JPS6379762A - Manufacture of silicon nitride base sintered body - Google Patents

Manufacture of silicon nitride base sintered body

Info

Publication number
JPS6379762A
JPS6379762A JP61223830A JP22383086A JPS6379762A JP S6379762 A JPS6379762 A JP S6379762A JP 61223830 A JP61223830 A JP 61223830A JP 22383086 A JP22383086 A JP 22383086A JP S6379762 A JPS6379762 A JP S6379762A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
molding
sintering
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61223830A
Other languages
Japanese (ja)
Inventor
笠原 光一
猿橋 尚二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Industrial Co Ltd filed Critical Cataler Industrial Co Ltd
Priority to JP61223830A priority Critical patent/JPS6379762A/en
Publication of JPS6379762A publication Critical patent/JPS6379762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は窒化珪素を主成分とする焼結体の製造方法に関
し、特に、機械的強度および寸法精度の優れた窒化珪素
質焼結体の製造方法に係る。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing a sintered body mainly composed of silicon nitride, and in particular, to a method for manufacturing a sintered body containing silicon nitride as a main component. Regarding the manufacturing method.

〔従来の技術〕[Conventional technology]

窒化珪素質焼結体は耐圧縮強度、耐摩耗性および耐熱性
に優れ、現在量も注目されているファインセラミックス
の中の一つである。現に、自動車のターボチャージャー
等の工業用品として応用されている。
Silicon nitride sintered bodies have excellent compressive strength, wear resistance, and heat resistance, and are one of the fine ceramics that are currently attracting attention in quantity. It is currently being applied to industrial products such as automobile turbochargers.

この窒化珪素質焼結体は、従来法のようにして製造され
ている。
This silicon nitride sintered body is manufactured by a conventional method.

まず、焼結助剤として金属酸化物や窒化物(例えば酸化
アルミニウム、酸化マグネシウム、酸化珪素、酸化イツ
トリウム、窒化アルミニウム)、成形助剤として有機系
のバインダー(例えばポリビニルアルコール、ワックス
、ポリアクリル酸、CMC)や解膠剤(例えば珪酸ナト
リウム、ポリアクリル酸塩、CMC塩)を窒化珪素粉末
に添加、混合する。次いで、この混合物を金型成形、ラ
バープレス成形、鋳込み成形、射出成形、押し出し成形
等により所望の形状に成形する。続いて、必要に応じて
仮焼によるによる有機物の除去や前加工を行なった後、
N2雰囲気中で圧力 1〜100気圧、温度1600〜
2000℃で焼結し、更に後加工することにより寸法を
合わせて製品化している。
First, metal oxides and nitrides (e.g. aluminum oxide, magnesium oxide, silicon oxide, yttrium oxide, aluminum nitride) are used as sintering aids, and organic binders (e.g. polyvinyl alcohol, wax, polyacrylic acid, etc.) are used as forming aids. CMC) and a peptizer (for example, sodium silicate, polyacrylate, CMC salt) are added to the silicon nitride powder and mixed. Next, this mixture is molded into a desired shape by die molding, rubber press molding, cast molding, injection molding, extrusion molding, or the like. Next, after removing organic matter and pre-processing by calcining as necessary,
Pressure: 1 to 100 atmospheres, temperature: 1600 to 1,000 atmospheres in N2 atmosphere
It is sintered at 2,000°C and then subjected to post-processing to match the dimensions and make it into a product.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の製造方法によって得られた窒化珪素質焼結体
は、焼結後、未加工時の寸法精度が精々±1%前後で、
これ以上の精度を要求される場合には機械加工を施さな
ければならない。これはコストの著しい上昇を招くため
、用途拡大を阻む大きな障害となっている。
The silicon nitride sintered body obtained by the above conventional manufacturing method has a dimensional accuracy of around ±1% at most when unprocessed after sintering.
If greater precision is required, machining must be performed. This causes a significant increase in cost, and is a major obstacle to expanding its uses.

