JPS637832A - Formation of diamond - Google Patents

Formation of diamond

Info

Publication number
JPS637832A
JPS637832A JP61152307A JP15230786A JPS637832A JP S637832 A JPS637832 A JP S637832A JP 61152307 A JP61152307 A JP 61152307A JP 15230786 A JP15230786 A JP 15230786A JP S637832 A JPS637832 A JP S637832A
Authority
JP
Japan
Prior art keywords
diamond
reaction chamber
reaction
catalyst
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61152307A
Other languages
Japanese (ja)
Inventor
Ichiro Yomo
四方 一郎
Mitsue Koizumi
小泉 光恵
Keizo Sakaguchi
坂口 景三
Hiroshi Nishida
弘 西田
Kunihiko Matsuo
松尾 国彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Kurimoto Iron Works Ltd
Original Assignee
Kurimoto Ltd
Kurimoto Iron Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd, Kurimoto Iron Works Ltd filed Critical Kurimoto Ltd
Priority to JP61152307A priority Critical patent/JPS637832A/en
Publication of JPS637832A publication Critical patent/JPS637832A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/062Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To carry out formation of diamond and an integrated molding thereof simultaneously by generating a special behavior of a liberated spherical graphite, a preferable pressure and temperature gradient in a reaction progress by means of a special metallic catalyst and a vessel. CONSTITUTION:A pressure medium 1 on the extreme outer periphery is a vessel made of pyrophyllite, the inside of which is constituted with, from outside inwardly, molybdenum electrode 2, a carbon heating element 3, an insulating sleeve 4 made of hexagonal boron nitrate and an insulating disc 5, and in a reaction chamber constituted in its inside, a multi-layer is formed by piling up alternately metallic catalysts 6A, 6B, 6C,... and a carbon substance as a starting material. The hexagonal boron nitrate molded material constituting directly the reaction chamber is not mixed with the combination of carbon substance and catalyst even at a high temperature and under a high pressure for the diamond formation reaction. Also, the volume of the same has a flexibility to be reduced in compliance with the reduction of the raw material volume in the reaction chamber, and an adequate pressure gradient and a temperature gradient are maintained in the reaction chamber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本願発明は人工的に炭素質物質をダイヤモンドに変換す
る方法、とくに出発原料から直接強固緻密なダイヤモン
ド密集結体を(qる方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for artificially converting carbonaceous substances into diamond, and in particular, a method for producing strong and dense diamond dense aggregates directly from starting materials. be.

[従来の技術] 天然のダイヤモンドの代りに安価な粉末を出発原料とし
て強固緻密なダイヤモンド密集結体を作ることができれ
ば、男開を生じやすい天然ダイヤモンドの欠点が是正さ
れ、切削バイト、線引ダイス、ドレッサーなどの工具の
伯、多くの新しい用途に適用しても十分経済性のなりた
つ可能性が見出される期待が強い。
[Conventional technology] If it were possible to make a strong and dense diamond compact using cheap powder as a starting material instead of natural diamond, the disadvantage of natural diamonds that tend to cause phallus deformation would be corrected, and it would be possible to make cutting tools, wire drawing dies, etc. There are strong expectations that it will be found to be economically viable even when applied to many new applications, such as for tools such as dressers.

現在広〈実施されている人工ダイヤモンド密集粘体の製
造方法は、例えばグラファイト、石炭。
The methods of producing artificial diamond dense viscosity that are currently widely used include, for example, graphite and coal.

コークス、砂糖、木炭など適当な炭素質物質と触媒金属
(主として元素周期律表■属の金属、たとえばクロム、
マンガンおよびタンタルの少なくとも1つ、またはこれ
らおよび他の金属の合金)とを組み合わせ、ダイヤモン
ドへの変換が生じる圧力(最低50,000気圧)と温
度(最低的1,200℃)下で処理し、通常マトリック
ス中に含有された形として合成されたダイヤモンドの結
晶粒を取り出す。
Suitable carbonaceous substances such as coke, sugar, charcoal, etc. and catalytic metals (mainly metals from Group II of the Periodic Table of Elements, such as chromium,
at least one of manganese and tantalum, or alloys of these and other metals) and treated under pressure (minimum 50,000 atmospheres) and temperature (minimum 1,200° C.) resulting in conversion to diamond; The diamond grains, which are usually synthesized as contained in a matrix, are extracted.

この反応は金属の膜が炭素質物質の層を通過しながら背
後にどんどんダイヤモンドを作っていくので膜成長法と
呼ばれているが、金属膜が炭素の通路となっているので
限られた量しか金属が浸透しない。
This reaction is called a film growth method because a metal film passes through a layer of carbonaceous material and creates more and more diamonds behind it, but since the metal film acts as a channel for carbon, the amount of diamond is limited. Only metal can penetrate.

つぎにこのダイヤモンド結晶粒を強固緻密な密集粘体と
するためと、工具として所望の形状に成形するために焼
結を施す。
Next, the diamond crystal grains are sintered to make them into a strong, dense, and dense viscous material, and to form them into a desired shape as a tool.

