JPS637819B2 - - Google Patents

Info

Publication number
JPS637819B2
JPS637819B2 JP3179278A JP3179278A JPS637819B2 JP S637819 B2 JPS637819 B2 JP S637819B2 JP 3179278 A JP3179278 A JP 3179278A JP 3179278 A JP3179278 A JP 3179278A JP S637819 B2 JPS637819 B2 JP S637819B2
Authority
JP
Japan
Prior art keywords
catalyst
carried out
steam
vanadium
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3179278A
Other languages
Japanese (ja)
Other versions
JPS53119209A (en
Inventor
Harutoman Yuriaan Sutooku Uiremu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JPS53119209A publication Critical patent/JPS53119209A/en
Publication of JPS637819B2 publication Critical patent/JPS637819B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/005Preliminary treatment of ores, e.g. by roasting or by the Krupp-Renn process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • C22B34/225Obtaining vanadium from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/009General processes for recovering metals or metallic compounds from spent catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】 本発明は、特許第1294161号(特公昭60−12908
号)の発明の追加の発明であり、原発明は、バナ
ジウム含有炭化水素油の水添脱金属操作に使用さ
れて活性を失なつて不活性化したニツケルとバナ
ジウム及び/又はモリブデンとを含有する触媒の
不活性化触媒の再生方法に関する。上記の水添脱
金属操作は、一般に前記触媒の存在下に昇温昇圧
下にバナジウム含有炭化水素油を水素で処理する
ことからなる。
[Detailed description of the invention] The present invention is disclosed in Japanese Patent No. 1294161 (Japanese Patent Publication No. 60-12908).
This is an additional invention to the invention of No.), and the original invention contains nickel, which is used in the hydrogenation demetalization operation of vanadium-containing hydrocarbon oil and is inactivated by losing its activity, and vanadium and/or molybdenum. The present invention relates to a method for regenerating a deactivated catalyst. The hydrodemetallization operation described above generally consists of treating a vanadium-containing hydrocarbon oil with hydrogen in the presence of the catalyst at elevated temperature and pressure.

原発明の方法によれば、原発明は、昇温昇圧下
にバナジウム含有炭化水素油を水素で処理するの
に使用することにより不活性化された触媒であつ
て該処理中該触媒のバナジウム含有量が少なくと
も10重量部増加した触媒からバナジウムが抽出さ
れる。原発明の方法によれば、該触媒のバナジウ
ム含有量が該不活性化中上昇した量の少なくとも
40%減少されるバナジウムの抽出は、該不活性化
触媒を鉱酸の水溶液で抽出しその後バナジウムを
このようにして得られたバナジウム含有溶液から
分離することにより行なわれる。もし該方法が、
バナジウムに加えてニツケルも含有する炭化水素
油の水添処理において不活性化された触媒であつ
て該処理中該触媒のニツケル含有量もまた増加し
た触媒に適用されるならば、ニツケルもまた、該
方法で該触媒から除去される。バナジウム及び任
意にニツケルを不活性化触媒から抽出することの
ほかに、該方法はまた、触媒の目的用に再び使用
できるように不活性化触媒を再生することに適用
され得る。
According to the method of the original invention, the original invention provides a catalyst that is deactivated by use in treating a vanadium-containing hydrocarbon oil with hydrogen at elevated temperature and pressure, the vanadium content of the catalyst being deactivated during said treatment. Vanadium is extracted from the catalyst whose amount has increased by at least 10 parts by weight. According to the method of the original invention, the vanadium content of the catalyst increases by at least the amount increased during the inactivation.
The extraction of vanadium, which is reduced by 40%, is carried out by extracting the deactivated catalyst with an aqueous solution of mineral acid and then separating the vanadium from the vanadium-containing solution thus obtained. If the method
If applied to a deactivated catalyst in the hydrogenation treatment of hydrocarbon oils containing nickel in addition to vanadium, during which treatment the nickel content of the catalyst also increased, nickel is also present. In the process it is removed from the catalyst. Besides extracting vanadium and optionally nickel from deactivated catalysts, the method can also be applied to regenerate deactivated catalysts so that they can be used again for catalytic purposes.

原発明の方法によれば、酸抽出は、好ましく
は、還元剤の存在下で行なわれる。また、原発明
の方法によれば、酸抽出を行なう前に、該不活性
化触媒を先ず硫黄を除去するため水蒸気で次いで
炭素を除去するため酸素含有ガスで処理すること
が一層好ましい。所期目的がバナジウム及び任意
にニツケルを該触媒から抽出するためのみなら
ず、該触媒を再生するためでもあるとき、該不活
性化触媒の少部分を空気で550℃において3時間
処理する原発明の実施例に記載の態様で該不活性
化触媒を酸素含有ガスで処理することは、比較的
多量の不活性化触媒の場合多量の熱が発生する故
適当でないということは注意すべきことである。
According to the method of the original invention, the acid extraction is preferably carried out in the presence of a reducing agent. It is also more preferred, according to the method of the invention, that before carrying out the acid extraction, the deactivated catalyst is first treated with steam to remove sulfur and then with an oxygen-containing gas to remove carbon. Original invention of treating a small portion of the deactivated catalyst with air at 550° C. for 3 hours when the intended purpose is not only to extract vanadium and optionally nickel from the catalyst, but also to regenerate the catalyst. It should be noted that treating the deactivated catalyst with an oxygen-containing gas in the manner described in the example is not suitable in the case of relatively large amounts of deactivated catalyst because of the large amount of heat generated. be.

