JPS638061A - Controlling method for readhesion of wheel - Google Patents

Controlling method for readhesion of wheel

Info

Publication number
JPS638061A
JPS638061A JP15223086A JP15223086A JPS638061A JP S638061 A JPS638061 A JP S638061A JP 15223086 A JP15223086 A JP 15223086A JP 15223086 A JP15223086 A JP 15223086A JP S638061 A JPS638061 A JP S638061A
Authority
JP
Japan
Prior art keywords
circuit
brake cylinder
time
air
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15223086A
Other languages
Japanese (ja)
Other versions
JPH0370659B2 (en
Inventor
Asaji Imanaka
浅治 今中
Mitsuhiro Ikeda
池田 光宏
Tatsuo Fujiwara
達雄 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabco Ltd
Original Assignee
Nabco Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabco Ltd filed Critical Nabco Ltd
Priority to JP15223086A priority Critical patent/JPS638061A/en
Publication of JPS638061A publication Critical patent/JPS638061A/en
Publication of JPH0370659B2 publication Critical patent/JPH0370659B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To hasten readhesion without causing rerunning and restrain a braking distance after running to the minimum by feeding air to a brake cylinder in accordance with the recovered acceleration of an axle velocity when said axle velocity starts to be recovered. CONSTITUTION:At a time t1, when a third detecting circuit 10 detects running and its output becomes H, a solenoid valve driving circuit 9 turns on both solenoid valves MV1, MV2. Accordingly, air supply to a brake cylinder is stopped while air discharge is carried out and a BC pressure P is lowered relieving the braking force. When the progress of running is stopped at a time t2, since the output of the third detecting circuit 10 becomes L, the second solenoid valve MV2 is turned off, stopping the lowering of the BC pressure P. At the same time, an axle velocity V starts to be recovered and the output of a second detecting circuit 8 becomes H while a first detecting circuit 6 starts to detect the recovered acceleration velocity Valpha, and a selecting circuit outputs a pulse 2a or 2b, repeating the on-off of the solenoid valve MV1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鉄道車両の空気ブレーキ制御装置の一部を構
成する滑走防止装置において適用される車輪の再粘着制
御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wheel readhesion control method applied to an antiskid device that constitutes a part of an air brake control device for a railway vehicle.

〔従来の技術〕[Conventional technology]

この種の制御■方法の従来例としては、特開昭54−1
59565号公報に開示されたものがあり、これを第4
図に示す。また、この制御方法に従ってブレーキシリン
ダに対して給排気する装置を第5図および第6図に示す
A conventional example of this type of control method is JP-A-54-1
There is something disclosed in Publication No. 59565, which is referred to as No. 4.
As shown in the figure. Further, a device for supplying and exhausting air to the brake cylinder according to this control method is shown in FIGS. 5 and 6.

第5図、第6図において、MVIはブレーキシリンダB
Cへの給気用の第1電磁弁、MV2はブレーキシリンダ
BCからの排気用の第2電磁弁、CCは各車軸の速度を
人力してその各車軸速度差や加減速度を算出し車輪の滑
走あるいは回復を検知して前記両電磁弁MVI、MV2
をオン、オフ制御する制御回路、CVは図外のブレーキ
指令に応じた圧力空気を送出する制御弁、RVI、RV
2は前記制御弁CVからの圧力空気を流量増幅する中継
弁、MRは圧力空気源である。なお、中継弁RVI、R
V2はその構成が少し異なるが公知のものであるため詳
説しない。
In Figures 5 and 6, MVI is brake cylinder B.
MV2 is the second solenoid valve for exhausting air from brake cylinder BC, CC is the first solenoid valve for air supply to C, MV2 is the second solenoid valve for exhausting air from brake cylinder BC, and CC is the one that calculates the speed difference and acceleration/deceleration of each axle by manually measuring the speed of each axle. When skidding or recovery is detected, both the solenoid valves MVI and MV2
CV is a control valve that sends out pressurized air according to the brake command (not shown), RVI, RV
2 is a relay valve that amplifies the flow rate of the pressure air from the control valve CV, and MR is a pressure air source. In addition, relay valves RVI, R
Although V2 has a slightly different configuration, it is well known and will not be described in detail.