通常はCoやCuなどをバインダーとして高温高圧下で
いわゆる液相焼結を行なうが、その他、研究発表ではW
C−Co系合金、炭化物、r!i化物をバインダーとし
て用いる例も必り、焼結体にはダイヤモンド以外の介在
物が残っている。
Usually, so-called liquid phase sintering is carried out under high temperature and pressure using Co, Cu, etc. as a binder.
C-Co alloy, carbide, r! In some cases where an i-ide is used as a binder, inclusions other than diamond remain in the sintered body.

以上述べた現在の主流をなす技術に対し、もし炭素質物
質を出発原料としてダイヤモンドへの合成(変換)と密
集枯化とが、1工程によって1qられれば、工程の簡略
化はもとより、所望の複雑な形状も得られて一石二鳥と
なる。
In contrast to the current mainstream technology described above, if the synthesis (conversion) and dense atrophy of carbonaceous materials into diamonds can be performed in one step by 1q, it will not only be possible to simplify the process, but also to achieve the desired results. Complex shapes can also be obtained, killing two birds with one stone.

この研究については相当古くから行われているようでた
とえば、[ダイヤモンド密集結体の製造法(特公昭38
−17807号公報 第8図〜第10図)がある。
This research seems to have been carried out for a long time, and for example, there is a method for producing dense diamond aggregates
-17807 (Figures 8 to 10).

この技術のベースとなっているのは米国特許第2941
248号明細書に示した第8図の高温高圧装置であり、
たとえばタンゲスランカーバイドのような硬質材料でで
きた一対の押圧部材8,8および同じ材料でできた中間
のベル1〜またはダイス9゜9を含む。
This technology is based on U.S. Patent No. 2941.
The high temperature and high pressure device shown in FIG. 8 shown in the specification of No. 248,
It includes a pair of pressing members 8, 8 made of a hard material, such as tangelyl carbide, and an intermediate bell 1 or die 9.9 made of the same material.

被圧縮体はこの4点の部材に囲繞される何重かの部材の
組合せで構成され、外部から順にガスケット構造体10
,11,12.グラファイト管13.アルミナ筒体14
を経て反応試料7aの充填される空間に到達する。
The compressed body is composed of a combination of several members surrounded by these four members, and the gasket structure 10 is arranged in order from the outside.
, 11, 12. Graphite tube 13. Alumina cylinder 14
The reaction sample 7a reaches the space filled with the reaction sample 7a.

その他栓15.キャップ16で密封する。Other plugs 15. Seal with cap 16.

このような装置にグラファイト、石炭など炭素質物質と
触媒金属の組合せ祠を充填して押圧部材を相互に近接す
る方向に移動して加圧しつつグラフアイ1〜管13を通
じて電流を流し間接加熱して高温高圧状態を起す。
Such an apparatus is filled with a combination of a carbonaceous material such as graphite or coal and a catalytic metal, and the pressing members are moved in a direction close to each other to apply pressure while passing an electric current through the graphite 1 to tube 13 to indirectly heat the mixture. This causes high temperature and high pressure conditions.

この好適な条件については米国特許第2947610号
明細書に詳述しているが、この段階(すなわち従来技術
で引用するざらに従来の技術)で得られるのは、71〜
リツクス中に含有される形として反応容器内からとり出
される単一結晶であり、マトリックスよりなる塊体は脆
弱であって、ダイヤモンドがルーズにしかマトリックス
中に結合されておらず、そのままでは使用に耐えないも
のであった。
This favorable condition is detailed in U.S. Pat.
It is a single crystal taken out from the reaction vessel as a form contained in diamonds, and the lump made of the matrix is fragile and the diamond is only loosely bonded to the matrix, making it unusable as it is. It was unbearable.

この従来技術は特定の成長法と特定の防殻手段とを組合
せて所望の形状の十分高強度のダイヤモンド密集結体を
1qられたことを報告するものである。
This prior art reports that 1q of sufficiently high-strength diamond dense aggregates of a desired shape can be obtained by combining a specific growth method and a specific shell protection means.

すなわち第8図において反応容器形成物質をふくむ外部
の材料が高温高圧の反応条件下で分解したり溶融したり
して炭素質物質と触媒組合せに紛れこみ、ダイヤモンド
の変換と成長を著しく阻害するのである。
In other words, as shown in Fig. 8, the external materials including the reactor forming materials decompose or melt under the high temperature and high pressure reaction conditions and get mixed into the carbonaceous material and catalyst combination, significantly inhibiting the conversion and growth of diamond. be.

したがって第9図に示すような防殻体(カプセル)の中
に原料と触媒とを充填し、この防殻体は反応中の著しい
圧縮、変形力をうけても本来の形態を失わない金属、た
とえばタンタル、ニッケル。
Therefore, raw materials and catalyst are filled in a shell (capsule) as shown in Figure 9, and this shell is made of a metal that does not lose its original form even when subjected to significant compression and deformation during the reaction. For example, tantalum and nickel.

