JPS637892Y2 - - Google Patents
Info
- Publication number
- JPS637892Y2 JPS637892Y2 JP5255582U JP5255582U JPS637892Y2 JP S637892 Y2 JPS637892 Y2 JP S637892Y2 JP 5255582 U JP5255582 U JP 5255582U JP 5255582 U JP5255582 U JP 5255582U JP S637892 Y2 JPS637892 Y2 JP S637892Y2
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- microwave
- measurement
- humidity
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005259 measurement Methods 0.000 claims description 24
- 239000003989 dielectric material Substances 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims 3
- 239000011148 porous material Substances 0.000 claims 2
- 238000010521 absorption reaction Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000012857 radioactive material Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 229920000298 Cellophane Polymers 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
【考案の詳細な説明】
本考案は、流通している気体の湿度を連続的に
測定する気体用湿度測定装置に関する。[Detailed Description of the Invention] The present invention relates to a gas humidity measuring device that continuously measures the humidity of a circulating gas.
例えば試験用のために放射能をあびた放射性物
質(例えばネズミ)を、その後処理する場合、こ
れをホルマリン液に漬けることが行なわれていた
が、現在では乾燥させて処理することが行なわれ
ており、この乾燥に際してはマイクロ波照射によ
る誘電加熱が行なわれる。この場合、必要以上に
乾燥させると燃え出すので、所定以上乾燥させな
いように、上記放射性物質の含水状態を絶えず監
視する必要があるが、このためにはその放射性物
質を乾燥させる乾燥室の空気を流通させ、この流
通空気の湿度を遠隔測定している。 For example, when a radioactive material (for example, a rat) that has been exposed to radioactivity for testing was to be subsequently processed, it was used to be immersed in formalin, but now it is dried and processed. During this drying, dielectric heating is performed using microwave irradiation. In this case, if the radioactive material is dried more than necessary, it will catch fire, so it is necessary to constantly monitor the water content of the radioactive material so as not to dry it beyond a certain level. The humidity of this circulating air is measured remotely.
このための気体用湿度計として、特殊なセラミ
ツク状半導体を用い、これが湿度により電気抵抗
が変化する点を利用したものがあるが、その動作
原理があまり明確でなく、また温度による変化が
著しく、更に複雑な組成のために経年変化が大き
いという問題があつた。 Some gas hygrometers for this purpose use a special ceramic-like semiconductor that takes advantage of the fact that its electrical resistance changes with humidity, but its operating principle is not very clear, and it changes significantly with temperature. Furthermore, due to the complex composition, there was a problem of large changes over time.
また別に、湿気を可逆的に吸脱する有機物誘電
体膜の吸湿による誘電率の変化を利用して、静電
容量の変化により湿度を測定するものも存在する
が、測定装置が高価となる欠点があつた。 There are also methods that measure humidity by changes in capacitance by utilizing the change in dielectric constant due to moisture absorption of an organic dielectric film that reversibly absorbs and desorbs moisture, but the drawback is that the measuring device is expensive. It was hot.
本考案は、以上のような点に鑑みて成されたも
のであり、その目的は、マイクロ波の吸収が、誘
電率の如何により変化する点を利用して、マイク
ロ波の吸収程度によつて湿度を測定するように
し、以つて安定且つ安価な気体用湿度測定装置を
提供することである。 The present invention was developed in view of the above points, and its purpose is to utilize the fact that microwave absorption changes depending on the dielectric constant, and to change the absorption level depending on the degree of microwave absorption. To provide a stable and inexpensive gas humidity measuring device that measures humidity.
