JPS6380825A - Concentrator - Google Patents

Concentrator

Info

Publication number
JPS6380825A
JPS6380825A JP22362886A JP22362886A JPS6380825A JP S6380825 A JPS6380825 A JP S6380825A JP 22362886 A JP22362886 A JP 22362886A JP 22362886 A JP22362886 A JP 22362886A JP S6380825 A JPS6380825 A JP S6380825A
Authority
JP
Japan
Prior art keywords
chamber
vapor
porous membrane
solution
flows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22362886A
Other languages
Japanese (ja)
Inventor
Hideaki Kurokawa
秀昭 黒川
Akira Yamada
章 山田
Yasuo Koseki
小関 康雄
Katsuya Ebara
江原 勝也
Sankichi Takahashi
燦吉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22362886A priority Critical patent/JPS6380825A/en
Publication of JPS6380825A publication Critical patent/JPS6380825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain an apparatus having a simple structure and a high concn. speed, by a method wherein a porous membrane is also mounted at the position of a conventional cooling surface and the steam generated from a solution supplied is absorbed without being condensed, by an absorbing liquid, which flows through a place where conventional cooling water flows. CONSTITUTION:This apparatus consists of three chambers, that is, a first chamber 10 through which a solution 13 supplied flows, a third chamber 12 through which a vapor absorbing liquid flows and a second chamber 11 in which generated steam moves and the respective chambers are partitioned by porous membranes 2, 2' each having a property previous to gas but impervious to a liquid. The solvent vapor of the solution supplied is generated on the porous membrane 2 contacting with the first chamber 10, and the generated vapor is moved to the second chamber 11 to be allowed to pass through the porous membrane 2' contacting with the third chamber 12 and absorbed by a vapor absorbing liquid 14 to concentrate the above mentioned solution supplied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液状溶液の濃縮装置に係り、特に各種水溶液
の中低温度の熱源を利用した濃縮に有効な濃縮装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a concentrating device for liquid solutions, and more particularly to a concentrating device that is effective for concentrating various aqueous solutions using a medium-low temperature heat source.

〔従来の技術〕[Conventional technology]

従来、液体は通さないが気体は通す多孔質膜を用いた水
溶液の濃縮方法としては、海水淡水化装置などに用いら
れている、濃縮(分離・蒸留)装置がある。
Conventionally, as a method for concentrating an aqueous solution using a porous membrane that does not allow liquid to pass through but allows gas to pass through, there is a concentration (separation/distillation) device used in seawater desalination devices and the like.

従来型のこの種の濃縮装置は、第2図に示すように、供
給水溶液27の流れる第1室24と、冷却水28の流れ
る第3室26と、透過蒸気を凝縮させて透過液29を取
り出す第2室25の3室から成り、かつ第1室24と第
2室25の間は多孔質膜22で仕切られ、第2室25と
第3室26との間は冷却面23で仕切られている。この
従来方式では、供給水溶液27が、第1室24に入り。
As shown in FIG. 2, this type of conventional concentrating device has a first chamber 24 through which a feed aqueous solution 27 flows, a third chamber 26 through which cooling water 28 flows, and a permeate liquid 29 by condensing permeate vapor. It consists of three chambers, a second chamber 25 for taking out, and the first chamber 24 and the second chamber 25 are partitioned by a porous membrane 22, and the second chamber 25 and the third chamber 26 are partitioned by a cooling surface 23. It is being In this conventional system, a feed aqueous solution 27 enters the first chamber 24 .

多孔質膜22の膜面で蒸発し、その蒸気が多孔質膜22
を通過する6通過した蒸気は、第2室25内を移動して
冷却面23上で冷却されて凝縮し、透過液29として系
外に取り出される。従って、蒸気は、供給水溶液の持つ
水蒸気圧と冷却面23上での水蒸気圧の圧力差を駆動力
として、移動し。
The vapor evaporates on the membrane surface of the porous membrane 22 and
The vapor that has passed through 6 moves inside the second chamber 25, is cooled and condensed on the cooling surface 23, and is taken out of the system as a permeated liquid 29. Therefore, the steam moves using the pressure difference between the water vapor pressure of the supplied aqueous solution and the water vapor pressure on the cooling surface 23 as a driving force.

