JPS637852A - Control unit of wet ball mill - Google Patents
Control unit of wet ball millInfo
- Publication number
- JPS637852A JPS637852A JP15211386A JP15211386A JPS637852A JP S637852 A JPS637852 A JP S637852A JP 15211386 A JP15211386 A JP 15211386A JP 15211386 A JP15211386 A JP 15211386A JP S637852 A JPS637852 A JP S637852A
- Authority
- JP
- Japan
- Prior art keywords
- slurry
- mill
- amount
- coal
- ball mill
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002002 slurry Substances 0.000 claims description 62
- 239000003245 coal Substances 0.000 claims description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 239000000654 additive Substances 0.000 claims description 16
- 238000004364 calculation method Methods 0.000 claims description 10
- 239000002245 particle Substances 0.000 description 18
- 230000000996 additive effect Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 239000011362 coarse particle Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 5
- 239000000446 fuel Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 235000013339 cereals Nutrition 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000006679 Mentha X verticillata Nutrition 0.000 description 1
- 235000002899 Mentha suaveolens Nutrition 0.000 description 1
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Landscapes
- Crushing And Grinding (AREA)
- Accessories For Mixers (AREA)
- Liquid Carbonaceous Fuels (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は湿式ボールミルの制御装置に係り、特に高濃度
石炭一水スラリの濃度、粒度、粘度等を一定に維持する
のに好適な湿式ポールミルの制御装置に関する.
〔従来の技術〕
高濃度石炭・水スラリ〔以下CWM(CoalWate
r Mixtutre)と略記〕は、石炭に少量の水
と微量の添加荊とを混入させ、直接燃焼可能な粒度にま
で微粉砕した燃料であり、主として微粉炭燃料に対する
CWMの特徴を掲げると以下のようになる.
(1) 液体燃料として輸送、貯蔵、燃焼が可能.《
2》 脱水することなく直接燃焼可能.《3》 燃
料系の運用(運転操作・制御)が容易.CWMにおける
石炭濃度は約60%以上の高濃度であり、その粒度は2
00メッシュ通過量が約70〜90%になるように調整
される。また、ポンプ輸送が可能で安定な低粘度液であ
る必要がある.
スラリ濃度が高く且つ低粘度で安定なCWMを製造する
ための条件は、次の如くである.(イ) 幅広い粒径分
布の調整によって粒子の充填密度を増し、高濃度化を図
る.
(口) 分散剤の添加による粒子表面に水膜を形成して
帯電させ、粒子同士を分敗さ
せ、低粘度にする.
このようなCWMを連続的に製造する場合、一般には、
第6図に示す如く連続湿式ボールミルを用いた製造設備
が用いられる.
第6図において、石炭Aが供給されるバンカ1の下部に
は給炭機2が設けられ、この給炭機2には石炭流量計3
が設けられている.水Bが供給される水タンク4には該
タンク内の水をボールミル10へ供給するためのポンブ
5が接続されると共に、該ポンプ5の下流側には水流量
計6が設けられている.また、添加剤液Cが供給される
添加剤タンク7には、添加剤液Cをボールミル10へ供
給するためのポンブ8が接続されると共に、該ポンプ8
下流側には添加剤流量計9が設けられている.
石炭A、水Bおよび添加剤液Cの供給を受け、これらを
混合、粉砕し、細粒化するボールミルlOの外周にはギ
ア1lが配設され、該ギア11に噛合させてピニオン軸
12が配設され、このと二オン軸12に直結してモータ
13が設けられている.ミル10の出側には、レベル計
15を備えたタンク14がCWMを受け入れるために配
設されている.タンク14内のCWMはスラリポンプ1
6によって粗粒分離機l9へ供給され、その供給路の途
中には流量計17および比重計18が配設されている.
