JPS6378526A - Optical exposure device - Google Patents

Optical exposure device

Info

Publication number
JPS6378526A
JPS6378526A JP61222643A JP22264386A JPS6378526A JP S6378526 A JPS6378526 A JP S6378526A JP 61222643 A JP61222643 A JP 61222643A JP 22264386 A JP22264386 A JP 22264386A JP S6378526 A JPS6378526 A JP S6378526A
Authority
JP
Japan
Prior art keywords
lens system
temperature
atmospheric pressure
reducing
reducing lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61222643A
Other languages
Japanese (ja)
Inventor
Minoru Hirose
実 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61222643A priority Critical patent/JPS6378526A/en
Publication of JPS6378526A publication Critical patent/JPS6378526A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature

Abstract

PURPOSE:To keep the variation of a reduction ratio approximately constant by providing a reducing lens system reducing exposure beams passing through a reticle and projecting the original picture pattern of the reticle onto a wafer with a means for temperature control approximately proportional to the change of atmospheric pressure. CONSTITUTION:Exposure beams emitted from a light source 1 are transmitted through a reticle 3, and projected to a reducing lens system 4. The reducing lens system 4 consists of a plurality of reducing lenses, etc., and is housed in a box body 5, a gas (temperature control air) for temperature control such as He, N2, etc. is flowed in paths formed outside the box body 5, and the temper ature of the gas is changed in proportional to the value of a barometer fitted at an arbitrary position on the inside or outside of an optical exposure device. The temperature of temperature control air increases and the temperature of the reducing lens system 4 in the box body 5 is elevated when atmospheric pressure rises, and said temperature declines and the temperature of the reducing lens system 4 is lowered when atmospheric pressure drops. Accordingly, the refractive index of the reducing lens system in the box body 5 is kept approxi mately constant regardless of the change of atmospheric pressure.

Description

【発明の詳細な説明】 〔lI!を要〕 本発明は露光光線によりウェーハ上にパターンを投影転
写する光学露光装置において、縮小レンズ系の周囲温度
を調整することにより、気圧による屈折率の変化を防止
し、縮率の変化を防止するようにしたものである。
[Detailed Description of the Invention] [lI! The present invention is an optical exposure apparatus that projects and transfers a pattern onto a wafer using exposure light, and by adjusting the ambient temperature of the reduction lens system, changes in the refractive index due to atmospheric pressure are prevented, thereby preventing changes in the reduction ratio. It was designed to do so.

〔産業上の利用分野〕[Industrial application field]

本発明は光学露光装置に係り、特に紫外光によりウェー
ハ上へのパターン転写形成を行なう光学露光装置に関す
る。
The present invention relates to an optical exposure apparatus, and more particularly to an optical exposure apparatus that transfers a pattern onto a wafer using ultraviolet light.

ウェーハ上へのパータン転写形成工程は、製造する半導
体素子の性能に大きな影響を与える重要な工程である。
The step of forming a pattern transfer onto a wafer is an important step that greatly affects the performance of manufactured semiconductor devices.

このため、この工程に使用される光学露光装置は高信頼
性のものが要求される。
Therefore, the optical exposure apparatus used in this process is required to be highly reliable.

〔従来の技術〕[Conventional technology]

従来より紫外光を用いて、ウェーハ上に微細なパターン
を形成する光学露光装置が知られている。
Optical exposure apparatuses that form fine patterns on wafers using ultraviolet light are conventionally known.

この光学露光装置は所定の倍率で拡大製作されているレ
チクルの原画パターンを縮小レンズで縮小し、その光線
をウェーハ上に投影して原画パターンを転写する。
This optical exposure apparatus reduces the original pattern of a reticle, which has been enlarged at a predetermined magnification, using a reduction lens, and projects the resulting light beam onto a wafer to transfer the original pattern.

この光学露光装置によれば、フォトマスク上のパターン
配列位置誤差やウェーハの伸縮に影響されずに位置合わ
せを高粘度で行なえ、ウェーハ上に微細なパターンを高
精度に形成することができる。
According to this optical exposure apparatus, alignment can be performed with high viscosity without being affected by pattern arrangement position errors on the photomask or expansion and contraction of the wafer, and fine patterns can be formed on the wafer with high precision.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の光学露光装置はその光学系及び光路が大気中に存
在するため、気圧の影響を受は易い。この気圧変化は空
気密度の変化をもたらすため、光学系の屈折率の変化を
もたらす。これにより、従来の光学露光装置で(ユ特に
縮小レンズ系における屈折率の変化が縮率の変化をもた
らし、歩留りを値下させるという問題点があった。
Conventional optical exposure apparatuses are susceptible to atmospheric pressure because their optical systems and optical paths are located in the atmosphere. This change in atmospheric pressure causes a change in air density, and therefore a change in the refractive index of the optical system. As a result, in conventional optical exposure apparatuses, a change in the refractive index, especially in the reduction lens system, causes a change in the reduction ratio, resulting in a problem in that the yield is reduced.