供給水溶液27が濃縮されるわけである。The feed aqueous solution 27 is therefore concentrated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

水力式の装置においては、装置に、供給水溶液の人出口
、冷却水の人出口、透過液の出口と多くの入出力が必要
なばかりでなく、多孔質膜22と冷却面23を並行に設
置させながら、3つの室を確保する構造を取らなければ
ならず、装置構造として非常に複雑になるという欠点が
あった。また、水溶液の濃縮速度すなわち透過速度は、
多孔質膜22と冷却面23の距離に反比例し、多孔質膜
22と冷却面23の距離が小さい程と、その濃縮速度は
増大することは知られているが、あまりその距離を小さ
くすると、透過液29が第2室25内を満たしてしまい
、供給水溶液27が持つ熱を熱伝導の形で冷却水28に
移動させ、大きな熱損失を生む結果となる。
In a hydraulic device, not only is the device required to have many inputs and outputs such as a supply aqueous solution outlet, a cooling water outlet, and a permeate outlet, but also the porous membrane 22 and the cooling surface 23 are installed in parallel. However, a structure must be adopted to secure three chambers, which has the drawback of making the device structure extremely complicated. In addition, the concentration rate of the aqueous solution, that is, the permeation rate, is
It is known that the concentration rate is inversely proportional to the distance between the porous membrane 22 and the cooling surface 23, and as the distance between the porous membrane 22 and the cooling surface 23 becomes smaller, the concentration rate increases. The permeated liquid 29 fills the inside of the second chamber 25, and the heat of the supplied aqueous solution 27 is transferred to the cooling water 28 in the form of thermal conduction, resulting in a large heat loss.

本発明の目的は、上記の如き欠点を取り除き、構造が簡
単で、かつ濃縮速度の大きい濃縮装置を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a concentrating device that has a simple structure and a high concentration rate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では、上記の目的を達成するために次の構成から
なる。
In order to achieve the above object, the present invention has the following configuration.

すなわち、供給溶液は従来通り第1室内を多孔質膜に接
しながら流れるが、従来の冷却面の位置にも多孔質膜を
取り付け、供給溶液より発生した蒸気を凝縮させずにそ
のまま、従来の冷却水が流れていた所を流れる吸収液に
吸収させてしまう。
In other words, the supplied solution flows through the first chamber in contact with the porous membrane as before, but a porous membrane is also installed at the position of the conventional cooling surface, so that the vapor generated from the supplied solution is not condensed and is passed through the conventional cooling process. The water will be absorbed by the absorbing liquid flowing in the place where it was flowing.

〔作用〕[Effect]

このため、装置の構造は従来型に比べ、透過水出口が無
くなる分簡単になると同時に、今まで蒸気が凝縮してい
た第2室には、蒸気しか存在しないため、透過水による
熱損失を起こす事も無くなる。また、さらに第2室を減
圧下に保つことで、蒸気の移動抵抗をかなり小さくする
ことが可能となり、濃縮速度が増大されるばかりで無く
、断熱の効果も生み、より高性能な濃縮装置となる。
For this reason, the structure of the device is simpler than the conventional type because there is no permeated water outlet, and at the same time, since only steam exists in the second chamber where steam used to condense, heat loss due to permeated water occurs. Things will go away. Furthermore, by keeping the second chamber under reduced pressure, it is possible to significantly reduce the resistance to vapor movement, which not only increases the concentration rate but also creates a heat insulation effect, allowing for a higher-performance concentrator. Become.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図、及び第3図ないし第 
図を用いて詳しく説明する。第1図は本発明に係る濃縮
装置の概念図、第3図は本発明に係る濃縮装置のシステ
ム図、第4図は本発明に係る濃縮装置の一例の正面図、
第5図は第4図のA〜A′断面図を示す。
Embodiments of the present invention will be described below with reference to FIG. 1 and FIGS. 3 to 3.
This will be explained in detail using figures. FIG. 1 is a conceptual diagram of a concentrator according to the present invention, FIG. 3 is a system diagram of a concentrator according to the present invention, and FIG. 4 is a front view of an example of a concentrator according to the present invention.
FIG. 5 shows a sectional view taken along line A-A' in FIG.