ニッケル鉄合金などで作っておけば、該防殻体は非常に
強靭で耐性が高く相互接名した多結晶ダイヤモンド密集
結体D−D (第10図)で完全に充満するものである
と述べている。
If made of a nickel-iron alloy, etc., the shell will be completely filled with dense polycrystalline diamond aggregates D-D (Fig. 10), which are extremely strong and resistant. ing.

[発明が解決しようとする問題点] ここに掲げた従来技術は、出発原料からダイヤモンドを
合成する公知手段の方法を踏襲しつつ堅牢な防殻体内に
反応を封じこめて直接ダイヤモンド密集結体を得たとす
る。
[Problems to be Solved by the Invention] The prior art described here follows the known method of synthesizing diamond from starting materials, but confines the reaction within a strong shell to directly form dense diamond aggregates. Suppose you get it.

しかしこの発明が開示されてから後も現在に至るまで、
人工ダイヤモンドの製造方法の主流は、従来と変らず合
成と焼結の2段階工程であり、それぞれの細かい改善に
ついて多数の技術開発はめるが、この基本に変るところ
がない。
However, even after this invention was disclosed, up to the present day,
The mainstream manufacturing method for artificial diamonds remains the same as before, using a two-step process of synthesis and sintering, and although a number of technological developments have been made to improve the details of each step, the basics remain the same.

なぜこのようなメリットの大きい製造方法がダイヤモン
ド密集結体の主流にならないのか詳細は不明であるが、
実用化されたと言う情報には接していない。
The details of why this highly advantageous manufacturing method has not become mainstream for diamond dense aggregates are unknown, but
I have not come across any information that it has been put into practical use.

問題点を推定するならば、このような堅牢な防殻体内へ
出発原料を閉じこめて反応をすすめると、炭素質物質が
ダイヤモンドへ変換するにつれて発生する容積変化(約
35%の減縮)に圧力が追随できず、したがって合成さ
れたダイヤモンド結晶群は多孔的な低密度のものしか得
られないのではないかと思われる。
To estimate the problem, if we confine the starting materials inside such a strong shell and proceed with the reaction, the pressure will be applied to the volume change (approximately 35% reduction) that occurs as the carbonaceous material is converted to diamond. Therefore, the synthesized diamond crystal group is thought to be porous and of low density.

場合によっては鋳造品の内部欠陥(いわゆる引は巣)に
類似した欠陥が生じるのではないかと思われる。
In some cases, defects similar to internal defects (so-called crack holes) in cast products may occur.

これはダイヤモンドの合成と焼結とを同時進行させるた
めの「封じ込め] (防殻)が、逆にデメリットとして
結果に現われるのではないかと懸念される。
This raises concerns that the ``containment'' (shell) that allows diamond synthesis and sintering to proceed at the same time may actually be a disadvantage.

またこの分野の研究でもつとも進んでいると思われるソ
連に関しては、その製造方法に関する報告がないので明
らかではないが、多分ダイヤモンドを合成すると同時に
焼結させる方法をとっているのではないかと思われる情
報が散発的に1qられるに過ぎない。(L、F、 Ve
reschagain et al 5ovPhy D
ok15,1065(’71)など)本願発明は、従来
の技術を踏まえた上で、炭素質物質からダイヤモンドへ
の変換と密集粘化とを同時進行して1工程で出発原料か
ら目的製品を得る方法を提供し産業界の強い希求に応え
ることを目的とする。
Furthermore, regarding the Soviet Union, which is thought to be one of the most advanced countries in research in this field, there are no reports on its manufacturing method, so it is not clear, but it is thought that they probably use a method in which diamond is synthesized and sintered at the same time. Information is only sporadically added to 1q. (L, F, Ve
reschagain et al 5ovPhy D
OK15, 1065 ('71), etc.) Based on the conventional technology, the present invention obtains the target product from the starting material in one step by simultaneously proceeding with the conversion of carbonaceous material to diamond and dense viscosity. The purpose is to provide a method to meet the strong needs of industry.

E問題点を解決するための手段] 本願発明に係るダイヤモンドの変換方法は、金属触媒は
鉄系基地内に遊離黒鉛が球状に析出するダクタイル鋳鉄
又はニレジストダクタイル鋳鉄で形成し、反応室の容量
は、該炭素物質のダイヤモンドへの変換が進行するにつ
れて生じる容積変化に追随して変動できる可撓性を具え
ることにより、上記問題点を解決した。
Means for Solving Problem E] In the method for converting diamond according to the present invention, the metal catalyst is formed of ductile cast iron or niresist ductile cast iron in which free graphite is precipitated in a spherical shape in an iron base, and the capacity of the reaction chamber is solved the above problem by providing flexibility to follow the volume changes that occur as the conversion of the carbon material to diamond progresses.

[作用] 周知のとおり、鉄ベースの金属に炭素を含有するときは
炭素量によってその形態を異とするのは鉄−炭素二元状
態図の教えるところである。
[Operation] As is well known, the iron-carbon binary phase diagram teaches that when carbon is contained in an iron-based metal, its form changes depending on the amount of carbon.

炭素分は含有量により、また温度により、フェライトや
オーステナイト相に固溶し、又は炭化物として単独で析
出するか、パーライト組織を構成したりする。
Depending on the content and temperature, the carbon content may form a solid solution in the ferrite or austenite phase, may precipitate alone as a carbide, or form a pearlite structure.