粗粒分離a19とボールミル10との間には、粗粒スラ
リを再度ミル10へ戻すための粗粒スラリライン22が
設けられている.また、粗粒分離機19内の製品スラリ
は、製品スラリ流量計21を介して取り出される.尚2
0は粗粒スラリ流量計である.
以上の構成において、石炭Aはバンカ1より給炭812
を介してボールミル10に供給される.同様に、水Bお
よび添加剤Cは、水タンク4および添加剤タンク7の各
々よりポンプ5および8によってボールミル10へ供給
される.ボールミル10内で製造されたCWMは、タン
ク14へ徘出され、スラリポンプl6によって粗粒分離
機19へ供給される.粗粒分離機19は、製品として不
適当な粗粒を回収し、ボールミル10へ供給し、再粉砕
する.一方、製品は粗粒分離機l9より取り出され、製
品タンク(図示せず)等に貯蔵される.このようにして
、CWMは連続的に製造されるが、所定の濃度および低
粘度を有し、かつ安定なCWMを製造するためには、ボ
ールミル10内を適切なスラリ濃度に維持すると共に、
粒子の滞留時間を適切に制御して粉砕する必要がある.
しかし、ボールミルlOに供給される石炭Aの粒度、水
分、粉砕性等の性状は時々刻々と変動する.これに応じ
て粗粒分゛離機19を通過した製品CWMの濃度、粒度
及び粘度が変動する.このため、装置の停止あるいは良
質のCWMの連続製造が困難になる.例えば、石炭Aの
水分が突然に減少した場合、ボールミルlO内のスラリ
濃度が増加し、これによってスラリ粘度が上昇し、ボー
ルミル内のスラリホールドアップ量が増加すると共に、
ミル内のボールの運動が抑制され、粉砕能力が低下する
.このたボールミル10出口のCWM濃度および粘度が
高くなるとともに、粒度が粗くなる.また、ボールミル
10内の粘度が高くなり過ぎると、ミル10内でのスラ
リの移動が停止し、ボールミル10が閉塞する.
このような不具合やトラブルを防止するために従来提案
された方法は、ボールミル10の出口でCWMの濃度、
粘度および粒度をサンプリング測定し、その結果をミル
運転操作量にフィードバックさせてミルの運転を制御す
るものであった.〔発明が解決しようとする問題点〕
しかし、従来のボールミルの制御方法にあっては、ボー
ルミルにおける滞留時間が長< (1〜2時間)、ス
ラリ濃度や粘度の測定時間を含めると、石炭の性状変化
による製品C W Mの性状変動を修正するためには少
なくとも2〜3時間を要し、品質管理が難しくなるとい
う問題がある.また、高濃度CWMの粒度或いは粒度分
布をオンラインで測定する技術が確定されておらず、湿
式ボールミルの自動制御は掻めて困難であった.
本発明の目的は、上記した従来技術の問題点を解消し、
ミル内のスラリホールドアップ量を連続的に監視し、常
に所望の濃度、粒度および粘度のCWMが得られるよう
にしたボールミルの制御装置を提供することにある,
〔問題点を解決するための手段〕
上記目的を達成するために、本発明は、湿式ボールミル
において、ミルに対する石炭、水および添加剤の総和を
ミルの出側に設けられたタンクのスラリ流量変化値と製
品スラリ量との和で割り算してスラリホールドアップ量
の変化率を算出する演算部および前記スラリホールドア
ップ量の変化率が一定値を維持するように前記ミルに対
する給水量または給炭量を制御する制御部を設けたもの
である.
〔作用〕
CWMの石炭濃度およびスラリ粒度に比例した変動する
ホールドアップ量を連続的に監視することによってミル
の運転状態を把握し、かつホールドアップ量を一定値に
維持することによってミルの閉塞、停止を招くことな<
CWMを連続製造することができる.
〔実施例〕
以下、図面に基づいて本考案の実施例を説明する.