以下、本考案の実施例について詳細に説明す
る。まず、誘電体は、その誘電率をεとすると、
その誘電体に吸収される周波数のマイクロ波電
力Pは、
P∝f・ε・tanδ
で表わされる。δは誘電体損失角であり、ε・
tanδを損失係数と呼んでいる。一般の誘電体の比
誘電率は3〜6(CGS単位)程度であるが、水の
比誘電率は極度に大きく、60〜90(CGS単位)に
達する。従つて、水分を含んだ物体の誘電率は、
その含水率に応じて、一般の誘電体の誘電率と水
分の誘電率との中間の値となる。一方、ある種の
親水性高分子膜(例えば、セルローズ、セロフア
ン等)は、付近の気体中の水分の濃度に比例し
て、水分を吸脱するので、この親水性高分子膜の
物質の誘電率を測定することにより、気体中の水
分を測定することが可能である。上述の式によれ
ば、マイクロ波吸収電力Pは、誘電率εの変化に
比例するので、そのマイクロ波吸収電力Pを測定
することにより、湿度を測定することができる。
この場合、高い周波数のマイクロ波を使用すれ
ば、感度が大きくなることは上述の式より明らか
である。 Hereinafter, embodiments of the present invention will be described in detail. First, if the permittivity of a dielectric is ε, then
The microwave power P at the frequency absorbed by the dielectric is expressed as P∝f・ε・tanδ. δ is the dielectric loss angle, and ε・
tanδ is called the loss coefficient. The dielectric constant of general dielectrics is about 3 to 6 (CGS units), but the dielectric constant of water is extremely large, reaching 60 to 90 (CGS units). Therefore, the dielectric constant of an object containing water is
Depending on the water content, the dielectric constant has a value intermediate between that of general dielectrics and that of water. On the other hand, certain types of hydrophilic polymer membranes (e.g., cellulose, cellophane, etc.) absorb and desorb moisture in proportion to the concentration of moisture in the surrounding gas, so By measuring the rate, it is possible to measure the moisture in the gas. According to the above equation, the microwave absorption power P is proportional to the change in the dielectric constant ε, so by measuring the microwave absorption power P, the humidity can be measured.
In this case, it is clear from the above equation that the sensitivity increases if high frequency microwaves are used.
第1図は気体用湿度測定装置の一実施例の原理
的ブロツク図であり、1はマイクロ波発振器(前
述した乾燥用のものと必要に応じて共用してもよ
い)、2,2′,2″は第1〜第3の導波管、3は
マイクロ波発振動作を安定にするためのアツテネ
ータ、4はマイクロ波検波器である。導波管2と
2′の間には湿度を測定するための測定用導波管
5が接続されており、この測定用導波管5は第2
図に示すように、相対向する面が開放されその
各々の面はマイクロ波が通過できない寸法(カツ
トオフとなる寸法)のメツシユ(細孔板でも良
い)6,6′で覆われ、また別の相対する面は側
板7,7′で遮ぎられ、第1の導波管2との接続
部分および第2の導波管2′との接続部分には
各々、低損失誘電体(石英、テフロン、ガラス、
セラミツク等)の隔壁8,8′が気密を保つて設
けられている。9,9′は被測定気体を流通させ
るためのガイド管であり、測定用導波管5のメツ
シユ6,6′の面が通過方向と直角(図示はしな
いが直角でなく斜交してもよい)になるように、
メツシユ6,6′に対応して設けられている。こ
の場合、ガイド管9,9′を流通する気体はメツ
シユ6,6′は通過するが隔壁8,8′に遮ぎられ
て導波管2,2′内には流入し得ず、また測定用
導波管5を通過するマイクロ波はメツシユ6,
6′および残りの側板7,7′に遮断されてガイド
管9,9′内に漏れることはない。測定用導波管
5内のメツシユ6,6′、隔壁8,8′、側板7,
7′で囲まれた測定空間には、周囲の湿度に応じ
て自由に水分を吸収・放出する親水性高分子化合
物(誘電体)の細片が、充填物として予じめ充填
されている。10は導波管2のマイクロ波入力
側、つまりアツテネータ3側に設けられた入力パ
ワー検出用端子としてのプルーブであり、その出
力信号は比例増幅器11に入力している。この比
例増幅器11には他のマイクロ波検波器4からの
出力信号も入力しており、ここにおいて両出力信
号の比が検出され、出力端子12に出力するよう
になつている。 FIG. 1 is a basic block diagram of an embodiment of a gas humidity measuring device, in which 1 is a microwave oscillator (which may be used in common with the drying device described above if necessary), 2, 2', 2'' is the first to third waveguides, 3 is an attenuator for stabilizing the microwave oscillation operation, and 4 is a microwave detector.The humidity is measured between the waveguides 2 and 2'. A measurement waveguide 5 is connected to the second measurement waveguide 5.