比較的多量の不活性化触媒を、バナジウム及び
任意にニツケルを該触媒から抽出する目的かつ該
触媒を再生する目的で処理しなければならなかつ
た場合、次の3段階操作が原発明の方法の最も魅
力的な実施態様であると最近まで考えられてい
た。該不活性化触媒を先ず350−450℃大気圧にお
いて1−5時間水蒸気と窒素との混合物で、次い
で350−600℃大気圧において1−5日間空気と窒
素との混合物で処理し、最後に還元剤の存在下で
50−150℃において0.5−3時間酸抽出する。それ
らの種々の段階で必要な処理時間は、とりわけ、
該不活性化触媒上に存在する硫黄、炭素、及び金
属類の量、並びに選択条件即ち処理温度、ガスの
流速、及び処理ガス及び抽出液体の組成に依存す
る。今まで、該3段階操作の第2段階に必要な長
い処理時間が、商業的規模で原発明の方法を用い
る場合重大な欠点であると考えられていた。
If a relatively large amount of deactivated catalyst had to be treated for the purpose of extracting vanadium and optionally nickel from the catalyst and for regenerating the catalyst, the following three-step operation was carried out according to the method of the invention. Until recently, this was considered to be the most attractive implementation. The deactivated catalyst was first treated with a mixture of steam and nitrogen for 1-5 hours at 350-450°C atmospheric pressure, then with a mixture of air and nitrogen for 1-5 days at 350-600°C atmospheric pressure, and finally in the presence of reducing agent
Acid extraction for 0.5-3 hours at 50-150°C. The processing times required in those various stages are, inter alia,
It depends on the amount of sulfur, carbon, and metals present on the deactivated catalyst, as well as on the selected processing conditions, ie, processing temperature, gas flow rate, and composition of the processing gas and extraction liquid. Until now, the long processing time required for the second stage of the three-stage operation was considered to be a significant drawback when using the process of the invention on a commercial scale.

原発明の如き方法を引き続き研究することによ
り、前記3段階操作による方法を行なうことによ
つてしかしはるかに短時間でバナジウム及びニツ
ケルの除去及び該再生触媒の活性に関して達成さ
れる結果に匹敵する結果が、少なくとも350℃の
温度において1バールを越える水蒸気分圧におけ
る水蒸気/空気の比率が1.0より大きい水蒸気と
空気との混合物での該不活性化触媒の処理を還元
剤の存在下の該酸抽出よりも先に行なうならば得
られ得るということを今般見出した。今般見出し
た方法を用いると、はるかに短かい処理時間がバ
ナジウム及びニツケルの除去及び該再生触媒の活
性に関して匹敵する結果を達成するのに充分であ
るという事実に加えて、この方法は、処理段階の
数及び酸抽出の前に該不活性化触媒を処理するの
に必要なガスの数がともに1つだけ減少されたこ
とにおいて、上記3段階操作よりも2つの付加的
長所を有する。
By continuing to study the process as in the original invention, results comparable to those achieved in terms of vanadium and nickel removal and the activity of the regenerated catalyst by carrying out the three-stage process but in a much shorter time. treatment of the deactivated catalyst with a mixture of steam and air with a steam/air ratio greater than 1.0 at a temperature of at least 350° C. and a steam partial pressure of more than 1 bar, followed by the acid extraction in the presence of a reducing agent. I have recently discovered that if you do it first, you can get it. In addition to the fact that using the now discovered process, much shorter processing times are sufficient to achieve comparable results in terms of vanadium and nickel removal and the activity of the regenerated catalyst, the process It has two additional advantages over the three-step operation, in that the number of gases and the number of gases required to treat the deactivated catalyst prior to acid extraction are both reduced by one.