第1図は本考案の一実施例を示す断面図である.第1図
においては、第6図と同一の構成部には同一引用数字を
用いたので重複する説明は省略する.本発明は、石炭流
量計3の出力Fc、水流量計6の出力Fw、添加剤流量
計9の出力Fa、比重計18の出力、粗粒スラリ流量計
20の出力、タンクレベル計15の出力および製品スラ
リit計21の出力Fsの各々に基づいてボールミル1
0内のスラリホールドアップ量の変化率Pを演算する演
算部23と、該演算部23の演算結果に基づいてポンプ
5の運転を制御するiilHil部25を設けて構成さ
れる.
CWMの製造工程は前述の通りであるので説明は省略す
るが、演算部23は各測定器の出力を用い、次式による
演算を連続的に実施し、ボールミル10内のスラリホー
ルドアップ量の変化率(偏差値)Pを算出する.
Fs + (A (In −In −+) ρm )
/(Tn 4n−+)・・・・・・・・・・・・(1
)
但し、FC:石炭量(t/h)
FW:水量(t/h)
Fa:添加剤量(t/h)
Fs:%品スラリ量(t/h)
A:タンク面積(m!)
Hn:時間Tnにおけるタンクレベル(m)}{n−1
:時間Tn−.におけるタンクレベル(m)
Tn:時間(h)
ρS:スラリ密度(t/m3)
演算部23は一定時間(7n ’rn−+)ごとにタ
ンクレベルの変化(H n − H n−+)を測定す
る.(1)式における分子はミル10に供給する石炭量
、水量、添加剤量であり、分母は時間(Tn −Tn−
+)におけるタンク14内のスラリmitの変化を示し
ている.タンク14内のスラリレベルは、スラリポンプ
16の変動(ライン圧力、閉塞等によりポンプ回転数が
一定でも供給するスラリ量が変化)および粗粒分離機1
9の能力変動が常に発生するため、連続的に検出する必
要がある.《1》式において、定常運転時はP=Oであ
り、ミルlO内でのホールドアップ量に変化がなく、P
>OはミルlO内のホールドアンプ量Usの減少状態を
示しPく0はミル10内のホールドアンプ量Usの増加
を示している.演算部23の演算結果に基づいてポンプ
5を制御部25によってボールミルlOに供給する給水
量をI?11することにより、第2図に示す如く時間経
過によらずホールドアンプ量Usを一定値(P−0、即
ちスラリ粘度が一定)にすることができる.因みに、本
発明による制御を実施しない場合が第3図のホールドア
ップ量変化率特性であり、時間の経過とともに変動する
ことがわかる.
尚、第1図においては、制御部25によって給水量Fw
を制御するものとしたが、給炭量を制御するようにして
もよい.
CWMは粉体理論から期待しうる極限まで石炭濃度が高
められるため、第4図に示すように、石炭濃度のごくわ
ずかの変化に対し、粘度すなわち流動性が大きく変化す
る.この粘度は、石炭の種類、特に給水率によって異な
り、石炭濃度かたかくなると急激にスラリ粘度が増加す
る.スラリ粘度が増加すると、ミル10内でスラリがチ
ツーキング現象を伴い、ミル10を停止せねばならない
状態となる.
第5図はスラリ粘度とミル10内のスラリホールドアッ
プ量Usの関係を示す特性図である.ホールドアップ量
USは、石炭の種類によらずスラリ粘度に影響し、スラ
リ粘度が高くなるとミルlO内のホールドアップ量Us
量も増加する.特に、スラリ粘度が約2000cP以上
になると、ミル10内で閉塞状態になるため、スラリの
ホールドアンプ量U3の測定が重要となる.このように
ボールミル10の運転においては、ミル10内のホール
ドアンプ量Usを測定することによって、CWMの石炭
濃度もしくはスラリ粘度を推定することができる.
ミル10は第7図に示すように、内部に仕切板27が設
けられている.このため、ミル10に供給された流動体
は、仕切仮27によって抵抗を受けると共に、ミル10
の入口部と出口部の各々に添加剤を供給しているため、
ミル出口部に比べてミル入口部の石炭濃度およびスラリ
粘度が高くなる.