上記のように寸法がバラツクのは次の原因による。即ち
、成形時に脱型したときの寸法精度がかなり高いが、こ
れをm密な焼結体とするためには通常30〜50%の体
積収縮を生じさせる必要があり、この過程で均質に収縮
を進行させるのが困難なためである。
The above-mentioned variations in dimensions are due to the following reasons. In other words, the dimensional accuracy when removed from the mold during molding is quite high, but in order to make this into an m-dense sintered body, it is usually necessary to cause volumetric shrinkage of 30 to 50%, and in this process it is necessary to shrink uniformly. This is because it is difficult to progress.

例えば、射出成形で?!雑な形状のものを成形可能な粒
子充填率は、乾燥成形品で55〜65%であるから、こ
れをm密な焼結体とするためには43〜35%ものの体
積収縮を必要とする。また、比較的緻密な成形が可能な
ラバープレス成形や泥漿鋳込み成形でも、乾燥成形品の
粒子充填率は60〜70%であるから、この場合にも4
0〜30%の体積収縮を必要とする。これを線収縮率に
換算すると、20〜13%となる。この様な大幅な緻密
化では均質な収縮は困難で、一部に反り等が発生するた
め、寸法精度は±1%程度となってしまう。
For example, injection molding? ! The particle filling rate that allows molding of rough shapes is 55 to 65% for dry molded products, so in order to make this into an m-dense sintered body, a volumetric shrinkage of 43 to 35% is required. . In addition, even in rubber press molding and slurry casting molding, which allow relatively dense molding, the particle filling rate of the dry molded product is 60 to 70%, so in this case as well,
Requires volumetric shrinkage of 0-30%. If this is converted into a linear shrinkage rate, it will be 20 to 13%. With such significant densification, uniform shrinkage is difficult and warping occurs in some areas, resulting in dimensional accuracy of approximately ±1%.

本発明は上記事情に鑑みてなされたもので、■械的強度
に優れ、且つ寸法精度に優れた窒化珪素質焼結体を製造
できる方法を提供しようとするものである。
The present invention has been made in view of the above circumstances, and is intended to provide a method for producing a silicon nitride sintered body having excellent mechanical strength and dimensional accuracy.

(問題点を解決するための手段〕 本発明による窒化珪素質焼結体の製造方法は、窒化珪素
を主成分とする粉末を成形し、次いでその一部を酸化珪
素化した後、非酸化性雰囲気中で焼結処理することを特
徴とするものである。
(Means for Solving the Problems) The method for producing a silicon nitride sintered body according to the present invention involves molding a powder mainly composed of silicon nitride, then converting a part of it into silicon oxide, and then forming a non-oxidizing sintered body. It is characterized by sintering in an atmosphere.

本発明における酸化珪素化の方法としては、例えば大気
雰囲気中において、600〜1300℃の温度で焼成さ
せる簡単な方法を用いることができる。
As a method for silicon oxidation in the present invention, a simple method of firing at a temperature of 600 to 1300° C. in an air atmosphere can be used, for example.

しかし、他のどのような方法を使用してもよい。However, any other method may be used.

本発明においては、乾燥成形体の粒子充填率を更に上昇
させるために、窒化珪素に焼結助剤の酸化珪素を添加す
ることなく、成形助剤や、必要に応じて他の焼結助剤を
加えて成形乾燥を行なうのが好ましい。その場合、窒化
珪素の一部を酸化珪素化する条件として、1〜100気
圧、1600〜200℃の窒素雰囲気を用いるのが好ま
しい。
In the present invention, in order to further increase the particle filling rate of the dry compact, we do not add silicon oxide as a sintering aid to silicon nitride, but instead use a forming aid and other sintering aids as necessary. It is preferable to perform molding drying by adding . In that case, it is preferable to use a nitrogen atmosphere of 1 to 100 atm and 1600 to 200°C as conditions for converting a part of the silicon nitride into silicon oxide.