As shown in the figure, opposing surfaces are open and each surface is covered with meshes (perforated plates may be used) 6, 6' with dimensions that prevent microwaves from passing through (cut-off dimensions), and another The opposing surfaces are blocked by side plates 7, 7', and the connecting parts with the first waveguide 2 and the connecting parts with the second waveguide 2' are each made of low-loss dielectric material (quartz, Teflon, etc.). , glass,
Partition walls 8, 8' made of ceramic or the like are provided to maintain airtightness. Reference numerals 9 and 9' denote guide tubes for circulating the gas to be measured, and the planes of the meshes 6 and 6' of the measurement waveguide 5 are perpendicular to the passing direction (although not shown, even if they are not perpendicular or oblique) so that it becomes good)
They are provided corresponding to the meshes 6, 6'. In this case, the gas flowing through the guide tubes 9, 9' passes through the meshes 6, 6', but is blocked by the partition walls 8, 8' and cannot flow into the waveguides 2, 2'. The microwave passing through the waveguide 5 is transmitted through the mesh 6,
6' and the remaining side plates 7, 7' to prevent leakage into the guide tubes 9, 9'. Mesh 6, 6' in measurement waveguide 5, partition walls 8, 8', side plate 7,
The measurement space surrounded by 7' is filled in advance with strips of a hydrophilic polymer compound (dielectric) that freely absorbs and releases water depending on the surrounding humidity. Reference numeral 10 designates a probe as an input power detection terminal provided on the microwave input side of the waveguide 2, that is, on the attenuator 3 side, and its output signal is input to the proportional amplifier 11. An output signal from another microwave detector 4 is also input to this proportional amplifier 11, and the ratio of both output signals is detected here and outputted to an output terminal 12.
以上において、マイクロ波発振器1を動作させ
ると、そこからのマイクロ波が導波管2″とアツ
テネータ3を介して導波管2に導かれて測定用導
波管5内に至り、更に導波管2′を介してマイク
ロ波検波器4に入力する。測定用導波管5内の充
填物は、ガイド管9,9′を流通する気体の湿度
に応じて含水率を変化させ、よつてその充填物は
気体の湿度に対応した誘電率となり、そこにおけ
るマイクロ波吸収を流通気体の湿度に応じて変化
させる。第3図は含水率とマイクロ波吸収の関係
を示す図である。よつて、測定用導波管5に入力
するマイクロ波をプルーブ10で検出してその検
出信号を比例増幅器11に送り、一方測定用導波
管5を通過し減衰をうけたマイクロ波をマイクロ
波検波器4で検出してその検出信号を比例増幅器
11に送り、両検出信号の比を検出すれば、マイ
クロ波の減衰を知ることができ、この減衰比は充
填物の含水率に比例するので、流通気体の湿度を
連続的に検出することができる。 In the above, when the microwave oscillator 1 is operated, the microwave from there is guided to the waveguide 2 via the waveguide 2'' and the attenuator 3, reaches the measurement waveguide 5, and is further guided into the waveguide 5. It is input to the microwave detector 4 through the tube 2'.The filling in the measurement waveguide 5 changes its moisture content according to the humidity of the gas flowing through the guide tubes 9, 9'. The filling has a dielectric constant that corresponds to the humidity of the gas, and the microwave absorption there changes depending on the humidity of the flowing gas.Figure 3 is a diagram showing the relationship between water content and microwave absorption. , the microwave input to the measurement waveguide 5 is detected by the probe 10 and the detected signal is sent to the proportional amplifier 11, while the attenuated microwave that has passed through the measurement waveguide 5 is detected by the microwave detector. 4 and sends the detection signal to the proportional amplifier 11, and detecting the ratio of both detection signals, the attenuation of the microwave can be determined.Since this attenuation ratio is proportional to the water content of the filling, the distribution The humidity of gas can be detected continuously.