さらに、ミル人口部には石炭が供給されているため、粗
粒の滞留が多く、第8図に示すようにスラリ粘度が高く
なる.以上のことから、ミル10内のホールドアンプ量
Usが増加すると、第9図のようにミルlOの第1室か
ら閉塞状態になる.しかし、ミル10内のホールドアッ
プ量を常時測定することにより、閉塞トラブルを迅速に
把握することができる.
ミル内のホールドアップ量Usは次式で表されミル内ボ
ール空間容積 0.4VJ・・・・・・・・・・・
・(2)
但し、0.4:ボールの空間率
p3:スラリ密度
V:ミル容積
J:ボール充填率
W:ミル内スラリ容積
尚、本発明において更に制度を向上させるためには、第
3図に示した時間とP値の関係図を積分し、ミルlO内
のホールドアップ量の積算値(S絶対値)を連続的に算
出する方法を採用することによって実現できる.
〔発明の効果〕
以上のように本発明によれば、ミル内のホールドアンプ
量の変化を連続的に監視できるようにしたため、高濃度
石炭一水スラリの濃度、粒度、粘度を一定に維持し、良
質なスラリを連続的に製造することができる.[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a control device for a wet ball mill, and in particular, a wet ball mill suitable for maintaining constant the concentration, particle size, viscosity, etc. of a highly concentrated coal-water slurry. Regarding the control device. [Conventional technology] Highly concentrated coal/water slurry [hereinafter referred to as CWM (CoalWate)]
Mixtutre) is a fuel made by mixing coal with a small amount of water and a small amount of added soybean, and pulverizing it to a particle size that can be directly combusted.The main characteristics of CWM for pulverized coal fuel are as follows. It becomes like this. (1) Can be transported, stored, and burned as a liquid fuel. 《
2》 Direct combustion possible without dehydration. 《3》 Easy fuel system operation (operation and control). The coal concentration in CWM is high, about 60% or more, and its particle size is 2.
The amount of passage through the 00 mesh is adjusted to approximately 70 to 90%. It also needs to be a stable, low-viscosity liquid that can be pumped. The conditions for producing stable CWM with high slurry concentration and low viscosity are as follows. (b) Increase the packing density of particles by adjusting the wide particle size distribution to achieve high concentration. (Note) By adding a dispersant, a water film is formed on the particle surface and charged, causing the particles to separate from each other and lowering the viscosity. When manufacturing such a CWM continuously, generally,
As shown in Figure 6, manufacturing equipment using a continuous wet ball mill is used. In FIG. 6, a coal feeder 2 is provided at the bottom of a bunker 1 to which coal A is supplied, and this coal feeder 2 has a coal flow meter 3.
is provided. A pump 5 for supplying the water in the tank to the ball mill 10 is connected to the water tank 4 to which water B is supplied, and a water flow meter 6 is provided downstream of the pump 5. Further, a pump 8 for supplying the additive liquid C to the ball mill 10 is connected to the additive tank 7 to which the additive liquid C is supplied.
An additive flow meter 9 is installed on the downstream side. A gear 1l is disposed on the outer periphery of a ball mill IO that receives coal A, water B, and additive liquid C, and mixes, pulverizes, and pulverizes the coal. A motor 13 is provided directly connected to the two-on shaft 12. At the outlet of the mill 10, a tank 14 equipped with a level gauge 15 is arranged to receive CWM. CWM in tank 14 is slurry pump 1
6 to the coarse particle separator 19, and a flow meter 17 and a hydrometer 18 are disposed in the middle of the supply path.