本発明はそれ故に、バナジウム含有炭化水素油
の水添脱金属操作に使用されて活性を失なつて不
活性化したニツケルとバナジウム及び/又はモリ
ブデンとを含有する触媒の不活性化触媒を、(a)少
なくとも350℃の温度において酸素含有ガス及
び/又は水蒸気で処理し、次いで、(b)少なくとも
50℃の温度において鉱酸水溶液で処理し(“酸抽
出”と呼ぶ)、かくして再生された触媒を、そこ
で得られたバナジウム含有溶液から単離すること
からなる不活性化触媒の再生方法において、上記
(a)の処理を少なくとも350℃の温度において1バ
ールを越える水蒸気分圧における水蒸気/空気の
比率が1.0より大きい水蒸気と空気との混合物で
行なうこと、かつ上記(b)の処理を少なくとも50℃
の温度において還元剤の存在下で鉱酸水溶液で行
なうこと、を特徴とする上記再生方法を提供す
る。
Therefore, the present invention provides a deactivated catalyst containing nickel and vanadium and/or molybdenum which has lost its activity and has been deactivated by being used in the hydrodemetalization operation of vanadium-containing hydrocarbon oil. a) treated with an oxygen-containing gas and/or water vapor at a temperature of at least 350°C, and then (b) at least
A method for regenerating a deactivated catalyst, which comprises treating with an aqueous mineral acid solution at a temperature of 50° C. (referred to as "acid extraction") and isolating the catalyst thus regenerated from the vanadium-containing solution obtained therein. the above
(a) is carried out with a mixture of water vapor and air at a temperature of at least 350°C and a steam/air ratio greater than 1.0 at a water vapor partial pressure of more than 1 bar; and (b) is carried out at a temperature of at least 50°C.
The regeneration method is carried out with an aqueous mineral acid solution in the presence of a reducing agent at a temperature of .

本発明による方法において、水蒸気と空気との
混合物での処理は、少なくとも350℃の温度、し
かし好ましくは600℃より低い温度、特に350ない
し425℃の温度で行なうべきである。該水蒸気と
空気との混合物での該不活性化触媒の処理におい
て、該水蒸気分圧は、1バールより大きくしかし
好ましくは5バールより小さく、特に2ないし4
バールであるべきである。使用する水蒸気/空気
の混合物の水蒸気/空気の比率は1.0より大きく、
しかし好ましくは10より小さく特に4ないし8で
あるべきである。
In the process according to the invention, the treatment with the mixture of steam and air should be carried out at a temperature of at least 350°C, but preferably below 600°C, in particular at a temperature of 350 to 425°C. In the treatment of the deactivated catalyst with the mixture of steam and air, the partial pressure of steam is greater than 1 bar but preferably less than 5 bar, especially between 2 and 4 bar.
Should be a crowbar. The water vapor/air mixture used has a water vapor/air ratio greater than 1.0;
However, it should preferably be less than 10 and especially between 4 and 8.

本発明による方法において該不活性化触媒が処
理されるべき還元剤の存在下での酸抽出は、好ま
しくは、昇温で特に50℃を越える温度で行なう。
該抽出は、好ましくは、二酸化硫黄で飽和した硫
酸の水溶液で行なう。
The acid extraction in the presence of a reducing agent, with which the deactivated catalyst is to be treated in the process according to the invention, is preferably carried out at elevated temperature, in particular above 50°C.
The extraction is preferably carried out with an aqueous solution of sulfuric acid saturated with sulfur dioxide.

本発明による方法を、バナジウムに加えてニツ
ケルを含有する不活性化触媒に適用する場合、水
蒸気/空気の混合物での処理後該不活性化触媒を
水で抽出することが好ましい。一層好ましくは昇
温特に50℃を越える温度で行なうこの水での抽出
により、ニツケル含有水溶液が得られ、そしてそ
れからニツケルが抽出され得る。
If the process according to the invention is applied to deactivated catalysts containing nickel in addition to vanadium, it is preferred to extract the deactivated catalyst with water after treatment with a steam/air mixture. This extraction with water, more preferably carried out at elevated temperature, especially above 50° C., results in an aqueous nickel-containing solution from which nickel can be extracted.

本発明による方法は、目的が、バナジウム及び
任意にニツケルを不活性化触媒から抽出すること
であるばかりでなく、触媒の目的に再び使用され
得るように該触媒(新鮮な状態で、水添活性を有
する金属を含有する)を再生させることでもある
場合特に重要である。本発明は、それ故にバナジ
ウム及び任意にニツケルを不活性化触媒から抽出
する方法に関するばかりでなく、この抽出を、そ
のまま又は水添活性を有する金属類の補充量を添
加した後再び触媒の目的に使用され得る再生触媒
が得られるように行なう方法にも関する。
The process according to the invention not only aims to extract vanadium and optionally nickel from a deactivated catalyst, but also to extract said catalyst (in fresh, hydrogenated activated form) so that it can be used again for catalytic purposes. This is particularly important if the purpose is also to regenerate metals (containing metals with The present invention therefore not only relates to a method for extracting vanadium and optionally nickel from deactivated catalysts, but also to redirecting this extraction to catalytic purposes, either as such or after addition of supplementary amounts of hydrogenation-active metals. The invention also relates to a method for obtaining a regenerated catalyst that can be used.

本発明を次の実施例と関連させて説明する。 The invention will be described in connection with the following examples.