なお、以上の実施例において感度を向上させる
には、マイクロ波の周波数を高くすれば良いこと
は前述したが、別の方法として、第4図に示すよ
うに、測定用導波管5を長くし、ガイド管9,
9′の測定用導波管5への接続部分9a,9a′を
拡大して、その測定空間を拡大し、そこに充填す
る充填物の量を多くする方法もある。 As mentioned above, in order to improve the sensitivity in the above embodiments, it is sufficient to increase the frequency of the microwave, but as another method, as shown in FIG. and guide tube 9,
There is also a method of enlarging the connecting portions 9a and 9a' of the measurement waveguide 5 to enlarge the measurement space and increase the amount of filler filled therein.
また別に、第5図に示すように、測定用導波管
5を長くし、相対向する面のメツシユ6,6′を
相反対の隅に設けそこに各々ガイド管9,9′を
接続し、メツシユ6,6′の取り付けられる面の
残りの部分に側板13,13′を設け、測定用導
波管5に対する流通気体の入口と出口の位置をず
らすようにして測定空間を拡大し、そこに充填す
る充填物の量を大きくする方法もある。 Alternatively, as shown in FIG. 5, the measurement waveguide 5 is lengthened, and meshes 6 and 6' on opposite sides are provided at opposite corners to which guide tubes 9 and 9' are connected, respectively. , side plates 13, 13' are provided on the remaining portions of the surfaces on which the meshes 6, 6' are attached, and the measurement space is expanded by shifting the positions of the inlet and outlet of the circulating gas to the measurement waveguide 5. There is also a method of increasing the amount of filler to be filled.
以上から本考案によれば、マイクロ波の吸収に
よつて流通気体の湿度を測定しているために連続
的に安定して測定することができ、またマイクロ
波発振器は乾燥用のものと共用することができる
ので安価にすることができる。更に、測定用導波
管からマイクロ波が外部に逃げることなくまた測
定用導波管から流通気体が導波管内に流入するこ
ともないので、精度を極めて高くすることができ
る。更に、感度はマイクロ波の周波数の選択の他
に測定用導波管内に充填する充填物の種類の選定
と量の調整により容易に調整することができる。 From the above, according to the present invention, since the humidity of the circulating gas is measured by absorption of microwaves, continuous and stable measurement is possible, and the microwave oscillator is also used for drying. Therefore, it can be made inexpensive. Furthermore, since microwaves do not escape from the measurement waveguide to the outside and no circulating gas flows into the waveguide from the measurement waveguide, accuracy can be extremely high. Furthermore, the sensitivity can be easily adjusted by selecting the type and amount of filling to be filled into the measuring waveguide in addition to selecting the frequency of the microwave.
第1図は本考案の一実施例の気体用湿度測定装
置の説明図、第2図は同実施例の測定用導波管の
部分の斜視図、第3図はマイクロ波吸収特性図、
第4図と第5図は別の例の測定用導波管の部分の
側面図である。
1……マイクロ波発振器、2,2′,2″……導
波管、3……アツテネータ、4……マイクロ波検
波器、5……測定用導波管、6,6′……メツシ
ユ、7,7′……側板、8,8′……隔壁、9,
9′……ガイド管、10……プルーブ、11……
比例増幅器、12……出力端子、13,13′…
…側板。
FIG. 1 is an explanatory diagram of a gas humidity measuring device according to an embodiment of the present invention, FIG. 2 is a perspective view of a measurement waveguide portion of the same embodiment, and FIG. 3 is a diagram of microwave absorption characteristics.
4 and 5 are side views of portions of another example of a measurement waveguide. 1... Microwave oscillator, 2, 2', 2''... Waveguide, 3... Attenuator, 4... Microwave detector, 5... Measurement waveguide, 6, 6'... Mesh, 7, 7'... Side plate, 8, 8'... Partition wall, 9,
9'... Guide tube, 10... Probe, 11...
Proportional amplifier, 12... Output terminal, 13, 13'...
...side plate.