第5図、第6図は、いずれも、あるブレーキ指令値に対
応して制御弁CVが所定圧力の空気を送出し、両電磁弁
y1vl、MV2がオフしており、中継弁RVI、RV
2が前記所定圧力に応じた圧力空気をブレーキシリンダ
BCへ供給してこれを保持しているブレーキ状態である
。このブレーキ状態は、第4図において時刻t1までに
示されている。なお、第4図において、■は車軸速度、
PはブレーキシリンダBCの空気圧力(以下、BC圧と
略称する)である。
In both FIGS. 5 and 6, the control valve CV sends out air at a predetermined pressure in response to a certain brake command value, both solenoid valves y1vl and MV2 are off, and the relay valves RVI and RV
2 is a brake state in which pressurized air corresponding to the predetermined pressure is supplied to the brake cylinder BC and maintained. This braking state is shown in FIG. 4 up to time t1. In Fig. 4, ■ is the axle speed,
P is the air pressure of the brake cylinder BC (hereinafter abbreviated as BC pressure).

このブレーキ時に、車軸速度■が時刻t1から急激に低
下し車輪が滑走すると、これを検知して両電磁弁MVI
、MV2が共にオンされ、ブレーキシリンダBCへの給
気停止および排気が行なわれる。このため、BCC圧定
低下しブレーキがユルメられる。
During this braking, if the axle speed ■ suddenly decreases from time t1 and the wheels slide, this is detected and both solenoid valves MVI
, MV2 are both turned on, and air supply to the brake cylinder BC is stopped and air is exhausted. As a result, the BCC pressure decreases and the brakes are braked.

このユルメにより滑走の進行が停止し、車軸速度■が回
復し始める(時刻t2になる)と、第2電磁弁MV2が
オフして排気を停止し、BCC圧定そのときの値に保持
される。この排気時間Tが測定記憶されており、後述の
制御に利用される。
When the sliding stops due to this drop and the axle speed begins to recover (at time t2), the second solenoid valve MV2 is turned off and exhaust is stopped, and the BCC pressure is maintained at the value at that time. . This exhaust time T is measured and stored, and is used for control described later.

そして、車輪の再粘着後または再粘着が完了すると予知
された時刻t3になると、第1電磁弁MVlがオフし、
再びブレーキシリンダBCに給気する。この給気時間は
yXT(ただし、0〈y〈1である)としている。
Then, after the wheels have re-adhesive or at time t3, which is predicted to be when the re-adhesion is completed, the first solenoid valve MVl is turned off,
Supply air to the brake cylinder BC again. This air supply time is set to yXT (0<y<1).

この給気によりBCC圧定滑走前のy倍になった時刻t
4から第1電磁弁MVIを再びオンし、そのときのBC
C圧定一定時間だけ保持し、時刻t5になると、第1電
磁弁MVIがオフし、ブレーキシリンダBCへ給気し、
時刻t6で元のBCC圧定復帰する。
Due to this air supply, the time t becomes y times the BCC pressure before the constant skiing.
4, turn on the first solenoid valve MVI again, and set the BC at that time.
The C pressure is held constant for a certain period of time, and at time t5, the first solenoid valve MVI is turned off and air is supplied to the brake cylinder BC.
At time t6, the original BCC pressure is restored.