A coarse slurry line 22 for returning the coarse slurry to the mill 10 is provided between the coarse grain separator a19 and the ball mill 10. Further, the product slurry in the coarse particle separator 19 is taken out via a product slurry flow meter 21. Sho 2
0 is a coarse slurry flowmeter. In the above configuration, coal A is supplied from bunker 1 to coal 812
It is supplied to the ball mill 10 via. Similarly, water B and additive C are supplied to ball mill 10 by pumps 5 and 8 from water tank 4 and additive tank 7, respectively. The CWM produced in the ball mill 10 is discharged into a tank 14 and supplied to a coarse separator 19 by a slurry pump l6. A coarse grain separator 19 collects coarse grains unsuitable for use as a product, supplies them to a ball mill 10, and re-pulverizes them. Meanwhile, the product is taken out from the coarse separator 19 and stored in a product tank (not shown) or the like. In this way, CWM is produced continuously, but in order to produce stable CWM with a predetermined concentration and low viscosity, it is necessary to maintain an appropriate slurry concentration in the ball mill 10 and to
It is necessary to appropriately control the residence time of particles to crush them.
However, the properties of the coal A supplied to the ball mill IO, such as particle size, moisture content, and crushability, change from moment to moment. Accordingly, the concentration, particle size, and viscosity of the product CWM that has passed through the coarse particle separator 19 vary. This makes it difficult to stop the equipment or to continuously produce high-quality CWM. For example, if the moisture content of coal A suddenly decreases, the slurry concentration in the ball mill IO increases, which increases the slurry viscosity and increases the amount of slurry holdup in the ball mill.
The movement of the balls in the mill is suppressed, reducing the grinding capacity. In addition, the CWM concentration and viscosity at the outlet of the ball mill 10 become higher, and the particle size becomes coarser. Furthermore, if the viscosity within the ball mill 10 becomes too high, the movement of the slurry within the mill 10 will stop and the ball mill 10 will become clogged. In order to prevent such malfunctions and troubles, the conventionally proposed method is to reduce the concentration of CWM at the outlet of the ball mill 10,
The viscosity and particle size were sampled and measured, and the results were fed back to the mill operating inputs to control the mill operation. [Problems to be solved by the invention] However, in the conventional ball mill control method, the residence time in the ball mill is long (1 to 2 hours), and when the time for measuring slurry concentration and viscosity is included, the coal There is a problem in that it takes at least 2 to 3 hours to correct changes in the properties of the product CWM due to changes in properties, making quality control difficult. Furthermore, the technology for online measurement of particle size or particle size distribution of high-concentration CWM has not been established, and automatic control of wet ball mills has been extremely difficult. The purpose of the present invention is to solve the problems of the prior art described above,
The object of the present invention is to provide a control device for a ball mill that continuously monitors the amount of slurry hold-up in the mill so that CWM of desired concentration, particle size, and viscosity can be obtained at all times. ] In order to achieve the above object, the present invention, in a wet ball mill, calculates the total amount of coal, water, and additives for the mill by the sum of the change in slurry flow rate in a tank provided on the outlet side of the mill and the amount of product slurry. A calculation unit that calculates the rate of change in the amount of slurry hold-up by division, and a control unit that controls the amount of water or coal fed to the mill so that the rate of change in the amount of slurry hold-up maintains a constant value. It is. [Function] By continuously monitoring the varying hold-up amount proportional to the CWM coal concentration and slurry particle size, the operating status of the mill can be grasped, and by maintaining the hold-up amount at a constant value, mill blockage, Do not cause suspension.
CWM can be manufactured continuously. [Example] Hereinafter, an example of the present invention will be described based on the drawings. Figure 1 is a sectional view showing an embodiment of the present invention. In Figure 1, the same reference numerals are used for the same components as in Figure 6, so duplicate explanations will be omitted. The present invention includes the output Fc of the coal flowmeter 3, the output Fw of the water flowmeter 6, the output Fa of the additive flowmeter 9, the output of the hydrometer 18, the output of the coarse slurry flowmeter 20, and the output of the tank level meter 15. and the ball mill 1 based on each of the output Fs of the product slurry IT meter 21.