例 0.5重量部のニツケル及び2.0重量部のバナジウ
ムを100重量部のシリカ担体当り含む触媒を、シ
リタ担体を硝酸ニツケル及びシユウ酸バナジルの
水溶液で含浸しその後その組成物を乾燥及び焼成
して製造した。該触媒(触媒A)を、バナジウム
及びニツケル合計含有率62ppmw、C5−アスフア
ルテン類含有率6.4%w、及び硫黄含有率3.9%w
を有する炭化水素油(油A)の水添脱金属のため
に硫化物の形で使用し、該油は中東原油の常圧蒸
留において残油として得たものであつた。該水添
脱金属は、該油を水素と一緒に下向きの方向で円
筒形の垂直に配置された固定触媒床に420℃の温
度、150バールの全圧、5Kg、l-1、h-1の空間速
度、及び250NlH2・Kg-1のガス流速(反応器の出
口において測定した)で通ずることにより行なつ
た。“バナジウム除去%”(1トンの油/触媒1Kg
ないし4トンの油/触媒1Kgの触媒老化期間の平
均バナジウム除去)として表わされる触媒の活性
度は51であつた。該触媒をこの方法で不活性化し
た後、該触媒をトルエンで抽出して残油中の残存
物(remnants)を除去し、そして該触媒から該
トルエンを蒸発させた後該触媒を分析した。この
不活性化触媒(触媒B)は、9.7重量部の炭素、
20.6重量部の硫黄、4.1重量部のニツケル、及び
24.3重量部のバナジウムを100重量部のシリカ当
り含有していた。
Example: A catalyst containing 0.5 parts by weight of nickel and 2.0 parts by weight of vanadium per 100 parts by weight of silica support was prepared by impregnating the silica support with an aqueous solution of nickel nitrate and vanadyl oxalate and then drying and calcining the composition. . The catalyst (catalyst A) had a total vanadium and nickel content of 62 ppmw, a C5 -asphaltenes content of 6.4%w, and a sulfur content of 3.9%w.
was used in the sulfide form for the hydrodemetalization of a hydrocarbon oil (oil A) having 1000 ml of oil, which was obtained as a residual oil in the atmospheric distillation of Middle Eastern crude oil. The hydrodemetallization was carried out by transferring the oil together with hydrogen in a downward direction onto a cylindrical vertically arranged fixed catalyst bed at a temperature of 420° C., a total pressure of 150 bar, 5 Kg, l -1 , h -1 This was carried out by passing at a space velocity of , and a gas flow rate (measured at the outlet of the reactor) of 250 NlH 2 ·Kg -1 . “Vanadium Removal%” (1 ton oil/1 Kg catalyst
The activity of the catalyst, expressed as average vanadium removal over the aging period of 4 tons of oil/Kg of catalyst, was 51. After the catalyst was deactivated in this manner, it was extracted with toluene to remove the remnants in the residual oil, and the catalyst was analyzed after evaporation of the toluene from the catalyst. This deactivated catalyst (catalyst B) contained 9.7 parts by weight of carbon,
20.6 parts by weight of sulfur, 4.1 parts by weight of nickel, and
It contained 24.3 parts by weight of vanadium per 100 parts by weight of silica.

例 5Kgの触媒Bを4:1の水蒸気/窒素の混合物
で350℃、大気圧及びガス流速2Nlガス混合物
(g触媒)-1h-1において3時間処理した。その触
媒を次いで1:19の空気/窒素の混合物で400℃、
大気圧及びガス流速1Nlガス混合物(g触媒)
-1h-1において50時間処理した。最後に、その触
媒を、二酸化硫黄で飽和した402N硫酸でかく
はんしながら90℃において2時間抽出した。その
抽出触媒を水洗した後、120℃で乾燥しそして550
℃で3時間焼成した。このようにして得た触媒
(触媒C)を分析して、96%のバナジウム及び95
%のニツケルが、この処理により該触媒から除去
されたことがわかつた。
EXAMPLE 5 Kg of catalyst B were treated with a 4:1 steam/nitrogen mixture for 3 hours at 350° C., atmospheric pressure and a gas flow rate of 2 Nl gas mixture (g catalyst) −1 h −1 . The catalyst was then heated at 400°C in a 1:19 air/nitrogen mixture.
Atmospheric pressure and gas flow rate 1Nl gas mixture (g catalyst)
-1 h -1 for 50 hours. Finally, the catalyst was extracted with 402N sulfuric acid saturated with sulfur dioxide for 2 hours at 90° C. with stirring. After washing the extraction catalyst with water, it was dried at 120℃ and then dried at 550℃.
It was baked at ℃ for 3 hours. The catalyst thus obtained (catalyst C) was analyzed and found to contain 96% vanadium and 95% vanadium.
It was found that % of nickel was removed from the catalyst by this treatment.

例 5Kgの触媒Bを7:1の水蒸気/空気の混合物
で25時間400℃、水蒸気分圧3.5バール、及びガス
流速0.6Nlガス混合物(g触媒)-1h-1において処
理した。その触媒を次いで二酸化硫黄を飽和させ
た402N硫酸でかくはんしながら90℃において
2時間抽出した。その抽出触媒を水洗した後、
120℃で乾燥しそして550℃で3時間焼成した。こ
のようにして得た触媒(触媒D)を分析して、96
%のバナジウム及び95%のニツケルがこの処理に
より該触媒から除去されたことがわかつた。
EXAMPLE 5 Kg of catalyst B were treated with a 7:1 steam/air mixture for 25 hours at 400 DEG C., a steam partial pressure of 3.5 bar and a gas flow rate of 0.6 Nl gas mixture (g catalyst) -1 h -1 . The catalyst was then extracted with 402N sulfuric acid saturated with sulfur dioxide for 2 hours at 90°C with stirring. After washing the extraction catalyst with water,
It was dried at 120°C and calcined at 550°C for 3 hours. The catalyst thus obtained (catalyst D) was analyzed and 96
It was found that % vanadium and 95% nickel were removed from the catalyst by this treatment.