本発明において窒化珪素粉末を成形する方法としては、
金型成形、ラバープレス成形、泥漿鋳込み成形、射出成
形、押し出し成形等の一般的な成形方法を使用すること
ができる。なかでも、最も緻密な成形が可能なラバープ
レス成形、泥漿鋳込み成形が好ましい。
In the present invention, the method for molding silicon nitride powder is as follows:
General molding methods such as die molding, rubber press molding, slurry casting, injection molding, and extrusion molding can be used. Among these, rubber press molding and slurry casting molding, which allow the most precise molding, are preferred.

〔作用〕[Effect]

本発明の方法では窒化珪素粉末を成形した後、これを焼
結するに先立って、その一部を酸化して酸化珪素化に転
化している。この酸化珪素化には体積膨張を伴うが、そ
の過程で成形体の寸法は変化しないため、成形体の粒子
充填率が増大する。
In the method of the present invention, after the silicon nitride powder is molded, a part of it is oxidized and converted into silicon oxide before sintering. This oxidation to silicon oxide is accompanied by volumetric expansion, but the dimensions of the molded body do not change during this process, so the particle filling rate of the molded body increases.

従って、焼結の際に必要な収縮率が低下し、収縮率のバ
ラツキも小さくなる。
Therefore, the shrinkage rate required during sintering is reduced, and the variation in shrinkage rate is also reduced.

例えば、焼結助剤として酸化珪素を加えず、成形助剤や
必要に応じて他の焼結助剤を加え、最も緻密な成形が可
能なラバープレス成形または鋳込み成形で成形した場合
、粒子充填率70%の成形体が得られる。この成形体を
例えば600℃〜1300℃の大気雰囲気中で焼成し、
その窒化珪素の一部を酸化珪素化すると、成形体寸法は
変化することなく体積膨張が生じるため、粒子充填率は
73%以上に増大する。その結果、理論密度に達するた
めに必要な焼結時の線収縮率は10%以下となり、収縮
のバラツキが小さくなるため寸法精度が向上する。
For example, if silicon oxide is not added as a sintering aid, but a forming aid and other sintering aids are added as needed, and molding is done by rubber press molding or casting molding, which allows for the most dense molding, particle filling A molded body with a yield of 70% is obtained. This molded body is fired in an air atmosphere at, for example, 600°C to 1300°C,
When a part of the silicon nitride is converted into silicon oxide, volumetric expansion occurs without changing the dimensions of the compact, so that the particle filling rate increases to 73% or more. As a result, the linear shrinkage rate during sintering required to reach the theoretical density is 10% or less, and the variation in shrinkage is reduced, resulting in improved dimensional accuracy.

(実施例) 実施例1 粒径1戸の窒化珪素粉末を、解膠剤(ポリアクリル酸ア
ンモニウム塩)と共に水中に分散させた。
(Examples) Example 1 Silicon nitride powder having a particle size of 1 mm was dispersed in water together with a deflocculant (ammonium polyacrylate).

その際、他の所謂焼結助剤は何も加えなかった。At this time, no other so-called sintering aids were added.

この水中分散液を石膏型に流し込み、鋳込み成形を行な
った。得られた成形体を500℃で加熱処理し、脱解膠
剤処理を行なった後、これを大気雰囲気中で1000℃
×5時間の焼成処理を行なうことにより、窒化珪素の一
部を酸化珪素化した。このときの重量増は3.5%で、
約12%の酸化珪素が生成したものと推定される。また
、この焼成処理で成形体の寸法変化は生じなかった。
This dispersion in water was poured into a plaster mold and cast molding was performed. The obtained molded body was heat-treated at 500°C, treated with a deflocculating agent, and then heated at 1000°C in the air.
By performing the firing treatment for 5 hours, a part of the silicon nitride was converted into silicon oxide. The weight increase at this time is 3.5%,
It is estimated that about 12% silicon oxide was produced. Moreover, no dimensional change of the molded body occurred during this firing treatment.

