JPS6378007A - Measuring instrument for distance between lens and object - Google Patents

Measuring instrument for distance between lens and object

Info

Publication number
JPS6378007A
JPS6378007A JP22092586A JP22092586A JPS6378007A JP S6378007 A JPS6378007 A JP S6378007A JP 22092586 A JP22092586 A JP 22092586A JP 22092586 A JP22092586 A JP 22092586A JP S6378007 A JPS6378007 A JP S6378007A
Authority
JP
Japan
Prior art keywords
lens
length
distance
greenrod
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22092586A
Other languages
Japanese (ja)
Inventor
▲苧▼野 三郎
Saburou Asano
Shigeki Watanabe
茂樹 渡辺
Takayuki Masuko
益子 隆行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22092586A priority Critical patent/JPS6378007A/en
Publication of JPS6378007A publication Critical patent/JPS6378007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To measure with high accuracy an optical axis distance between a green rod lens and an object, by joining closely an auxiliary green rod lens to the green rod lens, so that their total lens length becomes length for giving the maximum magnification of the lens. CONSTITUTION:To an incident light end face of a green rod lens 11, if possible, an auxiliary green rod lens 30 of the same kind is joined closely so that each end face is aligned. In this case, length l2 is selected so that the total length L of the lens (length l1) and the lens 30 (length l2) becomes length for giving the maximum magnification of the lens. As a result, a variation of a distance S between the lens 11 and an optical fiber 13 appears as a large variation of a diameter (a) of an image P'. In this way, when the diameter (a) of the image P' is measured by using a microscope 21 whose magnification is, for instance, about 50 times, a shift against its design value can be measured, even if the distance S is, for instance, scores of mum. Accordingly, an optical axis direction distance between the green rod lens and the optical fiber can be measured exactly and easily.

Description

【発明の詳細な説明】 〔概 要〕 既設のグリンロフドレンズ端面とそのグリンロッドレン
ズに隣接する物体との光軸線方向間隔を間接的に光学的
測定する際に上記グリンロツドレンズに所定の光軸長さ
を有する補助グリンロッドレンズを端面一端面接合して
これら両グリンロッドレンズの合計光軸方向長さがその
レンズの最大倍率を与える長さとなるようにすることに
より測定精度を向上させる。
[Detailed Description of the Invention] [Summary] When indirectly optically measuring the distance in the optical axis direction between the end face of an existing Grinrod lens and an object adjacent to the Grinrod lens, Measurement accuracy is improved by connecting an auxiliary Greenrod lens with an optical axis length of let

〔産業上の利用分野〕[Industrial application field]

本発明はグリンロッドレンズ(Grated Inde
xRod Lens)を用いる光学系においてそのグリ
ンロッドレンズ端面と他の物体との間隔を、非破壊法で
簡便に精度よ(光学的に測定する装置に関する。
The present invention is a Grinrod lens (Grated Inde
This invention relates to a device for optically measuring the distance between the end face of a Greenrod lens and another object in an optical system using an xRod Lens, simply and accurately using a non-destructive method.

例えば光源からのレーザ光をグリンロッドレンズ(屈折
率が分布している棒状レンズ)を用いて光ファイバに収
れんさせる光結合系においてレンズと光フアイバ端面と
の間の光軸距離が重要になる。何となれば、グリンロッ
ドレンズと光ファイバが接触した状態では互いに応力を
及ぼしレンズの歪みによる光結合特性の劣化、環境温度
変化等によりレンズが欠けるといった問題があり、−万
両者を離しすぎると結合系が実現されないからである。
For example, in an optical coupling system in which laser light from a light source is converged onto an optical fiber using a Greenrod lens (a rod-shaped lens with a distributed refractive index), the optical axis distance between the lens and the end face of the optical fiber becomes important. This is because when the Greenrod lens and the optical fiber are in contact, they stress each other, causing problems such as deterioration of optical coupling characteristics due to distortion of the lens, and chipping of the lens due to environmental temperature changes. This is because the system is not realized.