例 5Kgの触媒Bを5:1の水蒸気/空気の混合物
で20時間350℃、水蒸気分圧3.0バール、及びガス
流速0.6Nlガス混合物(g触媒)-1h-1において処
理した。その触媒を次いで例に記載したのと同
じように酸抽出した。このようにして得た触媒
(触媒E)を分析して、94%のバナジウム及び92
%のニツケルがこの処理により該触媒から除去さ
れたことがわかつた。
Example 5 Kg of catalyst B were treated with a 5:1 steam/air mixture for 20 hours at 350° C., steam partial pressure 3.0 bar and gas flow rate 0.6 Nl gas mixture (g catalyst) -1 h -1 . The catalyst was then acid extracted in the same manner as described in the example. The catalyst thus obtained (catalyst E) was analyzed and found to contain 94% vanadium and 92% vanadium.
It was found that % of nickel was removed from the catalyst by this treatment.

例 5Kgの触媒Bを1:2の水蒸気/空気の混合物
で20時間400℃、水蒸気分圧0.6バール、及びガス
流速0.4Nlガス混合物(g触媒)-1h-1において処
理した。その触媒を次いで例に記載したのと同
じように酸抽出した。このようにして得た触媒
(触媒F)を分析して、95%のバナジウム及び95
%のニツケルがこの処理により該触媒から除去さ
れたことがわかつた。
EXAMPLE 5 Kg of catalyst B were treated with a 1:2 steam/air mixture for 20 hours at 400 DEG C., a steam partial pressure of 0.6 bar and a gas flow rate of 0.4 Nl gas mixture (g catalyst) -1 h -1 . The catalyst was then acid extracted in the same manner as described in the example. The catalyst thus obtained (catalyst F) was analyzed and found to contain 95% vanadium and 95% vanadium.
It was found that % of nickel was removed from the catalyst by this treatment.

例 5Kgの触媒Bを2:1の水蒸気/空気の混合物
で25時間150℃、水蒸気分圧1.5バール、及びガス
流速2Nlガス混合物(g触媒)-1h-1において処理
した。その触媒を次いで例に記載したのと同じ
ように酸抽出した。このようにして得た触媒(触
媒G)を分析して、40%のバナジウム及び45%の
ニツケルがこの処理により該触媒から除去された
ことがわかつた。
EXAMPLE 5 Kg of catalyst B were treated with a 2:1 steam/air mixture for 25 hours at 150 DEG C., a steam partial pressure of 1.5 bar and a gas flow rate of 2 Nl gas mixture (g catalyst) -1 h -1 . The catalyst was then acid extracted in the same manner as described in the example. Analysis of the catalyst thus obtained (Catalyst G) showed that 40% vanadium and 45% nickel were removed from the catalyst by this treatment.

例 0.5重量部のニツケル及び2.0重量部のバナジウ
ムを100重量部のシリカ担体当り含有する触媒を、
触媒C及びFを硝酸ニツケル及びシユウ酸バナジ
ルの水溶液で含浸しその後その組成物を乾燥し及
び焼成することにより製造した。このようにして
得た触媒C′及びF′を、硫化物の形で油Aの水添脱
金属のために、例に記載の触媒Aを用いるこの
油の水添脱金属と同じ条件下で用いた。“バナジ
ウム除去百分率”として表わされた触媒C′及び
F′の活性度はそれぞれ48及び10であつた。
Example: A catalyst containing 0.5 parts by weight of nickel and 2.0 parts by weight of vanadium per 100 parts by weight of silica support,
Catalysts C and F were prepared by impregnating with an aqueous solution of nickel nitrate and vanadyl oxalate and then drying and calcining the composition. Catalysts C′ and F′ thus obtained were used for the hydrodemetallization of oil A in the form of sulfides under the same conditions as for the hydrodemetallization of this oil using catalyst A as described in the example. Using. Catalyst C′ expressed as “percentage vanadium removal” and
The activities of F' were 48 and 10, respectively.

例 例に記載したのと同じようにして、触媒
D′及びE′を触媒D及びEから製造しそして油Aの
水添脱金属のために用いた。“バナジウム除去百
分率”として表わされた触媒D′及びE′の活性度は
それぞれ50及び49であつた。
Example In the same way as described in the example, the catalyst
D' and E' were prepared from catalysts D and E and used for the hydrodemetallization of Oil A. The activities of catalysts D' and E' expressed as "percent vanadium removed" were 50 and 49, respectively.

例−のうち例、、及びが本発明によ
る例である。他の例は比較のため包含させた。
Examples - Examples, and are examples according to the present invention. Other examples were included for comparison.