Claims (1)
続された第1の導波管と、該第1の導波管に接続
された湿度を測定するための測定用導波管と、該
測定用導波管に接続された第2の導波管と、該第
2の導波管に接続されたマイクロ波検波器とで成
り、 上記測定用導波管が、マイクロ波に対して低損
失の2枚の誘電体により上記第1及び第2の導波
管に対して閉塞され、対向する壁面の各々の少な
くとも一部にマイクロ波を遮断する細孔を有し、
内部に水分を可逆的に着脱する誘電体が充填さ
れ、上記細孔を覆うように気体が流通するガイド
管が接続されて成り、 上記測定用導波管内を測定気体が通過できる構
造としたことを特徴とする気体用湿度測定装置。[Claims for Utility Model Registration] A microwave oscillator, a first waveguide connected to the microwave oscillator, and a measurement waveguide connected to the first waveguide for measuring humidity. a second waveguide connected to the measurement waveguide, and a microwave detector connected to the second waveguide; The first and second waveguides are closed by two dielectrics with low loss, and each of the opposing wall surfaces has a pore that blocks microwaves in at least a portion thereof,
The inside is filled with a dielectric material that reversibly attaches and detaches moisture, and a guide tube through which gas flows is connected to cover the pores, so that the structure allows the measurement gas to pass through the measurement waveguide. A humidity measuring device for gases.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5255582U JPS58156253U (en) | 1982-04-13 | 1982-04-13 | Humidity measuring device for gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5255582U JPS58156253U (en) | 1982-04-13 | 1982-04-13 | Humidity measuring device for gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58156253U JPS58156253U (en) | 1983-10-19 |
JPS637892Y2 true JPS637892Y2 (en) | 1988-03-08 |
Family
ID=30063261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5255582U Granted JPS58156253U (en) | 1982-04-13 | 1982-04-13 | Humidity measuring device for gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58156253U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005012887A1 (en) * | 2003-07-31 | 2005-02-10 | Oji Paper Co., Ltd. | Method and device for measuring moisture content |
-
1982
- 1982-04-13 JP JP5255582U patent/JPS58156253U/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005012887A1 (en) * | 2003-07-31 | 2005-02-10 | Oji Paper Co., Ltd. | Method and device for measuring moisture content |
Also Published As
Publication number | Publication date |
---|---|
JPS58156253U (en) | 1983-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Skaar | Wood-water relations | |
Hrubesh et al. | Dielectric properties of aerogels | |
KR20010034643A (en) | Device and method for directly measuring calorific energy contained in a fuel gas | |
US3659452A (en) | Laser excited spectrophone | |
JPS637892Y2 (en) | ||
Stamm | Diffusion of water into uncoated cellophane. I. From rates of water vapor adsorption, and liquid water absorption | |
US4154089A (en) | Apparatus and method for measuring liquid water content of a cloud or fog | |
Plumb et al. | Experimental measurements of heat and mass transfer during convective drying of southern pine | |
CN212008214U (en) | Radon diffusion coefficient measuring device | |
CN108037038A (en) | A kind of plant leaf blade absorbs the measurement device and method of atmosphere vapour amount | |
Peuhkuri | Quantifying time dependent moisture storage and transport properties | |
CN110196203A (en) | A kind of adhesive or water content of coating and total volatile organism content quick determination method | |
Wexler | Measurement of humidity in the free atmosphere near the surface of the earth | |
Dolch | Studies of Limestone Aggregates by Fluid-Flow Methods | |
Spruit | Measurement of the water vapor loss from human skin by a thermal conductivity cell. | |
US3463589A (en) | Portable condensation nuclei detector | |
Algie | The Measurement of Regain of Wool by Electrical Capacity-Type Moisture Meters: Effect of Temperature on the Dielectric Constant of Wool | |
Eaves et al. | Moisture uptake and tensile strength of bulk solids | |
Azevedo et al. | Hygric permeance-New calculation methodology | |
Derome et al. | Methods for the assessment of moisture content of envelope assemblies | |
TenWolde et al. | Instrumentation for measuring moisture in building envelopes | |
CN208984603U (en) | A kind of measurement device of the exhaust gas water capacity of steam power plant | |
Batra et al. | Determination of water content of plant leaves by beta attenuation | |
Aggarwal et al. | The effect of temperature on the accuracy of microwave moisture measurements on sandstone cores | |
JPS6035877Y2 (en) | gas analyzer |