炭素含有量が1.7%をこえると鋳鉄と呼ばれる領域に
入り、溶解した材料は急冷しない限り凝固に際して黒鉛
核を析出し、この溶湯をマグネシューム処理(爆発的添
加)によって、該黒鉛核を中心に溶湯中にふくまれてい
たr:A部分は球状に成長し球状黒鉛として析出した組
織になる。
When the carbon content exceeds 1.7%, it falls into a region called cast iron, and unless rapidly cooled, the molten material will precipitate graphite cores during solidification, and this molten metal will be treated with magnesium (explosive addition) to form the graphite cores. The r:A portion contained in the molten metal grows into a spherical shape and becomes a structure precipitated as spherical graphite.

常温まで冷却した組織の基地はパーライトおよび/又は
フェライトとなるダクタイル鋳鉄の他、炭素成分はほぼ
等しいが、クロームとニッケルを大量に添加して変態を
阻止してオーステナイト相を常温にもち越したニレジス
トダクタイル鋳鉄もある。
The base of the structure after cooling to room temperature is ductile cast iron, which becomes pearlite and/or ferrite, as well as aluminum alloy, which has almost the same carbon content but has a large amount of chromium and nickel added to prevent transformation and carry the austenite phase to room temperature. Resist ductile cast iron is also available.

このように球状に遊離黒鉛を析出した鉄系触媒がダイヤ
モンド変換にいかに挙動するかについて正確に説明する
には、なおこれらの追試が必要でおるが、発明者が当初
実験をはじめるに際して着目したのは、触媒の表面に析
出している球状化黒鉛がダイヤモンドの核発生点になり
うるのではないかと言う点である。
In order to accurately explain how an iron-based catalyst in which spherical free graphite is precipitated behaves in diamond conversion, additional experiments are still required, but the inventors focused their attention on this when starting the experiment. The reason is that the spheroidized graphite precipitated on the surface of the catalyst may become a nucleation point for diamonds.

即ち通常の金属触媒については先に述べた膜成長法の理
論がほぼ定説と考えられるが、触媒表面に黒鉛が析出し
ている場合の特有の作用は別の説明が必要であろう。
That is, for ordinary metal catalysts, the theory of the film growth method described above is considered to be almost an established theory, but the unique effects when graphite is deposited on the catalyst surface require a different explanation.

高温高圧のダイヤモンド合成条件に達したとき触媒表面
の遊離黒鉛周辺の鉄が優先的に反応して黒鉛周辺に低融
点の液相を生じ、この液相に原料の黒鉛が入り、融点は
高温化しつつ炭素分が過飽和状態に達するとまずこの部
分がダイヤモンドに変換する。
When the diamond synthesis conditions of high temperature and high pressure are reached, the iron around the free graphite on the catalyst surface reacts preferentially, creating a low melting point liquid phase around the graphite, and the raw material graphite enters this liquid phase, raising the melting point. However, when the carbon content reaches a supersaturated state, this part first converts into diamond.

即ち遊離した球状黒鉛がダイヤモンド核として優先的に
変換し、球状黒鉛周辺の鉄は原料黒鉛の方へ溶出する。
That is, free spheroidal graphite is preferentially converted into diamond nuclei, and iron around the spheroidal graphite is eluted toward the raw material graphite.

この溶出した鉄に包まれた原料黒鉛が先に生じたダイヤ
モンド核の延長上に成長し膜状の鉄は、次々と原料黒鉛
の内部へすすんでいつてダイヤモンド結晶を一方向[1
00]に成長させる。
The raw material graphite wrapped in this eluted iron grows on the extension of the diamond nucleus that was formed first, and the film-like iron advances into the raw material graphite one after another and spreads the diamond crystal in one direction [1
00].

−方本願発明のもう一つの特徴は、反応容器がダイヤモ
ンド変換に伴う原料の容積減少に追随して可変的であり
、そのためダイヤモンドが合成され、−方向に成長しつ
つも圧密され続けるから、触媒の鉄分はダイヤモンド化
進行の先端を膜状に包みつつ、反応の進行と共に先方へ
移動し、合成されたダイヤモンドとダイヤモンドとの間
からしぼり出されて緻密なり−D結合(ダイヤモンド密
集結体)を形成する。
- direction Another feature of the present invention is that the reaction vessel is variable in accordance with the volume reduction of the raw material accompanying the diamond conversion, and therefore diamond is synthesized and continues to be consolidated even as it grows in the - direction. As the reaction progresses, the iron wraps the tip of the diamond-forming process in a film and moves forward as the reaction progresses, and is squeezed out from between the synthesized diamonds, becoming dense and forming -D bonds (diamond dense aggregates). Form.