例は、新鮮な触媒Aが不活性化して不活性化
触媒Bになる水添脱金属に関する。
The example concerns hydrodemetallization of fresh catalyst A to deactivate catalyst B.

例は、再生触媒Cを不活性化触媒Bから製造
しかつ最初の2段階を合計で53時間かけて行なう
前記3段階操作に関する。
The example relates to the three-stage operation described above in which regenerated catalyst C is prepared from deactivated catalyst B and the first two stages are carried out over a total of 53 hours.

例及びは、再生触媒D及びEを不活性化触
媒Bから製造する本発明による改良法に関する。
The examples and examples relate to an improved process according to the invention for producing regenerated catalysts D and E from deactivated catalyst B.

例、、及びを比較すると、本発明による
方法が該3段階操作と同じ優秀な金属除去をもた
らすということがわかる。しかしながら、該3段
階操作の第1及び第2段階を置換した水蒸気/空
気混合物での処理は20−25時間しかかからない。
Comparing Examples, and, it can be seen that the process according to the invention provides the same excellent metal removal as the three-step operation. However, treatment with a steam/air mixture replacing the first and second stages of the three-stage operation takes only 20-25 hours.

例及びは、“再生触媒”F及びGを不活性
化触媒Bから製造する不活性化触媒の水蒸気と空
気との混合物での処理及びそれに続く酸抽出に関
する。水蒸気/空気の混合物での処理中、使用し
た水蒸気分圧及び水蒸気/空気の比率は例にお
いて低すぎ、温度は例において低すぎた。この
ことが触媒Gの場合の不充分な金属除去(及びそ
の結果低活性度)及び例からわかるように触媒
Fの場合の低活性度をもたらした。
The examples and examples relate to the treatment of deactivated catalysts with a mixture of steam and air and subsequent acid extraction to produce "regenerated catalysts" F and G from deactivated catalyst B. During the treatment with the steam/air mixture, the steam partial pressure and the steam/air ratio used were too low in the examples and the temperatures were too low in the examples. This resulted in insufficient metal removal (and resulting low activity) for Catalyst G and, as can be seen from the example, low activity for Catalyst F.

例及びから、本発明により再生された触媒
(触媒D′及びE′)は、該3段階操作により再生さ
れた触媒(触媒C′)と同じ高活性度を示すという
ことがわかる。
It can be seen from the examples and that the catalysts regenerated according to the invention (catalysts D' and E') exhibit the same high activity as the catalyst regenerated by the three-stage operation (catalyst C').

追加の関係 原発明(特許第1294161号特公昭60−12908の発
明)は、 「バナジウム含有炭化水素油の水添脱金属操作
に使用されて活性を失なつて不活性化したニツケ
ルとバナジウム及び/又はモリブデンとを含有す
る触媒の不活性化触媒を、(a)少なくとも350℃の
温度におて酸素含有ガス及び/又は水蒸気で処理
し、次いで、(b)少なくとも50℃の温度において鉱
酸水溶液で処理し、かくして再生された触媒を、
そこで得られたバナジウム含有溶液から単離する
ことからなる不活性化触媒の再生方法」 を発明の構成に欠くことのできない事項の全部と
し、本発明はこの点をその構成に欠くことのでき
ない事項の主要部としている発明であつて、不活
性化触媒を再生する点において本発明は原発明と
同一の目的を達するものであるから、特許法第31
条第1号に規定する要件を具備するものである。
Additional Relationships The original invention (Patent No. 1294161, invention of Japanese Patent Publication No. 1294161, 1983-12908) is ``Nickel and vanadium and/or which have been used in the hydrogenation demetalization operation of vanadium-containing hydrocarbon oil and have lost their activity and have been inactivated. (a) with an oxygen-containing gas and/or steam at a temperature of at least 350°C; and (b) with an aqueous mineral acid solution at a temperature of at least 50°C. The thus regenerated catalyst is
``A method for regenerating a deactivated catalyst comprising isolating it from the vanadium-containing solution obtained therein'' is all essential to the structure of the invention, and the present invention considers this point to be an essential feature of the invention. 31 of the Patent Act, as the present invention achieves the same purpose as the original invention in terms of regenerating a deactivated catalyst.
It satisfies the requirements stipulated in Article 1.

Claims (1)