次いで、上記の一部酸化珪素化した成形体を、窒素雰囲
気中で圧力10気圧、湿度1700℃の条件で4時間の
焼結処理を行なった。得られた焼結体の気孔率は0%で
あり、線収縮率は5%であった。
Next, the partially siliconized molded body was subjected to a sintering treatment in a nitrogen atmosphere at a pressure of 10 atmospheres and a humidity of 1700° C. for 4 hours. The obtained sintered body had a porosity of 0% and a linear shrinkage rate of 5%.

また、焼結体には反り等が見られず、−様に収縮してい
ることが確認された。
Further, it was confirmed that the sintered body did not show any warping or the like, and had contracted in a negative manner.

実施例2 粒径1−の窒化珪素粉末96瓜農%と粒径0.8−の酸
化イツトリウム粉末4重量%とを、バインダー(ポリビ
ニルアルコール)と共に水中に分散させた。これをスプ
レードライ法により造粒した後、ラバープレス法により
 1.5 ton/dの圧力でプレスして成形した。得
られた成形体を500℃で加熱処理して脱バインダー処
理を行なった後、大気雰囲気中で950℃×3時間の焼
成処理を行ない、窒化珪素の一部を酸化珪素化した。こ
の焼成処理による重量増は2.0%で、約7%が酸化珪
素化されたものと推定される。また、焼成による成形体
の寸法変化は生じなかった。
Example 2 96% by weight of silicon nitride powder with a particle size of 1-mm and 4% by weight of yttrium oxide powder with a particle size of 0.8-mm were dispersed in water together with a binder (polyvinyl alcohol). This was granulated by a spray drying method, and then pressed and molded by a rubber press method at a pressure of 1.5 ton/d. The obtained molded body was heat-treated at 500° C. to remove the binder, and then fired at 950° C. for 3 hours in the air to convert a portion of the silicon nitride into silicon oxide. The weight increase due to this firing process was 2.0%, and it is estimated that about 7% was converted into silicon oxide. Moreover, no dimensional change of the molded body occurred due to firing.

次に、上記の一部酸化珪素化された成形体を、窒素雰囲
気中において圧力10気圧、温度1800℃の条件で4
時間焼結させた。得られた焼結体の気孔率は略0%で、
線収縮率は9%であった。また、焼結体には反り等が見
られず、−様に収縮していることが確認された。
Next, the above-mentioned partially oxidized molded body was heated in a nitrogen atmosphere at a pressure of 10 atm and a temperature of 1800°C for 4 hours.
Sintered for hours. The porosity of the obtained sintered body was approximately 0%,
The linear shrinkage rate was 9%. Further, no warping or the like was observed in the sintered body, and it was confirmed that the sintered body had shrunk in a negative manner.

比較例 粒径1#IRの窒化珪素粉末89重量%、粒径1戸の酸
化珪素粉末6重量%および粒径O,a 、の酸化イツト
リウム粉末5重量%とを、バインダー(ポリビニルアル
コール)と共に水中に分散させた。これをスプレードラ
イ法により造粒した後、ラバープレス法により 1.5
 ton/dの圧力でプレスして成形した。得られた成
形体を500℃で加熱処理して脱バインダー処理を行な
った。
Comparative Example 89% by weight of silicon nitride powder with a particle size of 1#IR, 6% by weight of silicon oxide powder with a particle size of 1, and 5% by weight of yttrium oxide powder with a particle size of O,a were mixed in water with a binder (polyvinyl alcohol). It was dispersed into After granulating this by spray drying method, 1.5
It was pressed and molded with a pressure of ton/d. The obtained molded body was heat-treated at 500°C to remove the binder.

次に、上記の成形体を窒素雰囲気中において圧力10気
圧、温度1900℃の条件で4時間焼結させた。
Next, the above molded body was sintered in a nitrogen atmosphere at a pressure of 10 atmospheres and a temperature of 1900° C. for 4 hours.