すなわち、上記従来の再粘着制御方法は、滑走検知後、
再粘着開始までの排気時間Tを記憶しておき、再粘着完
了時点からyxT(ただし、Oくyく1)時間だけ給気
してBCC圧定部分的に回復させ、一定時間経過後に元
のBCC圧定復帰させる方法である。
That is, in the conventional re-adhesion control method described above, after skidding is detected,
Memorize the exhaust time T until the start of re-adhesion, supply air for y x T (however, 0 x 1) time from the end of re-adhesion to partially recover the BCC pressure, and return to the original state after a certain period of time. This is a method of restoring the BCC pressure to a constant state.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来方法は、車輪の滑走を検知して
BC圧を排気した後、再粘着が完了するまで給気停止を
継続しており、ブレーキシリンダBCへ再び給気し始め
るのが再粘着完了後であるため、すなわち、第4図にお
いて時刻t2〜t3の間はブレーキ力の回復制御を行な
っていないため、レール面、車輪踏面の条件が良好で回
復速度が大であっても、このt2〜t3間はブレーキ力
が回復されず、その分だけブレーキ距離が延びることに
なる。
However, in the above conventional method, after detecting wheel slippage and exhausting the BC pressure, air supply is continued until re-adhesion is completed, and re-adhesion is completed when air starts to be supplied to the brake cylinder BC again. Since the brake force recovery control is not performed between time t2 and t3 in FIG. 4, even if the conditions of the rail surface and wheel tread are good and the recovery speed is high, this t2 The braking force is not restored between t3 and t3, and the braking distance is extended by that amount.

また、上記従来方法とは別に、特公昭56−8776号
公報に開示された制御方法もあるが、この第2の従来方
法においても、滑走を検知してから再粘着完了までの間
に各種の演算を行なっておき、その演算結果にもとづい
てブレーキ力を回復させる速度を変えているが、この場
合も、ブレーキシリンダBCへの給気を開始するのが再
粘着完了後であるため、上記第1の従来方法と同じ問題
を有する。
In addition, apart from the above conventional method, there is also a control method disclosed in Japanese Patent Publication No. 56-8776, but even in this second conventional method, various types of Calculations are performed in advance, and the speed at which the brake force is restored is changed based on the calculation results.In this case as well, air supply to the brake cylinder BC starts after readhesion is completed, so This method has the same problem as the conventional method No. 1.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、上記問題を解決する本発明は、再粘着後の再滑
走を回避しつつブレーキ距離の延伸を最小限に抑えるこ
とを課題とし、その解決手段は、ブレーキシリンダに給
気しているブレーキ時に、車軸速度の急激な低下にもと
づいて車輪の滑走を検知すると、前記ブレーキシリンダ
から排気し、該排気により車軸速度が回復し始めると、
前記ブレーキシリンダへの給気を徐々に開始し、その給
気速度を回復加速度が小さいほど遅くしたことである。
Therefore, the present invention aims to minimize the extension of the braking distance while avoiding re-sliding after re-adhesion. , upon detecting wheel slippage based on a sudden drop in axle speed, exhaust the brake cylinder, and when the axle speed begins to recover due to the exhaust,
The air supply to the brake cylinder is gradually started, and the air supply speed is made slower as the recovery acceleration becomes smaller.

〔作用〕[Effect]

上記本発明の手段によれば、車軸速度が回復し始めると
、その回復加速度に応じてブレーキシリンダへ給気する
ため、しがも該回復加速度が小さいはど給気速度を遅く
するため、再滑走を生しることなく再粘着を早めること
ができ、滑走後のブレーキ距離の延伸を最小限に抑える
ことが可能である。
According to the above means of the present invention, when the axle speed starts to recover, air is supplied to the brake cylinder according to the recovery acceleration. However, when the recovery acceleration is small, the air supply speed is slowed down again. It is possible to accelerate readhesion without causing skidding, and it is possible to minimize the extension of the braking distance after skidding.

すなわち、回復加速度は粘着力とブレーキ力との差に比
例して増大するため、回復加速度が大きい場合は、粘着
力に対するブレーキ力に余裕があり、給気速度を大きく
 (ブレーキ力の回復を速く)しても再滑走せず、逆に
、回復加速度が小さい場合は、給気速度を低くするから
再滑走巳ない。
In other words, the recovery acceleration increases in proportion to the difference between the adhesion force and the braking force, so if the recovery acceleration is large, there is a margin in the braking force relative to the adhesion force, and the air supply speed is increased (to speed up the recovery of the brake force). ), it will not skid again, and conversely, if the recovery acceleration is small, the air supply speed will be lowered, so it will not skid again.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第3図にもとづいて
説明する。なお、第1図は本発明制御方法の一例を示し
、第2図はこの制御方法を実施するための制御回路の第
1例、第3図は同制御回路の第2例である。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 1 to 3. Note that FIG. 1 shows an example of the control method of the present invention, FIG. 2 shows a first example of a control circuit for implementing this control method, and FIG. 3 shows a second example of the same control circuit.