従って結果的にダイヤモンドの合成変換については溶融
金属と炭素質物質の接触面で、溶融鋳鉄中の黒鉛がまず
核となってダイヤモンドの変換反応がはじまり、原料黒
鉛は核発生を抑制されて専らダイヤモンドの生長にのみ
消費されるのではないか、と考えられる。
Therefore, as a result, regarding the synthetic conversion of diamond, at the interface between the molten metal and carbonaceous material, the graphite in the molten cast iron becomes a nucleus and the diamond conversion reaction begins, and the raw material graphite is suppressed from nucleation and becomes exclusively diamond. It is thought that it is consumed only for the growth of .

また密集粘化については、バインダーを介在させた液相
焼結をとるのではなく、ダイヤモンドの結晶粒群をしめ
つけて不純物をしぼり出し純粋なダイヤモンド結合をN
00]方向に圧密成形する作用によるものと解釈される
In addition, regarding dense viscosity, rather than using liquid phase sintering with a binder, the diamond crystal grains are tightened to squeeze out impurities and form pure diamond bonds with N.
It is interpreted that this is due to the effect of compression molding in the [00] direction.

すなわち焼結ではなく集結(アグロメレート)と呼ぶの
が正確であろう。
In other words, it would be more accurate to call it agglomeration rather than sintering.

なお前記触媒表面の遊離黒鉛が球状であることは、ダイ
ヤモンド核となり優先的にダイヤモンド結晶粒の発現点
としてみるときは、片状(フレーキ状)の遊離黒鉛より
ははるかに有利であると考えられる。
The spherical shape of the free graphite on the surface of the catalyst is considered to be far more advantageous than flake-like free graphite when it becomes a diamond nucleus and is preferentially the point of development of diamond crystal grains. .

[実施例] 本願発明の実験に供したダイヤモンド変換装置の略図を
第1図に示す。
[Example] FIG. 1 shows a schematic diagram of a diamond conversion apparatus used in experiments of the present invention.

図において最外周の圧力媒体1は葉蝋石(パイロヒライ
ト)製の容器であり、この内部に外側から順にモリブデ
ン製の電極2.炭素製の発熱体3゜六方晶窒化硼素(h
BN)製の絶縁スリーブ4および絶縁ディスク5とより
なり、この内部に構成される反応室内に、金属触媒板6
A、68.6C・・・と出発原料である炭素質物質7と
を交互に積み重ねて多層体を形成している。
In the figure, the pressure medium 1 at the outermost periphery is a container made of pyrophyllite, and inside this container, from the outside, electrodes 2 and 3 made of molybdenum are placed. Carbon heating element 3° hexagonal boron nitride (h
BN), and a metal catalyst plate 6 is placed inside the reaction chamber.
A, 68.6C... and the carbonaceous material 7 as a starting material are alternately stacked to form a multilayer body.

問題の反応室を直接構成する六方晶窒化硼素成形体は、
ダイヤモンド変換反応の高温高圧下においても分解した
り、溶解したり、破損したりして炭素質物質と触媒組合
せに紛れこむ虞れは全くない上、反応室内の原料容積の
縮減に対応して容積を追随できる可撓性を具えているの
で、反応室内で常に好ましい圧力勾配と温度勾配とを持
続することができる。
The hexagonal boron nitride molded body that directly constitutes the reaction chamber in question is
Even under the high temperature and high pressure conditions of the diamond conversion reaction, there is no risk of decomposition, melting, or damage and getting mixed up with the carbonaceous material and catalyst combination. Since it has the flexibility to follow the temperature gradient, it is possible to maintain a favorable pressure gradient and temperature gradient in the reaction chamber at all times.

この装置を用いて次のような実験を行なった。The following experiment was conducted using this device.

例1.触媒金属はダクタイル鋳鉄(FCD45)(1)
成分 第1表 (2)組織 第2図に示す顕微鏡写真(xlOO)のように黒鉛が球
状化して析出している。
Example 1. Catalyst metal is ductile cast iron (FCD45) (1)
Ingredients Table 1 (2) Structure As shown in the micrograph (xlOO) shown in Figure 2, graphite is precipitated in a spheroidal form.

基地はパーライトが主体で一部にフェライトが散在する
The base is mainly pearlite with some ferrite scattered.

(3)実施の状態 上記ダクタイル鋳鉄を厚さ2M、外径3.8rM1の板
状に削成して触媒板6A、6B、6c・・・とじ、−方
炭素質物質7としては厚さ2IrIM、外径368mの
分光分析用の黒鉛板を用いて互いに積層状に配置し、温
度1600℃、圧力65Kbで15分間保持したのち、
急冷降圧した。
(3) State of implementation The above-mentioned ductile cast iron is cut into a plate shape with a thickness of 2M and an outer diameter of 3.8rM1, and the catalyst plates 6A, 6B, 6c... are bound.The carbonaceous material 7 has a thickness of 2IrIM. , using graphite plates for spectroscopic analysis with an outer diameter of 368 m, which were arranged in a stacked manner and held at a temperature of 1600°C and a pressure of 65 Kb for 15 minutes,
Rapid cooling lowered the pressure.

反応後、未反応黒鉛は加熱して酸化物として放出し、残
留触媒は王水で溶解して放出した。
After the reaction, unreacted graphite was heated to be released as an oxide, and the remaining catalyst was dissolved in aqua regia and released.