本発明は上記の点に鑑みて創作されたもので、高信頼性
を得ることが可能な光学露光装置を提供することを目的
とする。
The present invention was created in view of the above points, and an object of the present invention is to provide an optical exposure apparatus that can achieve high reliability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光学露光装置は、レチクルを通過した露光光線
を縮小してウェーハ上にレチクルの原画パターンを投影
する縮小レンズ系に対し、気圧の変化に略比例した温度
調整を行なう手段を設けたものである。
The optical exposure apparatus of the present invention is provided with means for adjusting the temperature approximately proportional to changes in air pressure for a reduction lens system that reduces the exposure light beam that has passed through the reticle and projects the original pattern of the reticle onto the wafer. It is.

〔作用〕[Effect]

縮小レンズ系は気圧の変化に略比例した温度調整を施さ
れる。ここで、気圧の変化は空気の密度の変化をもたら
りため、大気中にある縮小レンズ系のレンズ間の媒質の
屈折率(以下、単に屈折率という)が変化する。すなわ
ち、温度が一定の場合、気圧の変化に比例して屈折率が
変化する。これに対し、上記屈折率は気圧が一定の場合
、温度に反比例して変化する。
The reduction lens system is subjected to temperature adjustment approximately proportional to changes in atmospheric pressure. Here, since a change in atmospheric pressure causes a change in air density, the refractive index (hereinafter simply referred to as refractive index) of the medium between the lenses of the reduction lens system in the atmosphere changes. That is, when the temperature is constant, the refractive index changes in proportion to the change in atmospheric pressure. On the other hand, when the atmospheric pressure is constant, the refractive index changes in inverse proportion to the temperature.

そこで、気圧と周囲温度との比が常に略一定となるよう
に縮小レンズ系に対して気圧の変化に略比例して温度調
整を行なうことにより、縮小レンズ系での屈折率は気圧
の変化に拘らず略一定となる。
Therefore, by adjusting the temperature of the reduction lens system in approximately proportion to the change in air pressure so that the ratio between the air pressure and the ambient temperature is always approximately constant, the refractive index of the reduction lens system changes according to the change in air pressure. It remains almost constant regardless.

〔実施例〕〔Example〕

第1図は本発明の一実1AfIAの構成図を示す。同図
中、光源1より放射された露光光線(例えばq線)はコ
ンデンサレンズ2を通してレチクル3に照射される。
FIG. 1 shows a configuration diagram of AfIA, which is one embodiment of the present invention. In the figure, exposure light (for example, q-ray) emitted from a light source 1 is irradiated onto a reticle 3 through a condenser lens 2 .

レチクル3は例えば10倍の大きさで製作された原画パ
ターンで、レチクル3を透過した露光光線は縮小レンズ
系4に入射される。縮小レンズ系4は複数の縮小レンズ
等からなり、筺体5内に収納されである。筐体5の外側
には第2図に示す如く通路10及び11が夫々設けられ
ており、この通路10及び11内をH’e、Nzなどの
温度調整用気体(温調エアー)が流されている。
The reticle 3 is an original image pattern manufactured, for example, 10 times the size, and the exposure light beam transmitted through the reticle 3 is incident on the reduction lens system 4. The reduction lens system 4 consists of a plurality of reduction lenses, etc., and is housed in a housing 5. As shown in FIG. 2, passages 10 and 11 are provided on the outside of the housing 5, respectively, and temperature adjustment gas (temperature adjustment air) such as H'e and Nz is flowed through the passages 10 and 11. ing.

この温調エアーの温度は光学露光装置内部又は外部の任
意の位置に設けられた気圧計(図示せず)の値に比例し
て変化するようになされており、気圧が上昇した場合は
温調エアーの温度が大となり筐体5内の縮小レンズ系4
の温度を1貸させ、気圧が低下したときは上記温度が小
となり縮小レンズ系4の温度を下降させる。
The temperature of this temperature-controlled air is designed to change in proportion to the value of a barometer (not shown) installed at any position inside or outside the optical exposure apparatus. As the temperature of the air increases, the reduction lens system 4 inside the housing 5
When the atmospheric pressure decreases, the temperature decreases and the temperature of the reduction lens system 4 decreases.

これにより、筐体5内の縮小レンズ系の屈折率は気圧の
変化に拘らず略一定となる。なお、温調エアーの温度の
調整は気圧計に連動させて自動的に行なってもよく、使
用時に人間が手動で行なってもよい。
As a result, the refractive index of the reduction lens system within the housing 5 remains approximately constant regardless of changes in atmospheric pressure. Note that the temperature of the temperature-controlled air may be adjusted automatically in conjunction with a barometer, or may be manually adjusted by a person during use.