まず、第1図および第2図について説明する。First, FIG. 1 and FIG. 2 will be explained.

第2図において、第1の制御回路CCIは、第5図ある
いは第6図装置の両を磁弁MVI、MV2にオン、オフ
の指令を与えるものであり、次の構成である。
In FIG. 2, the first control circuit CCI gives commands to turn on and off the magnetic valves MVI and MV2 in both the devices shown in FIG. 5 or 6, and has the following configuration.

発振回路lは矩形波パルスを発生し、カウンタ回路及び
論理回路から成るデユーティパルス発生回路2にてデユ
ーティ比の異なる2つのパルス2a、2bに変換され、
これが選択回路3へ伝達される。
The oscillation circuit 1 generates a rectangular wave pulse, which is converted into two pulses 2a and 2b with different duty ratios by a duty pulse generation circuit 2 consisting of a counter circuit and a logic circuit.
This is transmitted to the selection circuit 3.

選択回路3には第1検知回路6から回復加速度Vαも入
力されており、この選択回路3は、回復加速度■αが小
さい場合に上記パルス2aを選択し、回復加速度Vαが
大きい場合に上記パルス2bを選択し、アンド回路7へ
伝達する。
The selection circuit 3 also receives the recovery acceleration Vα from the first detection circuit 6, and this selection circuit 3 selects the pulse 2a when the recovery acceleration α is small, and selects the pulse 2a when the recovery acceleration Vα is large. 2b is selected and transmitted to the AND circuit 7.

また、アンド回路7へは、第2検知回路8から回復検知
の有無にもとづく信号が入力されており、回復検知のと
き「H」、非検知のときrLJ信号である。このア”ン
ド回路7の出力は1を磁弁駆動回路9へ伝達される。
Further, a signal based on the presence or absence of recovery detection is input from the second detection circuit 8 to the AND circuit 7, and is an "H" signal when recovery is detected, and an rLJ signal when no recovery is detected. The output of this AND circuit 7 is transmitted as 1 to the magnetic valve drive circuit 9.

電磁弁駆動回路9には、第3検知回路10から滑走進行
検知の有無にもとづく信号が入力されており、該回路9
は、滑走進行検知信号rHJが入力されたとき、これを
優先して両電磁弁MVI。
A signal based on the presence or absence of skidding progress detection is input from the third detection circuit 10 to the electromagnetic valve drive circuit 9.
When the skidding progress detection signal rHJ is input, it is given priority to both solenoid valves MVI.

MV2をオンさせ、非検知信号rLJが入力されたとき
、第2電磁弁MV2をオフさせると共に、アンド回路7
の出力にもとづいて第1電磁弁MVlをオン、オフ制御
する。
When MV2 is turned on and the non-detection signal rLJ is input, the second solenoid valve MV2 is turned off and the AND circuit 7 is turned on.
The first solenoid valve MVl is controlled to be turned on or off based on the output of the first solenoid valve MVl.