これらの後処理は公知である。These post-treatments are known.

かくして得られたダイヤモンド密集結体の組織を走査式
電子顕微鏡(x150)によるSE像で示したのが第3
図であり、収率と密度とを測定したところ、85%収率
、95%密度をそれぞれ得ることができた。
The third image shows the structure of the diamond dense aggregate thus obtained using a scanning electron microscope (x150).
When the yield and density were measured, it was possible to obtain an 85% yield and a 95% density, respectively.

例2.触媒金属はニレジストダクタイル鋳鉄(1)成分 第3表 (2)組織 第4図に示す顕微鏡写真(xloo )のように黒鉛が
球状に析出している。
Example 2. The catalyst metal is Niresist ductile cast iron (1) Ingredients Table 3 (2) Structure As shown in the micrograph (xloo) shown in Figure 4, graphite is precipitated in a spherical shape.

基地はオーステナイト。(−部に若干セメンタイトも見
える。) (3)実施の状態 触媒寸法、炭素質物質の品種、寸法は例1と同一、温度
1550℃、圧力62,5にす、15分間保持したのち
、同様の後処理を施した。
The base is austenite. (Some cementite is also visible in the - part.) (3) Condition of implementation The dimensions of the catalyst, the type of carbonaceous material, and the dimensions are the same as in Example 1. The temperature is 1550℃, the pressure is 62.5℃, and after holding for 15 minutes, the same condition is applied. Post-processing was performed.

得られたダイヤモンド密集結体の組織を走査式電子顕微
鏡(x200 >で示したのが第5図であり、収率80
%、密度93%の測定値を得た。
Figure 5 shows the structure of the obtained diamond dense aggregates under a scanning electron microscope (x200).
%, a density of 93% was obtained.

例3.触媒金属が内部に所望の最終密集結体の形状に一
致する空隙を有している例 (1)成分9組織 例2に示したニレジストダクタイル鋳鉄と同一の材料を
使用した。
Example 3. Example (1) In which the catalyst metal has voids that correspond to the shape of the desired final dense aggregate (1) Component 9 Structure The same material as the Niresist ductile cast iron shown in Example 2 was used.

(2)実施の状態 第6図に示すように触媒6xは外径3.8mφ。(2) Status of implementation As shown in FIG. 6, the catalyst 6x has an outer diameter of 3.8 mφ.

内径21M1φの円筒形で高さは6.0m、内系側には
頂部が円錐形となっている。
It has a cylindrical shape with an inner diameter of 21M1φ, a height of 6.0m, and a conical top on the inner side.

触媒6Yは外径3.8m、高さ2.0mの円板である。The catalyst 6Y is a disk with an outer diameter of 3.8 m and a height of 2.0 m.

この両者を組合せてできる内部の空隙に、この空隙と同
一寸法に削成した分光分析用黒鉛を嵌め込み、温度16
00’C,圧力65Kbで20分保持した後、急冷降圧
し、この生成物に対して実施例1と同じ処理を施した。
Graphite for spectroscopic analysis cut to the same dimensions as this void is inserted into the internal void created by combining the two, and the temperature is 16.
After holding at 00'C and a pressure of 65 Kb for 20 minutes, the product was rapidly cooled and the pressure was lowered, and the product was subjected to the same treatment as in Example 1.

得られた密集粘体D−Dは収率82%、密度97%であ
り、その略図を第7図に示す。
The dense viscous material D-D obtained had a yield of 82% and a density of 97%, and its schematic diagram is shown in FIG.

図のようにD−Dの円錐付は根部には多少の段差が生じ
ており、触媒6Xが高圧下に弾性変形を生じて、炭素か
らダイヤモンドへの変換合成を可縮的にしぼってすすめ
た現像を裏付けたものと解される。
As shown in the figure, the conical shape of D-D has a slight step at its root, and catalyst 6X undergoes elastic deformation under high pressure, compressing and promoting the conversion and synthesis of carbon to diamond. It is understood that this confirms the development.

なお最終製品(工具など)にほぼ近い形状の得られたダ
イヤモンド密集結体であるが、ざらに補強して耐衝撃性
を付与するため僅かにではあるが残っている空孔部へ適
当な充填物(たとえば接着剤)を圧入含浸させるとより
よい結果に到達することも考えられる。
Although the obtained diamond dense aggregate has a shape almost similar to that of the final product (tools, etc.), it is necessary to fill the remaining pores, albeit slightly, in order to provide rough reinforcement and impact resistance. It is also conceivable that better results can be achieved by press-in impregnation of substances (for example adhesives).

[発明の効果] 本願発明に係るダイヤモンドの変換方法は、従来の技術
を踏まえた上で、特別の金属触媒と容器とを利用して遊
離した球状黒鉛の特別の挙動と、反応進行に際して好ま
しい圧力勾配、温度勾配を発現させることにより、ダイ
ヤモンド変換と集積成形化を同時に進行完結させ、従来
の技術に比べて工程を半分以上減少させることができた
[Effects of the Invention] The method for converting diamond according to the present invention is based on the conventional technology, and utilizes a special metal catalyst and a container to achieve a special behavior of liberated spherical graphite, and a preferable pressure for the reaction to proceed. By creating a gradient and temperature gradient, we were able to complete diamond conversion and integrated molding simultaneously, reducing the number of steps by more than half compared to conventional technology.