第1図に示す様に本発明に係る濃縮装置は、供給溶液1
3の流れる第1室10.蒸気吸収液の流れる第3室12
、発生蒸気が移動する第2室11の3室から成り、それ
ぞれの室は気体は通すが液体は通さない性質を持つ多孔
質膜2によって仕切られている。本装置における濃縮方
法は、第1室10に接する多孔質膜2上で、供給溶液の
溶媒蒸気が発生し、発生した蒸気は第2室内を移動し、
第3室12に接する多孔質膜2′を通り、蒸気吸収液1
4に吸収される。この際溶媒蒸気の移動は、供給溶液1
3の持つ蒸気圧と吸収液14の持つ蒸気圧の差を駆動力
として起こる。つまり、第2室内の蒸気の移動は、空気
中を蒸気が拡散することで起こっている。そこで第2室
11中の空気(非凝縮性ガス)を抽気15することで取
り除き、第2室11の中を蒸気だけで満たすと、蒸気の
移動は拡散では無くなることがら、その移動量すなゎち
濃縮速度は大幅に増大する。
As shown in FIG.
1st room where 3 flows 10. Third chamber 12 through which vapor absorption liquid flows
It consists of three chambers, including a second chamber 11 through which generated steam moves, and each chamber is partitioned by a porous membrane 2 that allows gas to pass through but not liquid. The concentration method in this device is such that solvent vapor of the supplied solution is generated on the porous membrane 2 in contact with the first chamber 10, and the generated vapor moves within the second chamber.
The vapor absorbing liquid 1 passes through the porous membrane 2' in contact with the third chamber 12.
Absorbed by 4. At this time, the movement of solvent vapor is as follows: feed solution 1
This occurs using the difference between the vapor pressure of the absorption liquid 14 and the vapor pressure of the absorption liquid 14 as a driving force. In other words, the movement of steam within the second chamber occurs as the steam diffuses in the air. Therefore, if the air (non-condensable gas) in the second chamber 11 is removed by extraction 15 and the second chamber 11 is filled only with steam, the movement of the vapor is no longer due to diffusion, so the amount of movementゎThe concentration rate increases significantly.

第3図は本発明に係る濃縮装置のシステム図の一例であ
る。濃縮装置上は、平膜状の多孔質膜2゜2′を第1室
10.第2室11.第3室12が形成される様に積層し
た構造をしている。供給溶液が流れる第1室10の両側
には、発生した蒸気が移動する空間である第2室11が
あり、その隣りには、移動してきた蒸気を吸収する吸収
液が流れる第3室12が形成され、それらが、信組が複
数個積層された構造より成っている。
FIG. 3 is an example of a system diagram of a concentrator according to the present invention. On the concentrator, a flat porous membrane 2゜2' is placed in the first chamber 10. 2nd room 11. It has a laminated structure so that a third chamber 12 is formed. On both sides of the first chamber 10 through which the supply solution flows, there is a second chamber 11, which is a space in which the generated vapor moves, and adjacent thereto, there is a third chamber 12, through which an absorption liquid that absorbs the moving vapor flows. They are made of a structure in which a plurality of credit unions are laminated.

供給溶液13は、供給溶液タンク3内のヒータ5で加熱
され所定の温度に達した後、供給溶液ポンプ7で、濃縮
装置上に送り込まれる。′a縮装置上内の第1室10に
送り込まれた供給溶液13は多孔質膜2に接して流れる
。同様に蒸気吸収液14は吸収液タンク4内の冷却器6
で冷却され所定の温度に達した後、蒸気吸収液ポンプ7
′で濃縮装置上に送り込まれる。濃縮装置上内の第3室
12に送り込まれた蒸気吸収液14も、第3室12に接
する多孔ff[2’ に接しながら流れる。蒸気が移動
する第2室11は、抽気15することで減圧下に維持で
きる様になっている。多孔質膜2面で供給溶液13より
発生した蒸気は、第2室11を通過した後吸収液14に
吸収される。尚。
The feed solution 13 is heated by the heater 5 in the feed solution tank 3 and reaches a predetermined temperature, and then is sent onto the concentrator by the feed solution pump 7. The feed solution 13 fed into the first chamber 10 above the a-condenser flows in contact with the porous membrane 2. Similarly, the vapor absorption liquid 14 is supplied to the cooler 6 in the absorption liquid tank 4.
After being cooled down to a predetermined temperature, the vapor absorption liquid pump 7
' is sent onto the concentrator. The vapor absorption liquid 14 sent into the third chamber 12 above the concentrator also flows while contacting the porous holes ff[2' which are in contact with the third chamber 12. The second chamber 11 into which the steam moves can be maintained under reduced pressure by extracting air 15. The vapor generated from the supply solution 13 on the surface of the porous membrane 2 passes through the second chamber 11 and is absorbed by the absorption liquid 14 . still.