第1図において、■は車軸速度、Pはブレーキシリンダ
BCの空気圧力(BC圧)であり、時刻t1まではBC
C20所定圧力に保持されたブレーキ作動中を示す。こ
のとき、制御回路CCIにおいては、第1検知回路6が
回復加速度Vαを検知できないため、選択回路3の出力
が「L」、アンド回路7の出力もrLJであって、また
、滑走も生じていないため、第3検知回路lOの出力も
rLJである。したがって、両を磁弁MV1.M■2が
オフしている(第5図、第6図参照)。
In Fig. 1, ■ is the axle speed, P is the air pressure (BC pressure) of the brake cylinder BC, and up to time t1, the BC
C20 indicates that the brake is being operated while being maintained at a predetermined pressure. At this time, in the control circuit CCI, since the first detection circuit 6 cannot detect the recovery acceleration Vα, the output of the selection circuit 3 is "L", the output of the AND circuit 7 is also rLJ, and no skidding has occurred. Therefore, the output of the third detection circuit IO is also rLJ. Therefore, both magnetic valves MV1. M2 is off (see Figures 5 and 6).

時刻t1に、第3検知回路10が滑走を検知しその出力
がrHJになると、電磁弁駆動回路9が両電磁弁MVI
、MV2をオンする。したがって、ブレーキシリンダB
Cへの給気が停止されると共に排気が行なわれ、BCC
20低下してユルメられる。この状態は滑走の進行が停
止する時刻t2まで継続する。
At time t1, when the third detection circuit 10 detects skidding and its output becomes rHJ, the solenoid valve drive circuit 9 activates both solenoid valves MVI.
, turn on MV2. Therefore, brake cylinder B
Air supply to C is stopped and exhaust is performed, and BCC
It drops by 20 and gets dumped. This state continues until time t2 when the progress of sliding stops.

時刻t2に滑走の進行が停止すると、第3検知回路10
の出力がrLJとなるため、第2電磁弁MV2がオフし
てBC排気を停止し、BCC20低下が停止する。同時
に車軸速度Vが回復し始め、第2検知回路8の出力がr
HJとなると共に、第1検知回路6が回復加速度Vαを
検知し始めるため、選択回路3がパルス2aあるいは2
bを出力し、これがアンド回路7を経て電磁弁駆動回路
9へ伝達され、第1電磁弁MVIがオン、オフを繰り返
す。
When the progress of skiing stops at time t2, the third detection circuit 10
Since the output becomes rLJ, the second solenoid valve MV2 is turned off and BC exhaust is stopped, and the decrease in BCC20 is stopped. At the same time, the axle speed V begins to recover, and the output of the second detection circuit 8 becomes r
Since the first detection circuit 6 starts detecting the recovery acceleration Vα at the same time as HJ, the selection circuit 3 selects the pulse 2a or 2.
b is transmitted to the electromagnetic valve drive circuit 9 via the AND circuit 7, and the first electromagnetic valve MVI is repeatedly turned on and off.

第1図の例において、時刻t2〜t3の間は、回復加速
度■αが小であるため、選択回路3がパルス2aを選択
出力しており、これにもとづいて給気時間が給気停止時
間よりも短くなっており、BCC20上昇は低速である
。また、時刻t3〜t4の間は、回復加速度Vαが大で
あるため、選択回路3がパルス2bを選択出力しており
、これにもとづいて給気時間が給気停止時間よりも長く
なっており、BCC20上昇は高速である。すなわち、
車軸速度■が回復し始めると、BC給気およびその停止
を周期的に繰り返すことによってBCC20徐々に上昇
させ、その1周期における給気時間を回復加速度Vαが
小さいほど短くしている。
In the example of FIG. 1, since the recovery acceleration ■α is small between times t2 and t3, the selection circuit 3 selectively outputs the pulse 2a, and based on this, the air supply time is determined to be the air supply stop time. It is shorter than , and BCC20 rises at a slow rate. Furthermore, between times t3 and t4, since the recovery acceleration Vα is large, the selection circuit 3 selectively outputs pulse 2b, and based on this, the air supply time is longer than the air supply stop time. , BCC20 rises quickly. That is,
When the axle speed ■ starts to recover, the BCC20 is gradually increased by periodically repeating BC air supply and its stop, and the air supply time in one cycle is made shorter as the recovery acceleration Vα becomes smaller.

そして、時刻t4になると、再粘着が完了しBCC20
元の値に復帰する。このあと、第1電6〃弁MVIもオ
フをm続する。
Then, at time t4, re-adhesion is completed and BCC20
Return to original value. After this, the first electric valve MVI also continues to be off.