また得られたダイヤモンド密集結体は[100]方向に
成長しつつ圧密化しているため男開性がなくなり工具と
して使用するとその切削性はぎわめて優れている。
In addition, the obtained diamond dense aggregates are consolidated while growing in the [100] direction, so that they have no virility and have extremely excellent cutting properties when used as a tool.

鋳鉄中に晶出している黒鉛の形状およびサイズが変換ダ
イヤモンドの物性値にどのような関連を有するかはまだ
実施例が少ないため詳かではないが、該黒鉛の形状、サ
イズは鋳鉄の溶解、凝固。
It is not clear how the shape and size of graphite crystallized in cast iron are related to the physical properties of converted diamonds, as there are still few examples, but the shape and size of graphite can be determined by the melting of cast iron, coagulation.

冷却の過程を操作することにより比較的容易に制御する
ことができ、上記関連性が把握できれば、ダイヤモンド
の形態を制御できる見込みがある。
It can be controlled relatively easily by manipulating the cooling process, and if the above relationships can be understood, there is a possibility that the morphology of diamonds can be controlled.

これらは後日補充する予定である。These will be replenished at a later date.

また従来の触媒金属に比して液相線温度が低く、温度と
成分の相関性はよく知られているので、反応開始点を低
温側へずらす効果が期待できるが、この点は後日補充す
る。
In addition, the liquidus temperature is lower than that of conventional catalyst metals, and the correlation between temperature and components is well known, so it can be expected to have the effect of shifting the reaction initiation point to the lower temperature side, but this point will be addressed at a later date. .

さらに従来のダイヤモンド焼結体に課せられた課題は、
工具など所望の形状にいかに焼結体を近づけるかという
点にあった。
Furthermore, the challenges faced by conventional diamond sintered bodies are:
The problem was how to shape the sintered body into a desired shape, such as a tool.

その点本願変換物の噛合、遊離黒鉛の析出のため切削性
のきわめて良好な材質を触媒として使用するから、あら
かじめ鋳鉄を所望の形状に加工切削して触媒として反応
を起すことにより、最終形状に近い変換物を1qること
かできる。
On the other hand, since a material with extremely good machinability is used as a catalyst for the interlocking of the converted product and the precipitation of free graphite, cast iron can be processed and cut into the desired shape in advance and reacted as a catalyst to form the final shape. You can get 1q of similar conversions.

すなわちこの場合は触媒が、従来方法における焼結用モ
ールドをも兼ねて同時に殿能する実施例特有の効果を生
じると言える。
That is, in this case, it can be said that the catalyst produces an effect unique to the embodiment in which it simultaneously functions as the sintering mold in the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願の実施例に使用する装置の概略を示す正面
断面図、第2図、第4図はそれぞれ異なる実施例におい
て使用した金属触媒の組織を示す顕微鏡写真、第3図、
第5図は上記それぞれ異なる実施例において1与られた
ダイヤモンド変換体の組織を示す走査式電子顕微鏡によ
るSE像、第6図は実施例3において使用した触媒の形
状を示す正面断面図、第7図は回倒で成形されたダイヤ
モンド密集結体の斜視図。 第8図から第10図は従来技術を示す正面断面図および
斜視図。 1・・・圧力媒体  2・・・電極 3・・・発熱体   4,5・・・可撓性絶縁体6A、
6B、6c、6x、6Y・・・金属触媒7・・・炭素質
物質 第1図 つ (六シフ hNイ乙五明11) 第2図           第3図 第4図           第5図 第6図
FIG. 1 is a front sectional view schematically showing the apparatus used in the examples of the present application, FIGS. 2 and 4 are micrographs showing the structures of the metal catalysts used in different examples, and FIGS.
Fig. 5 is an SE image taken by a scanning electron microscope showing the structure of the diamond converter given in Example 1 in each of the different examples above, Fig. 6 is a front sectional view showing the shape of the catalyst used in Example 3, and Fig. 7 The figure is a perspective view of a diamond compact formed by turning. 8 to 10 are front sectional views and perspective views showing the prior art. 1... Pressure medium 2... Electrode 3... Heating element 4, 5... Flexible insulator 6A,
6 B, 6 c, 6

Claims (1)