【特許請求の範囲】 1 バナジウム含有炭化水素油の水添脱金属操作
に使用されて活性を失なつて不活性化したニツケ
ルとバナジウム及び/又はモリブデンとを含有す
る触媒の不活性化触媒を、(a)少なくとも350℃の
温度において酸素含有ガス及び/又は水蒸気で処
理し、次いで、(b)少なくとも50℃の温度において
鉱酸水溶液で処理し(“酸抽出”と呼ぶ)、かくし
て再生された触媒を、そこで得られたバナジウム
含有溶液から単離することからなる不活性化触媒
の再生方法において、上記(a)の処理を少なくとも
350℃の温度において1バールを越える水蒸気分
圧における水蒸気/空気の比率が1.0より大きい
水蒸気と空気との混合物で行なうこと、かつ上記
(b)の処理を少なくとも50℃の温度において還元剤
の存在下で鉱酸水溶液で行なうこと、を特徴とす
る上記再生方法。 2 不活性化触媒の水蒸気と空気との混合物での
処理を600℃より低い温度好ましくは350ないし
425℃で行なうことを特徴とする特許請求の範囲
第1項に記載の方法。 3 不活性化触媒の水蒸気と空気との混合物での
処理を5バールより低い好ましくは2ないし4バ
ールの水蒸気分圧で行なうことを特徴とする特許
請求の範囲第1項又は第2項に記載の方法。 4 不活性化触媒の水蒸気と空気との混合物での
処理を、水蒸気/空気の比率が10より小さい特に
4ないし8であるガス混合物で行なうことを特徴
とする特許請求の範囲第1−3項のいずれか一項
に記載の方法。 5 還元剤の存在下の酸抽出を昇温で好ましくは
50℃より高い温度で行なうことを特徴とする特許
請求の範囲第1−4項のいずれか一項に記載の方
法。 6 還元剤の存在下の酸抽出を二酸化硫黄で飽和
された硫酸の水溶液で行なうことを特徴とする特
許請求の範囲第1−5項のいずれか一項に記載の
方法。 7 不活性化触媒を水蒸気/空気混合物で処理し
た後、ニツケルを水での抽出により好ましくは昇
温特に50℃より高い温度において不活性化触媒か
ら除去することを特徴とする特許請求の範囲第1
−6項のいずれか一項に記載の方法。 8 触媒の目的用にそのまま又は補充量の水添活
性を有する金属を添加した後再び使用され得る再
生触媒が得られるように実施することを特徴とす
る特許請求の範囲第1−7項のいずれか一項に記
載の方法。
[Scope of Claims] 1. A deactivated catalyst containing nickel and vanadium and/or molybdenum that has lost its activity and has been inactivated by being used in the hydrodemetallization operation of vanadium-containing hydrocarbon oil, (a) treated with an oxygen-containing gas and/or water vapor at a temperature of at least 350°C, and then (b) treated with an aqueous mineral acid solution at a temperature of at least 50°C (referred to as "acid extraction"), and thus regenerated. A method for regenerating a deactivated catalyst comprising isolating the catalyst from the vanadium-containing solution obtained therein, comprising at least the treatment of (a) above.
carried out in a mixture of water vapor and air with a water vapor/air ratio greater than 1.0 at a temperature of 350 °C and a water vapor partial pressure greater than 1 bar, and
The regeneration method as described above, characterized in that the treatment (b) is carried out with an aqueous mineral acid solution at a temperature of at least 50° C. in the presence of a reducing agent. 2. Treatment of the deactivated catalyst with a mixture of steam and air at a temperature below 600°C, preferably between 350°C and
The method according to claim 1, characterized in that it is carried out at 425°C. 3. According to claim 1 or 2, the treatment of the deactivated catalyst with a mixture of steam and air is carried out at a steam partial pressure of less than 5 bar, preferably between 2 and 4 bar. the method of. 4. Claims 1 to 3, characterized in that the treatment of the deactivated catalyst with a mixture of steam and air is carried out with a gas mixture in which the steam/air ratio is less than 10, in particular from 4 to 8. The method described in any one of the above. 5 Acid extraction in the presence of a reducing agent preferably at elevated temperature
5. Process according to any one of claims 1 to 4, characterized in that it is carried out at a temperature higher than 50<0>C. 6. Process according to any one of claims 1 to 5, characterized in that the acid extraction in the presence of a reducing agent is carried out with an aqueous solution of sulfuric acid saturated with sulfur dioxide. 7. After treating the deactivated catalyst with a steam/air mixture, the nickel is removed from the deactivated catalyst by extraction with water, preferably at elevated temperatures, in particular at temperatures above 50°C. 1
- the method according to any one of clause 6. 8. Any of claims 1 to 7, characterized in that it is carried out in such a way that a regenerated catalyst is obtained which can be used again for catalytic purposes as is or after addition of a supplementary amount of hydrogenation-active metal. The method described in paragraph (1).
JP3179278A 1977-03-24 1978-03-22 Improved method of extracting vanadium from deactivated catalyst Granted JPS53119209A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL7703181A NL7703181A (en) 1977-03-24 1977-03-24 IMPROVED METHOD FOR RECOVERING VANADIUM FROM DEACTIVATED CATALYSTS.

Publications (2)

Publication Number Publication Date
JPS53119209A JPS53119209A (en) 1978-10-18
JPS637819B2 true JPS637819B2 (en) 1988-02-18

Family

ID=19828224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3179278A Granted JPS53119209A (en) 1977-03-24 1978-03-22 Improved method of extracting vanadium from deactivated catalyst

Country Status (14)

Country Link
JP (1) JPS53119209A (en)
AU (1) AU516502B2 (en)
BE (1) BE864852R (en)
CA (1) CA1116582A (en)
DE (1) DE2812597A1 (en)
FR (1) FR2384854A2 (en)
GB (1) GB1567140A (en)
IT (1) IT1093669B (en)
MX (1) MX147986A (en)
NL (1) NL7703181A (en)
NO (1) NO152939C (en)
SE (1) SE444581B (en)
SU (1) SU688108A3 (en)
ZA (1) ZA781661B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1163810A (en) * 1980-02-20 1984-03-20 Petrus J.W.M. Van Den Bosch Process for the removal of vanadium-containing acid from an acid-extracted deactivated demetallization catalyst
DE4216798A1 (en) * 1992-05-21 1993-11-25 Metallgesellschaft Ag Process for processing residues containing vanadium
JP2985647B2 (en) * 1993-02-26 1999-12-06 住友金属鉱山株式会社 Dissolution method of spent catalyst
JP2751093B2 (en) * 1994-03-11 1998-05-18 住友金属鉱山株式会社 Method for recovering valuable metals from spent catalyst
AU4323796A (en) * 1995-12-22 1997-07-17 Commonwealth Scientific And Industrial Research Organisation Oxidation catalyst system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121A (en) * 1974-06-20 1976-01-05 Fujimori Sangyo CHUKUSURA BUKOZOTAI
JPS5144114A (en) * 1974-06-01 1976-04-15 Kawasaki Heavy Ind Ltd TAISUISEISETSUKOBUROTSUKU MATAHA PANERUNOSEIZOHOHO
JPS5164412A (en) * 1974-10-15 1976-06-03 Shell Int Research

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1272899B (en) * 1964-05-22 1968-07-18 Inst Njeftjechimitscheskogo Si Process for the regeneration of coked oxidic hydrogenation catalysts
FR1602405A (en) * 1968-06-11 1970-11-23
FR1603515A (en) * 1968-11-05 1971-05-03 Regeneration of catalysts used in the hydro-treatment - of sulphurous hydrocarbon charges containing metallic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144114A (en) * 1974-06-01 1976-04-15 Kawasaki Heavy Ind Ltd TAISUISEISETSUKOBUROTSUKU MATAHA PANERUNOSEIZOHOHO
JPS51121A (en) * 1974-06-20 1976-01-05 Fujimori Sangyo CHUKUSURA BUKOZOTAI
JPS5164412A (en) * 1974-10-15 1976-06-03 Shell Int Research

Also Published As

Publication number Publication date
NO781027L (en) 1978-09-26
SE444581B (en) 1986-04-21
DE2812597A1 (en) 1978-09-28
GB1567140A (en) 1980-05-14
ZA781661B (en) 1979-03-28
BE864852R (en) 1978-09-14
FR2384854B2 (en) 1980-10-24
FR2384854A2 (en) 1978-10-20
NO152939C (en) 1985-12-18
SU688108A3 (en) 1979-09-25
NO152939B (en) 1985-09-09
IT1093669B (en) 1985-07-26
JPS53119209A (en) 1978-10-18
MX147986A (en) 1983-02-22
AU3443578A (en) 1979-09-27
NL7703181A (en) 1978-09-26
CA1116582A (en) 1982-01-19
IT7821453A0 (en) 1978-03-22
SE7803322L (en) 1978-09-25
AU516502B2 (en) 1981-06-04

Similar Documents

Publication Publication Date Title
EP0244014B1 (en) Method for the regeneration of spent alumina-based catalysts
US4454240A (en) Catalyst regeneration process including metal contaminants removal
US4714688A (en) Process for regenerating used catalysts by means of hydrogen peroxide aqueous solution stabilized with an organic compound
US3094480A (en) Hydrodenitrogenation with high molybdenum content catalyst
US4122000A (en) Method for rejuvenating catalysts in hydrodesulfurization of hydrocarbon feedstock
JPS6012908B2 (en) How to regenerate a deactivated catalyst
US2615831A (en) Desulfurization of hydrocarbon mixtures with nickel carbonyl
JPS637819B2 (en)
US2143078A (en) Catalytic desulphurization of petroleum
US1904218A (en) Process for restoring the activity of hydrogenation catalysts
US3456029A (en) Process for the purification of lower olefin gases
US3256205A (en) Catalyst rejuvenating process
US2813835A (en) Reactivation of sulfide catalysts
JPH0149399B2 (en)
JP3486756B2 (en) Method for removing arsenic in hydrocarbons by passing over presulfurized capture material
JPS5929634B2 (en) Tangkasisoyunodatsuriyuhouhou
RU2666355C2 (en) Used hydro-treating catalyst regeneration method
US3673108A (en) Hydrocracking catalyst activation treatment
US2324518A (en) Process of carrying out reactions with carbonaceous materials
US3220956A (en) Process for removing metal poisons from hydrocarbon conversion catalysts
US1908338A (en) Process for the reactivation of catalysts used in the hydrogenation of hydrocarbon oils
EP0034853B1 (en) Process for the removal of vanadium-containing acid from an acid-extracted deactivated demetallization catalyst
US3105812A (en) Process of removing nitrogen compounds by oxidation
JPS6137210B2 (en)
US2970957A (en) Removal of vanadium and/or sodium from petroleum hydrocarbons