なお、上記第1の制御回路CCIにおいて、回復加速度
■αの大きさによって選択されるパルス数を2つとした
が、これは3つ以上であっても良い。
In the first control circuit CCI, the number of pulses selected depending on the magnitude of the recovery acceleration α is two, but the number may be three or more.

また、第3図に示す第2の制御回路CC2は、上記第1
の制御回路CCIにおける発振回路1゜デユーティパル
ス発生回路21選択回路3に代えて、基準パルス発生回
路4および比較回路5を使用した例である。
Further, the second control circuit CC2 shown in FIG.
This is an example in which a reference pulse generation circuit 4 and a comparison circuit 5 are used in place of the oscillation circuit 1° duty pulse generation circuit 21 selection circuit 3 in the control circuit CCI.

基準パルス発生回路4はバイアス付の三角波パルスを出
力し、これと回復加速度Vαとを比較回路5にて比較し
、その大小関係によってデユーティ比の連続的に異なる
パルスをアンド回路7へ伝達する。
The reference pulse generation circuit 4 outputs a biased triangular wave pulse, which is compared with the recovery acceleration Vα in the comparison circuit 5, and pulses having continuously different duty ratios are transmitted to the AND circuit 7 depending on the magnitude relationship.

この第2の制御回路CC2による場合、回復加速度Vα
が上記三角波パルスのバイアス値以下であると、比較回
路5の出力がrHJを保持し、また、第2検知回路8が
回復検知信号rHJを出力しているため、アンド回路7
の出力もrHJを保持し、上記駆動回路9が第1電磁弁
MVIをオンのままとしており、BC給気停止が継続す
る。すなわち、回復加速度Vαが非常に小さい下限設定
値■α1以下であると、BCへの給気を行なわない。
In the case of this second control circuit CC2, the recovery acceleration Vα
is less than the bias value of the triangular wave pulse, the output of the comparison circuit 5 holds rHJ, and the second detection circuit 8 outputs the recovery detection signal rHJ, so the AND circuit 7
The output also maintains rHJ, the drive circuit 9 keeps the first solenoid valve MVI on, and the BC air supply continues to be stopped. That is, if the recovery acceleration Vα is less than the very small lower limit setting value ■α1, air will not be supplied to the BC.

回復加速度■αが上記下限設定値■α1を超えると、三
角波パルスとの比較によりデユーティ比の異なるパルス
にもとづいて、第1電磁弁MVIがオン、オフを周期的
に繰り返す。この場合も、回復加速度Vαが小さいほど
、1周期における給気時間を短くする。
When the recovery acceleration ■α exceeds the lower limit setting value ■α1, the first electromagnetic valve MVI periodically repeats on and off based on pulses with different duty ratios as compared with triangular wave pulses. Also in this case, the smaller the recovery acceleration Vα, the shorter the air supply time in one cycle.

そして、回復加速度■αが上限設定値172以上になる
と、比較回路5の出力がrLJとなるため、第2検知回
路8が回復検知信号rHJを出力していても、アンド回
路7の出力が「L」となり、第1電磁弁MVIがオフし
、BCへ連続給気される。
Then, when the recovery acceleration ■α exceeds the upper limit setting value 172, the output of the comparator circuit 5 becomes rLJ, so even if the second detection circuit 8 outputs the recovery detection signal rHJ, the output of the AND circuit 7 becomes “ "L", the first solenoid valve MVI is turned off, and air is continuously supplied to BC.

すなわち、この第2の制御回路CC2による場合も、回
復加速度Vαの大きさに応じて給気制御しており、しか
も、回復加速度Vαが小さいほど給気速度を遅くしてい
る。
That is, also in the case of the second control circuit CC2, the air supply is controlled according to the magnitude of the recovery acceleration Vα, and moreover, the smaller the recovery acceleration Vα is, the slower the air supply speed is.