再び第1図に戻って説明するに、この縮小レンズ系4に
より原画パターンを1/10に縮小された露光光は、筐
体5の外部へ取り出されて窓〈図示せず)を通してウェ
ーハステージ上のつI−八6に照射される。ウェーハ6
は、XYステージ(図示せず)により定寸送りされる毎
に上記の縮小された原画パターンが転写される。
Returning to FIG. 1 again, the exposure light whose original image pattern has been reduced to 1/10 by the reduction lens system 4 is taken out of the housing 5 and transmitted onto the wafer stage through a window (not shown). Notsu I-86 was irradiated. wafer 6
The reduced original image pattern is transferred every time it is fed by a fixed distance by an XY stage (not shown).

なお、本発明は上記の実施例に限定されるしのではなく
、ヒータや電子冷却器を用いてその動作を気圧の変化に
応じて制御することにより、前記した縮小レンズ系の温
度調整を行なうようにしてもよい。
Note that the present invention is not limited to the above-described embodiments, but the temperature of the reduction lens system described above is adjusted by controlling its operation according to changes in atmospheric pressure using a heater or an electronic cooler. You can do it like this.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によれば、縮小レンズ系での気圧の
変化による屈折率の変化が少なく、イれに伴う縮率の変
化も略一定とすることがでさるため、歩留りを向上でき
ると共−に高信頼性が1!7られ、今後のレーザー露光
装置にも適用でさ、VLSI。
As described above, according to the present invention, there is little change in the refractive index due to changes in atmospheric pressure in the reduction lens system, and changes in the reduction ratio due to erosion can be kept approximately constant, so that the yield can be improved. Both VLSIs have high reliability and can be applied to future laser exposure equipment.

ULS t、Vl−ILs lの装造に好適である等の
特長を有するものである。
It has features such as being suitable for mounting ULS t and Vl-ILs 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す図、第2図は本
発明の要部の概略構成を示す図である。 図において、 1は光源、 3はレチクル、 4は縮小レンズ系、 6はウェーハ、 10.11は通路である。
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is a diagram showing a schematic configuration of the main part of the present invention. In the figure, 1 is a light source, 3 is a reticle, 4 is a reduction lens system, 6 is a wafer, and 10.11 is a passage.

Claims (1)

【特許請求の範囲】 露光光線によりウェーハ上にパターンを投影転写する光
学露光装置において、 レチクルを通過した露光光線を縮小してウェーハ上に該
レチクルの原画パターンを投影する縮小レンズ系(4)
に対し、気圧の変化に略比例した温度調整を行なう手段
(10、11)を設けたことを特徴とする光学露光装置
[Scope of Claims] In an optical exposure apparatus that projects and transfers a pattern onto a wafer using exposure light, a reduction lens system (4) that reduces the exposure light that has passed through a reticle and projects the original pattern of the reticle onto the wafer.
An optical exposure apparatus characterized in that it is provided with means (10, 11) for adjusting temperature substantially in proportion to changes in atmospheric pressure.
JP61222643A 1986-09-20 1986-09-20 Optical exposure device Pending JPS6378526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61222643A JPS6378526A (en) 1986-09-20 1986-09-20 Optical exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61222643A JPS6378526A (en) 1986-09-20 1986-09-20 Optical exposure device

Publications (1)

Publication Number Publication Date
JPS6378526A true JPS6378526A (en) 1988-04-08

Family

ID=16785666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61222643A Pending JPS6378526A (en) 1986-09-20 1986-09-20 Optical exposure device

Country Status (1)

Country Link
JP (1) JPS6378526A (en)

Similar Documents

Publication Publication Date Title
US4811055A (en) Projection exposure apparatus
US6348357B2 (en) Exposure apparatus with a pulsed laser
US20070115444A1 (en) Exposure apparatus and device manufacturing method
JP2000036449A (en) Aligner
CA2081642C (en) X-ray exposure apparatus and semiconductor-device manufacturing method
JP3473649B2 (en) Projection exposure equipment
JPH10284390A (en) Form control equipment of reflecting mirror, form control method and aligner
JPH11121328A (en) Scanning reduction projection exposure system
JP2000277415A (en) Aligner
JP3632264B2 (en) X-ray projection exposure apparatus
JPS6378526A (en) Optical exposure device
JPH0963923A (en) X-ray projection aligner
JP2973737B2 (en) Exposure method and exposure apparatus used for carrying out the method
JPH0550849B2 (en)
EP0341983B1 (en) Exposure system
JPS6378525A (en) Optical exposure device
JP2972521B2 (en) Projection exposure method and apparatus
JPS61144020A (en) Exposure equipment
US5973767A (en) Off-axis illuminator lens mask for photolithographic projection system
JPS6370522A (en) Ultraviolet ray exposure method
JPH0510813B2 (en)
JP2005183747A (en) Exposure method
JP2590755B2 (en) Projection exposure equipment
JPH04314321A (en) Aligner
JP2844600B2 (en) Exposure method and exposure apparatus