The system includes a calculation section 23 that calculates the change rate P of the slurry hold-up amount within 0, and an iilHil section 25 that controls the operation of the pump 5 based on the calculation result of the calculation section 23. Since the CWM manufacturing process is as described above, the explanation will be omitted, but the calculation unit 23 uses the output of each measuring device to continuously perform calculations according to the following formula, and calculates the change in the amount of slurry holdup in the ball mill 10. Calculate the ratio (deviation value) P. Fs + (A (In −In −+) ρm )
/(Tn 4n-+)・・・・・・・・・・・・(1
) However, FC: Coal amount (t/h) FW: Water amount (t/h) Fa: Additive amount (t/h) Fs: % product slurry amount (t/h) A: Tank area (m!) Hn : Tank level (m) at time Tn} {n-1
: Time Tn-. Tank level (m) Tn: Time (h) ρS: Slurry density (t/m3) The calculation unit 23 calculates the change in tank level (H n - H n-+) at every fixed time (7n'rn-+). Measure. The numerator in equation (1) is the amount of coal, water, and additive supplied to the mill 10, and the denominator is time (Tn −Tn−
+) shows the change in slurry mit in the tank 14. The slurry level in the tank 14 is determined by fluctuations in the slurry pump 16 (the amount of slurry supplied changes even if the pump rotation speed is constant due to line pressure, blockage, etc.) and the coarse particle separator 1.
9. Since fluctuations in performance always occur, it is necessary to detect them continuously. In formula <<1>>, during steady operation, P = O, there is no change in the amount of holdup in the mill IO, and P
>O indicates a decreasing state of the hold amplifier amount Us in the mill 10, and P0 indicates an increase in the hold amplifier amount Us in the mill 10. Based on the calculation results of the calculation unit 23, the control unit 25 controls the amount of water supplied to the ball mill lO by the pump 5, I? 11, the hold amplifier amount Us can be kept at a constant value (P-0, that is, the slurry viscosity is constant) regardless of the passage of time, as shown in FIG. Incidentally, when the control according to the present invention is not implemented, the hold-up amount change rate characteristic shown in FIG. 3 is the same, and it can be seen that it fluctuates with the passage of time. In addition, in FIG. 1, the water supply amount Fw is controlled by the control unit 25.
However, it is also possible to control the amount of coal fed. In CWM, the coal concentration is increased to the limit that can be expected from powder theory, so as shown in Figure 4, the viscosity, or fluidity, changes significantly with a very small change in coal concentration. This viscosity varies depending on the type of coal, especially the water supply rate, and as the coal concentration becomes thicker, the slurry viscosity increases rapidly. When the slurry viscosity increases, the slurry undergoes a ticking phenomenon in the mill 10, and the mill 10 must be stopped. FIG. 5 is a characteristic diagram showing the relationship between slurry viscosity and slurry hold-up amount Us in the mill 10. The hold-up amount US affects the slurry viscosity regardless of the type of coal, and as the slurry viscosity increases, the hold-up amount US in the mill IO increases.