なお、上記第3図の第2の制御回路CC2において、三
角波パルスのバイアスを無くしても良いし、また■α1
<Vα〈■α2の範囲を連続ではなく複数個に分割して
制御しても良い。
In the second control circuit CC2 of FIG. 3, the bias of the triangular wave pulse may be eliminated, or ■α1
The range of <Vα<■α2 may be controlled by dividing it into a plurality of parts instead of continuously.

さらに、上記第2図の第1の制御回路CCIにおいても
、第3図の第2の制御回路CC2における下限設定値V
α1.上限設定値Vα2と同様の設定を行なっても良い
Furthermore, in the first control circuit CCI in FIG. 2, the lower limit setting value V in the second control circuit CC2 in FIG.
α1. The same setting as the upper limit setting value Vα2 may be performed.

〔効果〕〔effect〕

以上の説明の通り、本発明の再粘着制御方法によれば、
滑走後のブレーキシリンダの排気により、車軸速度が回
復し始めると、その回復加速度の大きさに応じてブレー
キシリンダへの給気を徐々に行ない、しかも、回復加速
度が小さいほど給気速度を遅くするため、すなわち、再
粘着進行中にその速度に合わせてブレーキ力を回復させ
るため、再粘着完了後にブレーキ力を回復させる従来方
法に比べて、ブレーキ距離の短縮が図れ、−4滑走が生
じてもこれによるブレーキ距離の延伸を最小限に防止で
きる。
As explained above, according to the readhesion control method of the present invention,
When the axle speed begins to recover due to the exhaust of the brake cylinder after skidding, air is gradually supplied to the brake cylinder according to the magnitude of the recovery acceleration, and the smaller the recovery acceleration, the slower the air supply speed is. In other words, since the braking force is restored according to the speed while the re-adhesion is progressing, the braking distance can be shortened compared to the conventional method of recovering the braking force after the re-adhesion is completed, and even if a -4 skid occurs. This can minimize the extension of the braking distance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例説明図、第2図は本発明
方法を実施するための第1の制御回路図、第3図は同第
2の制御回路図、第4図は従来方法の説明図、第5図は
ブレーキシリンダBCに対する給排気装置の第1例、第
6図は同給排気装置の第2例である。 ■・・・車軸、速度 Vα・・・回復加速度MVI・・
・第1電磁弁 MV2・・・第2電磁弁RVI、RV2
・・・中継弁 BC・・・ブレーキシリンダ
Fig. 1 is an explanatory diagram of an embodiment of the method of the present invention, Fig. 2 is a first control circuit diagram for carrying out the method of the present invention, Fig. 3 is a second control circuit diagram of the same, and Fig. 4 is a conventional control circuit diagram. An explanatory diagram of the method, FIG. 5 shows a first example of an air supply and exhaust system for the brake cylinder BC, and FIG. 6 shows a second example of the air supply and exhaust system for the brake cylinder BC. ■...Axle, speed Vα...Recovery acceleration MVI...
・First solenoid valve MV2...Second solenoid valve RVI, RV2
...Relay valve BC...Brake cylinder

Claims (1)

【特許請求の範囲】[Claims] (1)ブレーキシリンダに給気しているブレーキ時に、
車軸速度の急激な低下にもとづいて車輪の滑走を検知す
ると、前記ブレーキシリンダから排気し、該排気により
車軸速度が回復し始めると、前記ブレーキシリンダへの
給気を徐々に開始し、その給気速度を回復加速度が小さ
いほど遅くしたことを特徴とする車輪の再粘着制御方法
(1) When braking while supplying air to the brake cylinder,
When wheel skidding is detected based on a sudden drop in axle speed, the brake cylinder is evacuated, and when the axle speed begins to recover due to the exhaust, air is gradually supplied to the brake cylinder, and the air supply is A wheel readhesion control method characterized in that the smaller the recovery acceleration, the slower the speed.
JP15223086A 1986-06-27 1986-06-27 Controlling method for readhesion of wheel Granted JPS638061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15223086A JPS638061A (en) 1986-06-27 1986-06-27 Controlling method for readhesion of wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15223086A JPS638061A (en) 1986-06-27 1986-06-27 Controlling method for readhesion of wheel