この蒸気の吸収液としては、例えば水蒸気の吸収には、
吸湿性のある水溶液(臭化リチウム、塩化カルシウム、
等の塩類の水溶液)を用いることができる。また、条件
によっては水にも吸収させることは可能である。さらに
、気体は通すが液体は通さない多孔質膜材料としてはポ
リテトラフロロエチレン(PTFE)やポリプロピレン
(p p)などの疎水性材料(臨界表面張力の値が35
dyne/a!1以下)が使用できる。
For this vapor absorption liquid, for example, for absorption of water vapor,
Hygroscopic aqueous solutions (lithium bromide, calcium chloride,
(aqueous solutions of salts such as) can be used. It is also possible to absorb water depending on the conditions. Furthermore, as porous membrane materials that allow gas to pass through but not liquids, hydrophobic materials such as polytetrafluoroethylene (PTFE) and polypropylene (PP) (with a critical surface tension value of 35
dyne/a! 1 or less) can be used.

第4図は、第3図が平膜の積層型構造であったのに対し
て、チューブ(円管)状の膜を用いた際の濃縮装置の一
例である。また、第5図は第4図のA−A’断面図であ
る。この濃縮装置400は円筒容器401円にチューブ
状の多孔質I!1402゜402′とその両端に管板4
05,405’ を取りつけたエレメント410が内蔵
されており、管板405,405’は円筒容器401と
接続されシールされている。さらに円筒容器401はそ
の両端面が側面蓋411,411’ によって、4つの
氷室412〜415が形成できる様にシールされている
。前記円筒容器401には抽気孔409が接続され、側
面蓋411には供給溶液入口408と吸収液入口407
、側面′M411’ には供給溶液出口403と吸収液
出口404が接続されている。
FIG. 4 shows an example of a concentrating device using a tube-shaped membrane, whereas FIG. 3 has a stacked structure of flat membranes. Further, FIG. 5 is a sectional view taken along the line AA' in FIG. 4. This concentration device 400 has a cylindrical container 401 and a tube-shaped porous I! 1402゜402' and tube plate 4 on both ends.
05, 405' is built in, and the tube plates 405, 405' are connected to the cylindrical container 401 and sealed. Further, both ends of the cylindrical container 401 are sealed by side lids 411, 411' so that four ice chambers 412 to 415 can be formed. A bleed hole 409 is connected to the cylindrical container 401, and a supply solution inlet 408 and an absorption liquid inlet 407 are connected to the side lid 411.
A supply solution outlet 403 and an absorption liquid outlet 404 are connected to the side surface 'M411'.

供給溶液は供給溶液入口408から送り込まれて水室4
12内に入り、管板405に接続されるチューブ状膜4
02内に形成される第1室内に入る。第1室内で濃縮さ
れた溶液は水室413に集められた後供給溶液出口40
3より排出される。
The feed solution is fed into the water chamber 4 through the feed solution inlet 408.
12 and connected to the tube sheet 405
Enter the first chamber formed inside 02. The solution concentrated in the first chamber is collected in the water chamber 413 and then the feed solution outlet 40
It is discharged from 3.

同様に吸収液も、吸収液人口407より水室414に入
り、チューブ状膜402′内に形成される第3室内に入
る。第3室内で蒸気を吸収した吸収液は水室415に集
められた後、吸収液出口404より排出される。チュー
ブ状膜402,402’の外側に形成される第2室40
6は抽気孔409により抽気することが可能である。尚
本実施例において、供給溶液、吸収液の流れを逆にした
使用も可能である。
Similarly, the absorption liquid also enters the water chamber 414 from the absorption liquid population 407 and enters the third chamber formed within the tubular membrane 402'. The absorption liquid that has absorbed steam in the third chamber is collected in the water chamber 415 and then discharged from the absorption liquid outlet 404. A second chamber 40 formed outside the tubular membrane 402, 402'
6 can bleed air through the bleed hole 409. In this embodiment, it is also possible to reverse the flow of the supply solution and absorption solution.

以上のように、本発明による実施例より、従来方式によ
る装置に比べ、構造が簡単でかつ濃縮速度の大きくする
ことができる。
As described above, the embodiment according to the present invention has a simpler structure and can achieve a higher concentration rate than the conventional apparatus.

第6図は、本発明の他の実施例を示すものである。この
a線装置617において、供給溶液627は第1室60
8内の加熱器630によって加熱され、発生した蒸気は
多孔質膜605を通って第2室625内に移り、凝縮面
623上で冷却されて凝縮し、透過水629となって系
外に放出されろ。
FIG. 6 shows another embodiment of the invention. In this A-ray device 617, a supply solution 627 is supplied to the first chamber 60.
The generated steam passes through the porous membrane 605 into the second chamber 625, is cooled and condensed on the condensing surface 623, becomes permeated water 629, and is released outside the system. Be it.

また冷却液628′は第3室626内の冷却器631に
よって冷却されながら、凝縮面623を冷却する。
The cooling liquid 628' cools the condensing surface 623 while being cooled by the cooler 631 in the third chamber 626.

第7図も、本発明に係る濃縮装置の1つであり、第6図
における凝縮面の代りに、気体は通すが液体は通さない
多孔質膜705′を有した構造より成っている。この装
置においては、供給溶液727より多孔質膜705を通
して発生した蒸気は、吸収液728′に、多孔質膜70
5′を介して吸収される。従って本装置では発生した蒸
気を透過液として取り出さないため液出口が1つ少なく
なる。
FIG. 7 also shows one of the concentrating devices according to the present invention, and has a structure having a porous membrane 705' that allows gas to pass through but not liquid, in place of the condensing surface in FIG. 6. In this device, vapor generated from the feed solution 727 through the porous membrane 705 is transferred to the absorbing liquid 728' through the porous membrane 705.
Absorbed via 5'. Therefore, in this device, the generated vapor is not taken out as a permeated liquid, so the number of liquid outlets is reduced by one.

本装置においても、吸収液728′を、第3室709内
の冷却器731で随時冷却することから、供給溶液72
7及び吸収液728′を大量に流す必要は無くなる。
Also in this device, since the absorption liquid 728' is cooled as needed by the cooler 731 in the third chamber 709, the supply solution 728'
7 and the absorption liquid 728' are no longer required to flow in large quantities.

第8図は、第7図にある概念図をシステム化したもので
ある。濃縮装置701は、多孔質膜705と加熱板70
6、冷却板706′を積み重ねた積層構造を示しており
、装置左側から、側壁709より、加熱流体流路707
、加熱板706、第1室708、多孔質膜705、第2
室71o、多孔質膜705’、第3室709.冷却板7
06’ 。
FIG. 8 is a systemization of the conceptual diagram shown in FIG. 7. The concentrating device 701 includes a porous membrane 705 and a heating plate 70.
6. It shows a laminated structure in which cooling plates 706' are stacked, and from the left side of the device, from the side wall 709, the heating fluid flow path 707
, heating plate 706, first chamber 708, porous membrane 705, second
Chamber 71o, porous membrane 705', third chamber 709. Cooling plate 7
06'.

冷却流体流路711、冷却板706’、第3室709、
多孔質膜705’、第2室710、多孔質膜705、第
1室708、加熱板706、加熱流体流路707という
ユニットを何層が積層した構造を成している。濃縮され
ようとする供給溶液727は、供給溶液ポンプ704で
a縮装置701に送り込まれる。濃縮装置70よ内に送
り込まれた供給溶液727は片側を多孔質膜705、も
う片側を加熱流体714によって加熱されている加熱板
706に接して流れ、発生する蒸気は多孔質膜705を
通って第2室710に移動する。また蒸発のために使わ
れた熱は、加熱流体714によって加熱されている加熱
板706によって補充される。また、蒸発した蒸気を吸
収する吸収液728′は吸収液タンク703よりポンプ
704で濃縮装置701に送り込まれる。濃縮装置70
工に送り込、まれた吸収液728′は、片側を多孔質膜
705′もう片側を冷却流体712のによって冷却され
ている冷却板706′に接して流れ、第2室710に移
動して来た蒸気を多孔質膜705′を介して吸収する。
cooling fluid flow path 711, cooling plate 706', third chamber 709,
It has a structure in which several layers of units such as a porous membrane 705', a second chamber 710, a porous membrane 705, a first chamber 708, a heating plate 706, and a heated fluid channel 707 are laminated. A feed solution 727 to be concentrated is sent to the a-condensation device 701 by a feed solution pump 704 . The feed solution 727 fed into the concentrator 70 flows against a porous membrane 705 on one side and a heating plate 706 heated by a heating fluid 714 on the other side, and the generated vapor passes through the porous membrane 705. Move to the second room 710. The heat used for evaporation is also replenished by heating plate 706 which is heated by heating fluid 714. Further, an absorption liquid 728' that absorbs evaporated vapor is sent from an absorption liquid tank 703 to a concentrator 701 by a pump 704. Concentrator 70
The absorption liquid 728' sent into the process flows in contact with a cooling plate 706' which is cooled by a porous membrane 705 on one side and a cooling fluid 712 on the other side, and moves to a second chamber 710. The vapor is absorbed through the porous membrane 705'.

この際得られる潜熱等は、反対側の冷却板706′を通
して冷却流体7−12に移動させ、吸収液728′の温
度は常に一定となる様になっている。尚この蒸気の吸収
液としては、例えば水蒸気の吸収には、吸湿性のある水
溶液(臭化リチウム、塩化カルシウム、等の塩類の水溶
液)を用いることができる。また、条件によっては水に
も吸収させることは可能である。さらに、気体は通すが
液体は通さない多孔質膜材料としてはポリテトラフロロ
エチレン(PTFE)やポリプロピレン(p p)など
の疎水性材料(臨界表面張力の値が35 dyne/ 
am以下)が使用できる。また1本装置において、加熱
流体と冷却流体の流れる場所を変えると、吸収液から供
給溶液の方に蒸気移動が起こることから、本装置は濃縮
・希釈操作を行なうことが可能である。
The latent heat obtained at this time is transferred to the cooling fluid 7-12 through the cooling plate 706' on the opposite side, so that the temperature of the absorbing liquid 728' is always constant. As the vapor absorbing liquid, for example, a hygroscopic aqueous solution (aqueous solution of salts such as lithium bromide, calcium chloride, etc.) can be used for absorbing water vapor. It is also possible to absorb water depending on the conditions. Furthermore, as a porous membrane material that allows gas to pass through but not liquid, hydrophobic materials such as polytetrafluoroethylene (PTFE) and polypropylene (PP) (with a critical surface tension value of 35 dyne/
am or less) can be used. Furthermore, in one device, changing the flow locations of the heating fluid and the cooling fluid causes vapor transfer from the absorption liquid to the feed solution, making it possible for the device to perform concentration and dilution operations.

尚、上記実施例において、蒸気の移動は第2室内の空気
中を蒸気が拡散するために起こる由、第2室内の空気を
抽気し、減圧下で操作すると、その濃縮速度はさらに増
大する。
Incidentally, in the above embodiment, since the movement of vapor occurs due to diffusion of vapor in the air in the second chamber, the concentration rate is further increased when the air in the second chamber is extracted and operated under reduced pressure.

以上の様に、本発明による実施例から、従来方式による
装置より、コンパクトで、経済性の高い装置となること
がわかる。
As described above, it can be seen from the embodiments of the present invention that the apparatus is more compact and more economical than the conventional apparatus.

〔発明の効果〕〔Effect of the invention〕

本発明による濃縮装置によれば、従来型より液の出口が
1つ減少することで構造が簡単になると同時に、蒸気の
移動部分での凝縮が無いことで熱損失を少なくすること
ができる。さらに、蒸気移動部分を抽気することで拡散
抵抗を小さくでき、蒸気移動速度、つまり濃縮速度を増
大させることが可能となる。
According to the concentrator according to the present invention, the structure is simplified because there is one less liquid outlet than the conventional type, and at the same time, heat loss can be reduced because there is no condensation in the steam moving part. Furthermore, by bleeding the vapor transfer portion, the diffusion resistance can be reduced, making it possible to increase the vapor transfer rate, that is, the concentration rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る濃縮装置の概念図、第2図は従来
方式の濃縮装置の概念図、第3図は本発明に係る濃縮装
置のシステム図、第4図は本発明に係る濃縮装置の一例
の正面図、そして、第5図は第4図のA−A’断面図、
第6図、第7図は本発明に係る濃縮装置の概念図、第8
図は本発明に係る濃縮装置のシステム図である。 よ・・・濃縮装置、2.2’・・・多孔質膜、13・・
・供給溶液、14・・・蒸気吸収液、402,402’
・・・チューブ状多孔質膜。
FIG. 1 is a conceptual diagram of a concentrator according to the present invention, FIG. 2 is a conceptual diagram of a conventional concentrator, FIG. 3 is a system diagram of a concentrator according to the present invention, and FIG. 4 is a concentrator according to the present invention. A front view of an example of the device, and FIG. 5 is a sectional view taken along line AA' in FIG.
FIG. 6 and FIG. 7 are conceptual diagrams of the concentrating device according to the present invention, and FIG.
The figure is a system diagram of a concentrator according to the present invention. Yo...Concentrator, 2.2'...Porous membrane, 13...
- Supply solution, 14... vapor absorption liquid, 402, 402'
...Tube-shaped porous membrane.

Claims (1)

【特許請求の範囲】 1、濃縮する溶液の流れる第1の領域、濃縮する溶液か
ら出る溶媒蒸気を吸収する溶液の流れる第2の領域、及
び、上記2つの領域を結ぶ第3の領域を持ち、それぞれ
の領域が、液体は通さないが気体は通す性質を有する多
孔質膜によって仕切られた装置で、第1の領域を流れる
溶液から発生する溶媒蒸気を、第3の領域を介して、第
2の領域を流れる溶液に吸収させることで、第1の領域
を流れる溶液を濃縮することを特徴とする濃縮装置。 2、特許請求の範囲第1項における第3の領域を減圧下
で操作することを特徴とする濃縮装置。
[Claims] 1. A first region through which a solution to be concentrated flows, a second region through which a solution that absorbs solvent vapor emitted from the solution to be concentrated flows, and a third region connecting the above two regions. , a device in which each region is partitioned by a porous membrane that does not allow liquid to pass through, but allows gas to pass through. A concentrating device characterized in that a solution flowing through a first region is concentrated by absorbing the solution into a solution flowing through a second region. 2. A concentrating device characterized in that the third region according to claim 1 is operated under reduced pressure.
JP22362886A 1986-09-24 1986-09-24 Concentrator Pending JPS6380825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22362886A JPS6380825A (en) 1986-09-24 1986-09-24 Concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22362886A JPS6380825A (en) 1986-09-24 1986-09-24 Concentrator

Publications (1)

Publication Number Publication Date
JPS6380825A true JPS6380825A (en) 1988-04-11

Family

ID=16801186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22362886A Pending JPS6380825A (en) 1986-09-24 1986-09-24 Concentrator

Country Status (1)

Country Link
JP (1) JPS6380825A (en)

Similar Documents

Publication Publication Date Title
US3563860A (en) Evaporation-condensation recovery of a solution component using vapor-per-meable wall spaced from a cold wall
Zhang et al. Review of thermal efficiency and heat recycling in membrane distillation processes
EP0258979B1 (en) Apparatus for simultaneous heat and mass transfer
US5123481A (en) Method and apparatus for simultaneous heat and mass transfer
JP4870165B2 (en) Membrane distillation process and membrane distillation apparatus
US5020335A (en) Method and apparatus for simultaneous heat and mass transfer
Jönsson et al. Membrane distillation-a theoretical study of evaporation through microporous membranes
Banat et al. Desalination by membrane distillation: a parametric study
US4585523A (en) Vapor compression distillation apparatus
US4982782A (en) Method and apparatus for simultaneous heat and mass transfer
KR100232014B1 (en) Distillation apparatus
KR20160055212A (en) Systems including a condensing apparatus such as a bubble column condenser
FI93773B (en) The heat exchange element
JPH0317526B2 (en)
US4778569A (en) Method of separation of liquid mixture of solution by porous separating wall
US10507428B1 (en) Heat-pipe membrane module with heat recovery
US3540986A (en) Distillation condensation apparatus with vapor compression and semipermeable membrane
JPS6380825A (en) Concentrator
US4864830A (en) Air conditioning process and apparatus
US5020588A (en) Method and apparatus for simultaneous heat and mass transfer utilizing a plurality of gas streams
JPH067644A (en) Film distillation apparatus
JPS63182004A (en) Aqueous solution concentration system
US20170191708A1 (en) Architecture for Absorption Based Heaters
JPS61200809A (en) Distillation apparatus
WO2023121554A1 (en) An arrangement and plate for condensing a gaseous liquid into liquid state