The amount also increases. In particular, when the slurry viscosity exceeds about 2000 cP, the mill 10 becomes clogged, so it is important to measure the hold amplifier amount U3 of the slurry. In this manner, during operation of the ball mill 10, by measuring the hold amplifier amount Us within the mill 10, the coal concentration or slurry viscosity of the CWM can be estimated. As shown in FIG. 7, the mill 10 is provided with a partition plate 27 inside. Therefore, the fluid supplied to the mill 10 is resisted by the partition temporary 27, and the fluid supplied to the mill 10 is
Since additives are supplied to each of the inlet and outlet of the
The coal concentration and slurry viscosity at the mill inlet are higher than at the mill outlet. Furthermore, since coal is supplied to the mill population, there is a large accumulation of coarse particles, which increases the slurry viscosity as shown in Figure 8. From the above, when the hold amplifier amount Us in the mill 10 increases, the first chamber of the mill 1O becomes closed as shown in FIG. However, by constantly measuring the amount of holdup inside the mill 10, blockage problems can be quickly detected. The hold-up amount Us in the mill is expressed by the following formula, and the ball space volume in the mill is 0.4VJ・・・・・・・・・・・・
・(2) However, 0.4: Ball porosity p3: Slurry density V: Mill volume J: Ball filling rate W: Slurry volume in the mill In order to further improve the accuracy in the present invention, please refer to Fig. 3. This can be achieved by integrating the relationship diagram between time and P value shown in Figure 2, and continuously calculating the integrated value (absolute S value) of the hold-up amount in the mill IO. [Effects of the Invention] As described above, according to the present invention, changes in the amount of hold amplifier in the mill can be continuously monitored, so that the concentration, particle size, and viscosity of the highly concentrated coal-water slurry can be maintained constant. , it is possible to continuously produce high-quality slurry.
第1図は本発明の一次を示すシステム構成図、第2図は
本発明によるホールドアップ量変化率特性図、第3図は
従来のホールドアップ量変化率特性図、第4図は石炭濃
度に対するスラリ粘度特性図、第5図はスラリ粘度に対
するホールドアンプ量特性図、第6図は従来のCWM製
造システムを示す構成図、第7図はポールミル10内の
概略構成を示す断面図、第8図はミル内のスラリ粒度お
よびスラリ粘度分布特性図、第9図はミル閉塞の説明図
である.
1・・・・・・バンカ、 2・・・・・・給炭機、 3
・・・・・・石炭流量計、 4・・・・・・水タンク、
5、8・・・・・・ボンブ、6・・・・・・水流量計
、 7・・・・・・添加剤タンク、 9・・・・・・添
加剤流量計、 10・・・・・・ポールミル、 14・
・・・・・タンク、 15・・・・・・レベル計、
16・・・・・・スラリポンプ、 17・・・・・・
流量計、 18・・・・・・比重計、 l9・・・・・
・粗粒分離機、 20・・・・・・粗粒スラリ流量計、
21・・・・・・製品スラリ流量計、 23・・・・
・・演算部、 25・・・・・・制御部.代理人 弁
理士 西 元 勝 一
第1図
^
第2図 第3図
Ill (mint y,間(m
in)−a−第4図
第5図
スラリ米’li/l (cPl
第6図
C
lb
第7図
どt10Fig. 1 is a system configuration diagram showing the first stage of the present invention, Fig. 2 is a characteristic diagram of the change rate of holdup amount according to the present invention, Fig. 3 is a characteristic diagram of the change rate of holdup amount of the conventional method, and Fig. 4 is a graph showing the change rate of holdup amount according to the present invention. Slurry viscosity characteristic diagram, Figure 5 is a hold amplifier amount characteristic diagram with respect to slurry viscosity, Figure 6 is a configuration diagram showing a conventional CWM manufacturing system, Figure 7 is a sectional view showing a schematic configuration inside the pole mill 10, and Figure 8. Figure 9 is a characteristic diagram of slurry particle size and slurry viscosity distribution in the mill, and Figure 9 is an illustration of mill blockage. 1... Bunker, 2... Coal feeder, 3
...Coal flow meter, 4...Water tank,
5, 8... Bomb, 6... Water flow meter, 7... Additive tank, 9... Additive flow meter, 10... ...Paul Mill, 14.
... Tank, 15 ... Level meter,
16... Slurry pump, 17...
Flow meter, 18...Hydrometer, l9...
・Coarse particle separator, 20... Coarse particle slurry flowmeter,
21... Product slurry flow meter, 23...