得られた焼結体の気孔率は略0%で、線収縮率は14%
であった。また、焼結体には多少の反りが見られた。
The porosity of the obtained sintered body was approximately 0%, and the linear shrinkage rate was 14%.
Met. Moreover, some warpage was observed in the sintered body.

上記実施例および比較例の結果を比較すれば明らかなよ
うに、比較例では焼結時の収縮率が14%であるのに対
し、実施例では何れも収縮率が10%以下で、高い寸法
精度が得られている。
As is clear from comparing the results of the above example and comparative example, the shrinkage rate during sintering in the comparative example was 14%, while the shrinkage rate in all of the examples was 10% or less, and the size was high. Accuracy is obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれば焼結時の収縮率を
抑制し、寸法精度の^い窒化珪素質焼結体を製造できる
等、顕著な効果が得られるものである。
As described in detail above, the present invention provides remarkable effects such as suppressing the shrinkage rate during sintering and producing a silicon nitride sintered body with high dimensional accuracy.

Claims (1)

【特許請求の範囲】[Claims]  窒化珪素を主成分とする粉末を成形し、次いでその一
部を酸化珪素化した後、非酸化性雰囲気中で焼結処理す
ることを特徴とする窒化珪素質焼結体の製造方法。
1. A method for producing a silicon nitride sintered body, which comprises molding a powder containing silicon nitride as a main component, converting a portion of the powder into silicon oxide, and then sintering the powder in a non-oxidizing atmosphere.
JP61223830A 1986-09-24 1986-09-24 Manufacture of silicon nitride base sintered body Pending JPS6379762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61223830A JPS6379762A (en) 1986-09-24 1986-09-24 Manufacture of silicon nitride base sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61223830A JPS6379762A (en) 1986-09-24 1986-09-24 Manufacture of silicon nitride base sintered body

Publications (1)

Publication Number Publication Date
JPS6379762A true JPS6379762A (en) 1988-04-09

Family

ID=16804386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61223830A Pending JPS6379762A (en) 1986-09-24 1986-09-24 Manufacture of silicon nitride base sintered body

Country Status (1)

Country Link
JP (1) JPS6379762A (en)

Similar Documents

Publication Publication Date Title
US4783297A (en) Method of producing ceramic parts
JPS647035B2 (en)
JPS6379762A (en) Manufacture of silicon nitride base sintered body
EP0240190B1 (en) Process for manufacturing ceramic sintered bodies and mold to be used therefor
JP3320645B2 (en) Manufacturing method of ceramic sintered body
JP2786719B2 (en) Method for producing rare earth oxide sintered body
JP2968939B2 (en) Freezing molding method of ceramics using polyvinyl alcohol solution
JPS62212265A (en) Manufacture of silicon nitride base sintered body
JPS6321254A (en) Manufacture of silicon nitride ceramics
JP2515527B2 (en) Method for manufacturing SiC refractory
JP2936288B2 (en) Composite ceramic and method for producing the same
JPS62202703A (en) Method of molding ceramics
JPS61225004A (en) Manufacture of injection molding ceramic molded shape with large-sized section
JPS6054984A (en) Manufacture of silicon carbide sintered body
JPH02307871A (en) Production of ceramic sintered compact
JPS63100074A (en) Method of burning ceramic injection formed article
JPS605071A (en) Manufacture of silicon carbide sintered body
JPH0722931B2 (en) Forming method of powder sintering precursor
JPS63112470A (en) Cast formation of aluminum nitride ceramic or silicon nitride ceramic
JPS63215567A (en) Manufacture of silicon nitride ceramics
JPS62241876A (en) Silicon nitride sintered body and manufacture
JPS6121976A (en) Manufacture of silicon nitride base sintered body
JPS62275066A (en) Manufacture of silicon carbide sintered body
JPH06191925A (en) Method for forming formed ceramic article
JPH0872045A (en) Pressure slip casting method for forsterite ceramics