【特許請求の範囲】 1、反応室内に炭素質物質と金属触媒とを接触させ高温
高圧の反応条件下に置き、該炭素質物質をダイヤモンド
に変換する方法において、金属触媒は鉄系基地内に遊離
黒鉛が球状に析出する鋳鉄系材料で形成し、反応室の容
量は、該炭素質物質のダイヤモンドへの変換が進行する
につれて生じる容積変化に追随して変動できる可撓性を
具えることにより、炭素質物質から強固緻密なダイヤモ
ンド密集結体を直接得ることを特徴とするダイヤモンド
の変換方法。 2、金属触媒の鉄系基地はフェライト及び/又はパーラ
イト相のダクタイル鋳鉄である特許請求の範囲第1項記
載のダイヤモンドの変換方法。 3、金属触媒の鉄系基地はオーステナイト相のニレジス
トダクタイル鋳鉄である特許請求の範囲第1項記載のダ
イヤモンドの変換方法。 4、金属触媒の内部には所望の最終密集結体の形状に一
致する空隙を有し、炭素質物質を該空隙に充填して、可
縮的に反応をすすめる特許請求の範囲第1項乃至第3項
記載のダイヤモンドの変換方法。
[Claims] 1. In a method for converting a carbonaceous substance into diamond by bringing a carbonaceous substance and a metal catalyst into contact with each other in a reaction chamber and placing them under high temperature and high pressure reaction conditions, the metal catalyst is placed in an iron base. The reaction chamber is made of a cast iron-based material in which free graphite is precipitated in a spherical form, and the reaction chamber is flexible enough to follow the volume change that occurs as the conversion of the carbonaceous material into diamond progresses. , a diamond conversion method characterized by directly obtaining a strong and dense diamond compact from a carbonaceous material. 2. The method for converting diamond according to claim 1, wherein the iron base of the metal catalyst is ductile cast iron in a ferrite and/or pearlite phase. 3. The method for converting diamond according to claim 1, wherein the iron base of the metal catalyst is austenitic phase Niresist ductile cast iron. 4. The interior of the metal catalyst has voids that match the shape of the desired final dense aggregate, and the voids are filled with a carbonaceous material to promote the reaction in a compressible manner. The method for converting diamonds according to item 3.
JP61152307A 1986-06-27 1986-06-27 Formation of diamond Pending JPS637832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61152307A JPS637832A (en) 1986-06-27 1986-06-27 Formation of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61152307A JPS637832A (en) 1986-06-27 1986-06-27 Formation of diamond

Publications (1)

Publication Number Publication Date
JPS637832A true JPS637832A (en) 1988-01-13

Family

ID=15537664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61152307A Pending JPS637832A (en) 1986-06-27 1986-06-27 Formation of diamond

Country Status (1)

Country Link
JP (1) JPS637832A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009914A1 (en) * 1996-09-05 1998-03-12 Marcel Gehrig Method for manufacturing synthetic diamond and device for implementing this method
JP2001220236A (en) * 2000-02-14 2001-08-14 Hitachi Metals Ltd Carbon particle for diamond conversion, method for diamond conversion and diamond obtained by the method
US6346689B1 (en) * 1997-11-14 2002-02-12 The Australian National University Cell and method for forming a composite hard material and composite hard materials formed thereby

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086014A (en) * 1983-10-18 1985-05-15 Sumitomo Electric Ind Ltd Synthesis of diamond

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086014A (en) * 1983-10-18 1985-05-15 Sumitomo Electric Ind Ltd Synthesis of diamond

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009914A1 (en) * 1996-09-05 1998-03-12 Marcel Gehrig Method for manufacturing synthetic diamond and device for implementing this method
US6346689B1 (en) * 1997-11-14 2002-02-12 The Australian National University Cell and method for forming a composite hard material and composite hard materials formed thereby
JP2001220236A (en) * 2000-02-14 2001-08-14 Hitachi Metals Ltd Carbon particle for diamond conversion, method for diamond conversion and diamond obtained by the method

Similar Documents

Publication Publication Date Title
US4016736A (en) Lubricant packed wire drawing dies
US2992900A (en) Method for producing improved diamond crystals
US3407445A (en) High pressure reaction vessel for the preparation of diamond
US4260397A (en) Method for preparing diamond compacts containing single crystal diamond
CN100503434C (en) Method of preparing isotropic carbon material and prepared carbon material
JPS6338208B2 (en)
JPH0260632B2 (en)
JPS62274034A (en) Manufacture of polycrystalline diamond sintered compact by reaction sintering
US4872333A (en) Wire drawing die
JPS637832A (en) Formation of diamond
JPH0314794B2 (en)
US2044853A (en) Method of making cutting tools, dies, etc.
JPH0515367Y2 (en)
CN109966992B (en) Method for preparing artificial diamond synthetic column
US4147255A (en) Process for synthesizing diamonds
RU2223220C2 (en) Method of preparing diamond particles, method of preparing diamond crystals, and method of preparing blanks containing diamond particles
DK144415B (en) PROCEDURE FOR MANUFACTURING A MATERIAL CONTAINING CUBIC BORN NITRID
RU2032496C1 (en) Method of obtaining aluminides of transition metals
IE53449B1 (en) Improvement in sintering diamond
SU869968A1 (en) Method of producing cutting tools
JPS60138044A (en) Composite sintered structural body of cubic boron nitride and cermet and production thereof
CN113084172A (en) Method for preparing impregnated teeth by using ultrahigh temperature and high pressure and impregnated teeth thereof
JP2932300B2 (en) Diamond synthesis method
JP2001220236A (en) Carbon particle for diamond conversion, method for diamond conversion and diamond obtained by the method
JPH01184032A (en) Production of cubic boron nitride