...Arithmetic section, 25...Control section. Agent Patent Attorney Katsuichi Nishimoto Figure 1 ^ Figure 2 Figure 3 Ill (mint y, between (m
in) -a-Figure 4 Figure 5 Slurry rice 'li/l (cPl Figure 6 C lb Figure 7 Dot10
Claims (1)
炭−水スラリを生成する湿式ボールミルにおいて、該ミ
ルに対する石炭、水および添加剤の総和を、前記ミルの
出側に設けられたタンクのスラリ流量変化値と製品スラ
リ量との和で割り算してスラリホールドアップ量の変化
率を算出する演算部と、前記スラリホールドアップ量の
変化率が一定値を維持するように前記ミルに対する給水
量または給炭量を制御する制御部を設けられたことを特
徴とする湿式ボールミルの制御装置。(1) In a wet ball mill that generates a coal-water slurry in which coal is slurried with additives and water, the total amount of coal, water, and additives for the mill is stored in a tank provided on the outlet side of the mill. a calculation unit that calculates the rate of change in the amount of slurry holdup by dividing the change value of the slurry flow rate by the sum of the product slurry amount; and a water supply unit for the mill so that the rate of change in the amount of slurry holdup maintains a constant value. A control device for a wet ball mill, characterized in that it is provided with a control section that controls the amount or amount of coal fed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15211386A JPH0687988B2 (en) | 1986-06-28 | 1986-06-28 | Wet ball mill controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15211386A JPH0687988B2 (en) | 1986-06-28 | 1986-06-28 | Wet ball mill controller |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS637852A true JPS637852A (en) | 1988-01-13 |
JPH0687988B2 JPH0687988B2 (en) | 1994-11-09 |
Family
ID=15533340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15211386A Expired - Fee Related JPH0687988B2 (en) | 1986-06-28 | 1986-06-28 | Wet ball mill controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0687988B2 (en) |
-
1986
- 1986-06-28 JP JP15211386A patent/JPH0687988B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0687988B2 (en) | 1994-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4327759A (en) | Slurry producing apparatus | |
CN100430143C (en) | Semi-automill ball-milling type ore grinding system and its control system | |
RU2182045C2 (en) | METHOD OF DETERMINATION OF MASS DENSITY OF SUSPENSION VOLUME FLOW IN PLANT FOR CONCENTRATION OF ORES OR MINERALS (Versions) AND METHOD OF DETERMINATION OF MASS FLOWS FLOWING ON SIDE ON INLET AND FROM SIDE OF OVERFLOW OF HYDROCYCLONE IN PLANT FOR GRINDING AND CLASSIFYING WITH HELP OF HYDROCYCLONES | |
CA1217656A (en) | Teeter bed density control device and method | |
US4613084A (en) | Process for producing a coal-water slurry | |
JPS637852A (en) | Control unit of wet ball mill | |
US3783252A (en) | Control system and method for a reversed ball mill grinding circuit | |
US4900330A (en) | Process for producing a high concentration coal-water slurry | |
Bruff et al. | A silo for ground anthracite | |
JPS63141654A (en) | Operation-state diagnostic device for vertical type mill | |
JPH052389B2 (en) | ||
JPH0254397B2 (en) | ||
JP3616110B2 (en) | Pasty fuel manufacturing method and apparatus | |
CN103965982A (en) | System and method for preparing coal water slurries | |
JPS62247845A (en) | Method of operating mill for high-concentration coal-water slurry | |
JPS58500666A (en) | Method and device for fueling a gas generator | |
JPH036960B2 (en) | ||
JPS63126566A (en) | Automatic control method of crusher | |
JP2511129B2 (en) | Method for producing high concentration coal water slurry | |
JPH06277477A (en) | Device for producing high-concentration slurry and its production | |
JPS6075341A (en) | Slurry producing apparatus | |
JP3129347B2 (en) | Roller mill operation control method | |
JPS6234403B2 (en) | ||
AU700295B2 (en) | Attrition mill III | |
JPH0645792B2 (en) | Method for producing solid fuel-water slurry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |