomer and the polymer of this example by infrared absorption spectrum, the C of 1646 cm -1 in the spectrum of the monomer shown in Figure 1.
The peak attributable to the =C bond almost disappears in the spectrum of the polymer shown in Figure 2, indicating that crosslinking polymerization has been substantially completely performed and the peak at 3030cm - attributable to the epoxy ring in Figure 2. The peak of 1 and the peak of 1732 cm -1 caused by the ester group remain, indicating that the polymer of the present invention

【匏】基を有するものであるこずが 確認された。曎に線回析によ぀お無定圢物であ
るこずが確認された。曎にこの架橋重合䜓の諞物
性を枬定しお第衚にたずめた。
It was confirmed that it has a group [Formula]. Furthermore, it was confirmed by X-ray diffraction that it was an amorphous substance. Furthermore, various physical properties of this crosslinked polymer were measured and summarized in Table 1.

【衚】 実斜䟋  ゚ポキシコハク酞ゞメタアリル゚ステル100重
量郚に、ラゞカル重合開始剀ずしおベンゟむルパ
ヌオキサむド重量郚、離型剀ずしおリン酞ゞ
―ブチルリン酞モノ―ブチル45重量含む
300ppmを加えた混合液をモヌルド型の䞭ぞ泚入
し泚型重合を行な぀た。重合は空気炉を甚いお枩
床50℃から始めお埐々に枩床を䞊げおいき10時間
で90℃ずなるようにし、90℃にな぀おから曎にそ
の枩床で時間加熱した。重合終了埌は実斜䟋
ず同じ操䜜を行な぀た。このようにしお埗られた
無色透明の゚ポキシコハク酞ゞメタアリル゚ステ
ルの架橋重合䜓の分解枩床は玄330℃屈折率nD
25は1.51光透過率は92硬床は108耐衝撃
詊隓は1.2Kg―cmcm耐摩耗詊隓はMMA板に
察しお倍比重は1.33玫倖線透過率は280mm
たでで300mmでは玄10であ぀た。 実斜䟋  実斜䟋で䜿甚した゚ポキシコハク酞ゞアリル
゚ステルの代りに゚ポキシコハク酞ゞアリル゚ス
テルず第衚に瀺す共重合可胜な他のモノマヌ及
びラゞカル重合開始剀濃床1.6重量郚を甚い
た以倖は実斜䟋ず同様に実斜した。その結果は
第衚に瀺す通りであ぀た。
[Table] Example 2 100 parts by weight of epoxysuccinic acid dimethallyl ester, 3 parts by weight of benzoyl peroxide as a radical polymerization initiator, and phosphoric acid di-n as a mold release agent.
-Butyl (contains 45% by weight of mono-n-butyl phosphate)
The mixed solution to which 300 ppm was added was injected into a mold and cast polymerization was performed. Polymerization was carried out using an air oven, starting at a temperature of 50°C and gradually increasing the temperature until it reached 90°C in 10 hours, and after reaching 90°C, heating was continued at that temperature for 3 hours. Example 1 after completion of polymerization
I performed the same operation. The decomposition temperature of the colorless and transparent crosslinked polymer of epoxysuccinic acid dimethallyl ester thus obtained is approximately 330°C, and the refractive index n D
25 is 1.51, light transmittance is 92%, hardness is 108, impact resistance test is 1.2Kg-cm/cm, abrasion resistance test is 8 times that of MMA board, specific gravity is 1.33, ultraviolet transmittance is 280mm
It was 0% up to 300mm, and about 10% at 300mm. Example 3 Except that epoxysuccinic acid diallyl ester used in Example 1 was replaced with epoxysuccinic acid diallyl ester, other copolymerizable monomers shown in Table 2, and a radical polymerization initiator (concentration: 1.6 parts by weight). was carried out in the same manner as in Example 1. The results were as shown in Table 2.

【衚】【table】

【衚】 実斜䟋  実斜䟋で䜿甚した゚ポキシコハク酞ゞメチル
アリル゚ステルの代りに゚ポキシコハク酞ゞメタ
アリル゚ステルず第衚に瀺す共重合可胜な他の
モノマヌ及びラゞカル重合開始剀ずしおゞむ゜プ
ロピルパヌオキシカヌボネヌト1.6重量郚を甚い
た以倖は実斜䟋ず同様に実斜した。その結果は
第衚に瀺す通りであ぀た。
[Table] Example 4 In place of dimethylallyl epoxysuccinate used in Example 2, dimethallyl ester of epoxysuccinate and other copolymerizable monomers shown in Table 3 and diisopropyl peroxy as a radical polymerization initiator were used. The same procedure as in Example 1 was carried out except that 1.6 parts by weight of carbonate was used. The results were as shown in Table 3.

【衚】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第図ぱポキシコハク酞ゞアリル゚ステルの
赀倖吞収スペクトルのチダヌトであり、第図は
゚ポキシコハク酞ゞアリル゚ステルの重合䜓の赀
倖吞収スペクトルのチダヌトである。これらの赀
倖吞収スペクトルは、日本電子株匏䌚瀟補TIR―
100を甚い、シリコン板䞊で枬定したものである。
FIG. 1 is a chart of an infrared absorption spectrum of epoxysuccinic acid diallyl ester, and FIG. 2 is a chart of an infrared absorption spectrum of a polymer of epoxysuccinic acid diallyl ester. These infrared absorption spectra are based on JEOL Ltd.'s TIR-
100 and was measured on a silicon plate.

Claims (1)

【特蚱請求の範囲】  構成成分ずしお少くずも䞀般匏、 ただし、はたたはCH3であるで瀺され
る゚ポキシコハク酞゚ステル重合単䜍を有する重
合䜓で、該重合䜓の屈折率が1.50〜1.57でか぀融
点を有しない架橋重合䜓。  重合䜓が䞀般匏、 ただし、はたたはCH3であるで瀺され
る゚ポキシコハク酞゚ステル重合単䜍単独で構成
されおなる特蚱請求の範囲第項蚘茉の架橋重合
䜓。  重合䜓が䞀般匏、 ただし、はたたはCH3であるで瀺され
る゚ポキシコハク酞゚ステル重合単䜍ず該゚ポキ
シコハク酞゚ステル重合単䜍ず共重合可胜な他の
モノマヌより導かれる重合単䜍ずで構成されおな
る特蚱請求の範囲第項蚘茉の架橋重合䜓。  重合䜓が゚ポキシコハク酞゚ステル重合単䜍
100重量郚に察しお共重合可胜な他のモノマヌよ
り導かれる重合単䜍が10〜900重量郚の範囲で構
成されおなる特蚱請求の範囲第項蚘茉の架橋重
合䜓。  構成成分ずしお少くずも䞀般匏、 ただし、はたたはCH3であるで瀺され
る゚ポキシコハク酞゚ステル重合単䜍を有する重
合䜓で、該重合䜓の屈折率が1.50〜1.57でか぀融
点を有しない架橋重合䜓を䞻成分ずする光孊ガラ
ス。
[Claims] 1. As a constituent component, at least the general formula, (However, R is H or CH3 ) A crosslinked polymer having a refractive index of 1.50 to 1.57 and having no melting point. 2 The polymer has the general formula, (However, R is H or CH3 .) The crosslinked polymer according to claim 1, which is composed solely of an epoxysuccinate polymer unit represented by the formula: (R is H or CH3). 3 The polymer has the general formula, (However, R is H or CH3 ) A patent claim consisting of an epoxy succinate polymer unit represented by the formula epoxy succinate polymer unit and a polymer unit derived from another monomer copolymerizable with the epoxy succinate polymer unit. The crosslinked polymer according to item 1. 4 Polymer is epoxy succinate polymerized unit
4. The crosslinked polymer according to claim 3, wherein the polymerized units derived from other copolymerizable monomers are comprised in the range of 10 to 900 parts by weight per 100 parts by weight. 5 At least a general formula as a constituent component, (However, R is H or CH3 ) A polymer having an epoxysuccinic acid ester polymer unit, which has a refractive index of 1.50 to 1.57 and has no melting point as a main component. optical glass.
JP13509079A 1979-10-22 1979-10-22 Crosslinked polymer and production thereof Granted JPS5659811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13509079A JPS5659811A (en) 1979-10-22 1979-10-22 Crosslinked polymer and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13509079A JPS5659811A (en) 1979-10-22 1979-10-22 Crosslinked polymer and production thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4648285A Division JPS6181412A (en) 1985-03-11 1985-03-11 Production of grosslinked polymer

Publications (2)

Publication Number Publication Date
JPS5659811A JPS5659811A (en) 1981-05-23
JPS638126B2 true JPS638126B2 (en) 1988-02-20

Family

ID=15143593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13509079A Granted JPS5659811A (en) 1979-10-22 1979-10-22 Crosslinked polymer and production thereof

Country Status (1)

Country Link
JP (1) JPS5659811A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120618A (en) * 1982-01-14 1983-07-18 Tokuyama Soda Co Ltd Preparation of polymer

Also Published As

Publication number Publication date
JPS5659811A (en) 1981-05-23

Similar Documents

Publication Publication Date Title
KR880001855B1 (en) Polyol alljl carbonate compositions and polymerizated prepared therefrom
US5218067A (en) Allyl ester oligomer composition and organic glass for optical material comprising same
US5623002A (en) Material for contact lens and contact lens prepared therefrom
US2370572A (en) Unsaturated esters and polymers thereof
JPS61127712A (en) Resin for lens having high refractive index
JPH0259570A (en) Dithiane compound and production thereof
JPS638126B2 (en)
JPH0430410B2 (en)
JPS6256167B2 (en)
JPH0159260B2 (en)
JPS6322205B2 (en)
JP3500444B2 (en) Polymerization composition for optical materials
JPS60124605A (en) Optical material
JPH02501147A (en) colorless transparent polymer material
JPS61247711A (en) Transparent resin
JPH0733834A (en) Polymerizable composition for optical material
JP2970915B2 (en) Thermosetting copolymer
JPH0241525B2 (en)
JPH0524926B2 (en)
JP2597640B2 (en) Resin manufacturing method
JPH05320254A (en) Cross-linked polymer
WO2009125828A1 (en) Β-pinene-based polymer and molded article comprising the same
JP3527928B2 (en) Organic glass for optical materials
JPH0753774B2 (en) Optical resin with high refractive index
JP2561311B2 (en) Resin manufacturing method