このように、グリンロッドレンズと光ファイバとは微小
な距離だけ離して固定する必要があるのでその距離を精
度よく測定する方法が必要とされる。
As described above, since the Greenrod lens and the optical fiber need to be fixed apart from each other by a very small distance, a method for accurately measuring that distance is required.

〔従来の技術〕[Conventional technology]

従来のグワンレンズー光ファイバ間極測定法を第4図に
示す。
A conventional Gwan lens-optical fiber pole measurement method is shown in FIG.

グリンロッドレンズ11と光ファイバ13とはホルダ1
5内で所定の距離Sだけ隔てて光軸線上に並べられてい
る。光ファイバ13もホルダ(フェルール)17により
保持される。ここで光を図の左側からレンズ11に入射
するとレンズ11の働きによりファイバ13の先端(左
端)の像(虚像)Pがレンズ11内に形成される。この
像Pを電子顕微鏡21を介してモニタテレビ23等によ
り拡大して写し、その画像P′の大きさく例えば直径)
を計測することにより上述の距離Sを測定することがで
きる。
The Greenrod lens 11 and the optical fiber 13 are connected to the holder 1
5 and are arranged on the optical axis at a predetermined distance S. The optical fiber 13 is also held by a holder (ferrule) 17. Here, when light enters the lens 11 from the left side of the figure, an image (virtual image) P of the tip (left end) of the fiber 13 is formed within the lens 11 by the action of the lens 11. This image P is enlarged and copied on a monitor television 23 etc. through an electron microscope 21, and the size of the image P' is determined by the size of the image (for example, the diameter).
By measuring , the above-mentioned distance S can be measured.

−Cにロッドレンズにおいてその倍率mは光軸長さしの
関数であり最大倍率m、□を与えるレンズ長さは一義的
に定まる。
-C In a rod lens, the magnification m is a function of the optical axis length, and the lens length that provides the maximum magnification m, □ is uniquely determined.

しかるに上記の如き光学系においてはグリンロフドレン
ズの大きさは光学系の種々の設計上の要求(光結合特性
等)から決められるものであり光ファイバとの光軸長さ
間隔を測定するためだけにそのレンズ長さを選定するこ
とはできない。
However, in the above-mentioned optical system, the size of the Greenloff lens is determined by various design requirements of the optical system (optical coupling characteristics, etc.). Therefore, it is not possible to select the lens length.

グリンロッドレンズが最大倍率で用いられないとレンズ
と光ファイバとの間隔距離Sを変化させ゛ ても像P′
の大きさはほとんど変化せず従ってSが微少の場合には
S=0とS〉0すら識別できず、またSを微妙に変化さ
せながら像P′の大きさを測定し、それから逆にSを知
りSの値を所定の許容範囲におさめるということは困難
であった。
If the Greenrod lens is not used at maximum magnification, the image P' will remain unchanged even if the distance S between the lens and the optical fiber is changed.
The size of the image P' hardly changes, so if S is minute, it is impossible to distinguish even S=0 and S〉0.Also, the size of the image P' is measured while slightly changing S, and then conversely, S It has been difficult to know this and keep the value of S within a predetermined tolerance range.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が解決すべき課題は既設のグリンロッドレンズと
それに対向する物体(光ファイバ等)との間の光軸距離
を正確に測定するためには測定に際してグリンロッドレ
ンズの倍率を最大倍率にして用いることが肝要であり、
従って如何にしてそれを実現するかということにある。
The problem to be solved by the present invention is that in order to accurately measure the optical axis distance between an existing Greenrod lens and an object (such as an optical fiber) facing it, the magnification of the Greenrod lens must be set to the maximum magnification during measurement. It is essential to use
Therefore, the question is how to achieve this.

上述の如くグリンロッドレンズの倍率はそのレンズ長の
関数であるから最大倍率を得るにはレンズ長を調整すれ
ばよいことが判る。
As mentioned above, since the magnification of the Greenrod lens is a function of its lens length, it can be seen that the lens length can be adjusted to obtain the maximum magnification.

本発明の目的は既設のグリンロフドレンズに不足するレ
ンズ製分の補助グリンロッドレンズを密着接合しこれら
両グリンロッドレンズの合計レンズ長がレンズの最大倍
率を与える長さとなるようにすることにより上記の問題
を解決しグリンロッドレンズと物体との間の光軸距離を
高精度で測定し得るようにすることである。
The purpose of the present invention is to tightly bond an auxiliary Grinrod lens of a lens product that is insufficient to the existing Grinrod lens so that the total lens length of both Grinrod lenses becomes a length that provides the maximum magnification of the lens. It is an object of the present invention to solve the above problems and enable the optical axis distance between a Greenrod lens and an object to be measured with high precision.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために本発明によれば、グリンロ
ッドレンズ端面とそのグリンロッドレンズに隣接する物
体との光軸線方向間隔を間接的に測定する装置であって
、上記グリンロフドレンズに所定の光軸長さを有する補
助グリンロッドレンズを端面一端面接合してこれら両グ
リンロッドレンズの合計光軸方向長さがそのレンズの最
大倍率を与える長さに選定されることを特徴とするレン
ズ−物体間距離測定装置が提供される。
In order to achieve the above object, the present invention provides a device for indirectly measuring the distance in the optical axis direction between an end face of a Greenrod lens and an object adjacent to the Greenrod lens, the apparatus comprising: An auxiliary Greenrod lens having a predetermined optical axis length is joined one end face to the other, and the total length of both Greenrod lenses in the optical axis direction is selected to be a length that provides the maximum magnification of the lens. A lens-object distance measuring device is provided.

〔作 用〕[For production]

補助グリンロッドレンズを加えることによりグリンロフ
ドレンズ全体としてのレンズ長を如何様にも選定でき、
従って最大レンズ倍率を与えるレンズ長を容易に実現す
ることができる。補助グリンロッドレンズは測定後は不
用のものであるから取り外される。グリンロッドレンズ
を最大倍率で用いると距MSの小さな変化に対しても像
の大きさが大きく変化し、従って像の大きさから容易に
かつ正確にSを知ることができる。
By adding an auxiliary Greenrod lens, the overall lens length of the Greenrod lens can be selected in any way.
Therefore, a lens length that provides maximum lens magnification can be easily achieved. The auxiliary Greenrod lens is removed after the measurement, as it is no longer needed. When the Greenrod lens is used at maximum magnification, the image size changes greatly even with a small change in the distance MS, and therefore S can be easily and accurately determined from the image size.

〔実施例〕〔Example〕

第1図は本発明の原理を示すもので第4図と対応する部
品は対応番号で示しである。尚、第1図において14は
光ファイバのコアを示す。
FIG. 1 shows the principle of the present invention, and parts corresponding to those in FIG. 4 are indicated by corresponding numbers. In FIG. 1, 14 indicates the core of the optical fiber.

本発明によればグリンロッドレンズ11の入射光測端面
に好ましくは同一種類(必ずしもその必要はない)の補
助グリンロフドレンズ30が端面どうしを合わせて密着
接合される。
According to the present invention, the auxiliary Greenrod lens 30, preferably of the same type (although not necessarily), is closely bonded to the incident light measurement end surface of the Greenrod lens 11, with the end surfaces aligned.

ところでグリンロッドレンズにおいて倍率mとレンズ長
さしとは次式の関係で表わされることが知られている。
By the way, it is known that in the Greenrod lens, the magnification m and the lens length are expressed by the following equation.

但し、 m;倍率9  L;レンズ長(L=1!、  +zz)
However, m: Magnification 9 L: Lens length (L=1!, +zz)
.

no ;光軸の屈折率、 A;油接率分布定数。no: refractive index of optical axis, A: oil curvature distribution constant.

xl ;レンズの入射端面と光フアイバ端面間の距離。xl : Distance between the entrance end face of the lens and the end face of the optical fiber.

x2 ;レンズの出射端面と像間の距離上記パラメータ
のうち、n6.Aは用いられたグリンロッドレンズ11
により定まる定数であり、またxl  + xZは必要
な光学系(例えば光結合系)を設計するときの設計値を
代入すればよいのでmが最大となるm、llxを与える
レンズ長しは容易に求まる。
x2 ; Distance between the exit end face of the lens and the image Among the above parameters, n6. A is the Greenrod lens 11 used.
It is a constant determined by xl + xZ, and the design value when designing the necessary optical system (for example, optical coupling system) can be substituted, so the lens length that gives m, llx, which maximizes m, can be easily found. Seek.

第2図は第1図の原理を適用した本発明の実施例を示す
ものでその構成は補助グリンロッドレンズ30をホルダ
33により保持し既設のグリンロッドレンズ11に端面
一端面接合した点を除き第4図と同様である。ホルダ3
3は例えばボルト35によりホルダ15の外周に取り外
し可能に固定される。尚、24はモニター23の画面を
見やすくするために取り付けたパターンマスクを示す。
FIG. 2 shows an embodiment of the present invention applying the principle of FIG. 1, except that an auxiliary Greenrod lens 30 is held by a holder 33 and one end face is joined to the existing Greenrod lens 11. It is similar to FIG. Holder 3
3 is removably fixed to the outer periphery of the holder 15 with bolts 35, for example. Note that 24 indicates a pattern mask attached to make the screen of the monitor 23 easier to see.

第3図は補助グリンロッドレンズを付けてレンズを最大
倍率とした場合(本発明)及び補助グリンロッドレンズ
を付けない場合(従来技術)の夫々における像P′の径
aと距離Sとの関係を示す実験結果図である。尚、光フ
ァイバコアー108m1グリンロツドレンズ12のピン
チ=0.16、補助グリンロッドレンズ30のピッチ−
0,08とした。
Figure 3 shows the relationship between the diameter a and the distance S of the image P' when the auxiliary Greenrod lens is attached and the lens has maximum magnification (the present invention) and when the auxiliary Greenrod lens is not attached (prior art). FIG. 2 is a graph showing experimental results. In addition, the optical fiber core 108m1, the pinch of the Greenrod lens 12 = 0.16, the pitch of the auxiliary Greenrod lens 30 -
It was set as 0.08.

第3図から明らかな如くグリンロッドレンズ11 (長
さ−2+)に補助グリンロッドレンズ30(長さ=12
)を付加してその合計長さL(L=j!++Zz)が上
式のmを最大とするような値となるように12を選定す
ることにより、レンズと光ファイバとの距離Sの変化は
像P′の径aの大きな変化となって現われる。従って像
P′の径aを測定することによりSはたとえ数十μmの
単位でも顕微鏡21の倍率を例えば50倍程度のものを
使用すれば設計値とのずれを正確に測定できる。
As is clear from FIG. 3, the Greenrod lens 11 (length -2+) and the auxiliary Greenrod lens 30 (length = 12
) and select 12 so that the total length L (L=j!++Zz) maximizes m in the above equation, the distance S between the lens and the optical fiber can be changed. appears as a large change in the diameter a of the image P'. Therefore, by measuring the diameter a of the image P', it is possible to accurately measure the deviation of S from the designed value, even if it is in the order of several tens of micrometers, if the magnification of the microscope 21 is, for example, about 50 times.

尚、第3図において従来技術(破線)のものはSがほと
んど変化ないことが理解されよう。
In addition, it will be understood that in the conventional technology (broken line) in FIG. 3, S hardly changes.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明によれば計算により求められるグリン
ロッドレンズの最大倍率を与えるレンズ長に不足する長
さの補助グリンロッドレンズを付加するだけでグリンロ
ッドレンズと物体との間の光軸方向距離を精確にかつ簡
単に測定できる。
As described above, according to the present invention, the distance in the optical axis direction between the Grinrod lens and the object can be changed by simply adding an auxiliary Grinrod lens whose length is insufficient to the lens length that provides the maximum magnification of the Grinrod lens determined by calculation. can be measured accurately and easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明する図、第2図は本発明の
実施例を示す断面図、第3図は本発明と従来技術との比
較においてレンズ−物体間距離と結像の大きさとの関係
を示す線図、第4図は従来技術の測定方法を説明する図
。 11・・・グリンロッドレンズ、 13・・・光ファイバ、 30・・・補助グリンロフドレンズ。
FIG. 1 is a diagram explaining the present invention in detail, FIG. 2 is a sectional view showing an embodiment of the present invention, and FIG. 3 is a comparison between the present invention and the prior art, showing the distance between the lens and the object and the size of the image formed. FIG. 4 is a diagram illustrating a conventional measurement method. 11... Greenrod lens, 13... Optical fiber, 30... Auxiliary Greenrod lens.

Claims (1)

【特許請求の範囲】[Claims] グリンロッドレンズ端面とそのグリンロッドレンズに隣
接する物体との光軸線方向間隔を間接的に測定する装置
であって、上記グリンロッドレンズに所定の光軸長さを
有する補助グリンロッドレンズを端面−端面接合してこ
れら両グリンロッドレンズの合計光軸方向長さがそのレ
ンズの最大倍率を与える長さに選定されることを特徴と
するレンズ−物体間距離測定装置。
A device for indirectly measuring the distance in the optical axis direction between an end face of a Grinrod lens and an object adjacent to the Grinrod lens, wherein an auxiliary Grinrod lens having a predetermined optical axis length is attached to the Grinrod lens between the end face and the object adjacent to the Grinrod lens. A lens-object distance measuring device characterized in that the total length in the optical axis direction of both Greenrod lenses is selected to give the maximum magnification of the lens when the end faces are connected.
JP22092586A 1986-09-20 1986-09-20 Measuring instrument for distance between lens and object Pending JPS6378007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22092586A JPS6378007A (en) 1986-09-20 1986-09-20 Measuring instrument for distance between lens and object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22092586A JPS6378007A (en) 1986-09-20 1986-09-20 Measuring instrument for distance between lens and object

Publications (1)

Publication Number Publication Date
JPS6378007A true JPS6378007A (en) 1988-04-08

Family

ID=16758700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22092586A Pending JPS6378007A (en) 1986-09-20 1986-09-20 Measuring instrument for distance between lens and object

Country Status (1)

Country Link
JP (1) JPS6378007A (en)

Similar Documents

Publication Publication Date Title
US4443698A (en) Sensing device having a multicore optical fiber as a sensing element
KR20010091066A (en) Apparatus and method for measuring residual stress and photoelastic effect of optical fiber
JPH01244407A (en) Coupler for optical fiber
JPH0242422B2 (en)
JPS5937451B2 (en) Surface stress measuring device for chemically strengthened glass
US20040037554A1 (en) Non-coherent fiber optic apparatus and imaging method
JPS6378007A (en) Measuring instrument for distance between lens and object
JPH10507849A (en) Connection between twin-core optical fiber and single-core fiber
CN108871436A (en) A kind of Mach-Zehnder interferometer and preparation method thereof based on period S type optical taper
US5317575A (en) System for determining birefringent axes in polarization-maintaining optical fiber
Filipenko et al. The autoconvolution method use for positioning photonic crystal fibers
Kokubun et al. Index Profile Measurement of Optical Fibers by Means of a Transverse Interferogram--Further Considerations on Its Accuracy--
JP2859680B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JP2505416B2 (en) Optical circuit and manufacturing method thereof
JPH037061B2 (en)
JPS6172208A (en) Production of base material for optical branching device
JP2725323B2 (en) Light switch
Filipenko et al. ChalaThe Autoconvolution Method Use for Positioning Photonic Crystal Fibers
JPS60263905A (en) Multicore fiber with periodic structure and fine displacement gauge using multicore fiber
JPH03225251A (en) Method for measuring loss of optical fiber coupler
JP3140114B2 (en) Optical fixed attenuator
JP2003526114A (en) Single mode fiber on-line attenuator and method of manufacturing the same
JPS62130306A (en) Optical measuring method for quartz-based optical waveguide
JP2006058740A (en) Composite optical fiber
JPH0374364B2 (en)