Publications (2)

Publication Number Publication Date
JPS638061A true JPS638061A (en) 1988-01-13
JPH0370659B2 JPH0370659B2 (en) 1991-11-08

Family

ID=15535931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15223086A Granted JPS638061A (en) 1986-06-27 1986-06-27 Controlling method for readhesion of wheel

Country Status (1)

Country Link
JP (1) JPS638061A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4794690B2 (en) * 2008-06-20 2011-10-19 三菱電機株式会社 Train sliding control device and train sliding control method
US8457818B2 (en) 2008-06-20 2013-06-04 Mitsubishi Electric Corporation Train slide control device and train slide control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516308A (en) * 1974-07-05 1976-01-19 Bridgestone Tire Co Ltd SUIJOSHISETSUSHIJOKOKANKUINO BOSHOKUKABAA
JPS568776A (en) * 1979-07-03 1981-01-29 Isuzu Motors Ltd Tilt bar handle locking device
JPS5653945A (en) * 1979-10-09 1981-05-13 Nissan Motor Co Ltd Antiskid controller
JPS56116540A (en) * 1980-01-19 1981-09-12 Nippon Air Brake Co Ltd Antiskid apparatus for vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516308A (en) * 1974-07-05 1976-01-19 Bridgestone Tire Co Ltd SUIJOSHISETSUSHIJOKOKANKUINO BOSHOKUKABAA
JPS568776A (en) * 1979-07-03 1981-01-29 Isuzu Motors Ltd Tilt bar handle locking device
JPS5653945A (en) * 1979-10-09 1981-05-13 Nissan Motor Co Ltd Antiskid controller
JPS56116540A (en) * 1980-01-19 1981-09-12 Nippon Air Brake Co Ltd Antiskid apparatus for vehicles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4794690B2 (en) * 2008-06-20 2011-10-19 三菱電機株式会社 Train sliding control device and train sliding control method
US8457818B2 (en) 2008-06-20 2013-06-04 Mitsubishi Electric Corporation Train slide control device and train slide control method

Also Published As

Publication number Publication date
JPH0370659B2 (en) 1991-11-08

Similar Documents

Publication Publication Date Title
JP2696317B2 (en) Vehicle slip control method
CA1153809A (en) Brake control system for an automotive vehicle
JPS5930587B2 (en) Wheel slip control device adapted for use on low friction surfaces
US3625572A (en) Antiskid device for a vehicle-braking system
JPS6364345B2 (en)
JPH01204848A (en) Antiskid controlling method for automobile
JPS59213552A (en) Anti-skid controller
US3926477A (en) Anti-locking vehicle brake system for individual wheel control
US3944291A (en) Antiskid brake control system affording acceleration control of a skidding wheel running on a low adhesion roadway
JPS638061A (en) Controlling method for readhesion of wheel
JP2503245B2 (en) Anti-skid controller
US4239295A (en) Circuit for preventing the wheel velocity from exceeding the vehicle velocity in vehicles with antilocking brake systems
JPH0263956A (en) Car locking preventive brake system
JPS62155163A (en) Antiskid control method
JPS63305065A (en) Wheel speed controller
JPH0729599B2 (en) Anti-skidding control method
JPS6142659B2 (en)
SU786870A3 (en) Antiblocking device for braking system of transport facility
JP2709924B2 (en) Brake hydraulic pressure control method for hydraulic brake system for automobile
JP3487627B2 (en) Brake equipment
JP2709923B2 (en) Brake hydraulic pressure control method for hydraulic brake system for automobile
JP3297111B2 (en) Anti-skid control device
JPH01119464A (en) Method and device for controlling periheral speed of plurality of wheel of railway rolling stock
JPH0630509A (en) Antiskid unit for vehicle
JPH03159863A (en) Anti-skid control device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term