JPS6376874A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPS6376874A
JPS6376874A JP21921886A JP21921886A JPS6376874A JP S6376874 A JPS6376874 A JP S6376874A JP 21921886 A JP21921886 A JP 21921886A JP 21921886 A JP21921886 A JP 21921886A JP S6376874 A JPS6376874 A JP S6376874A
Authority
JP
Japan
Prior art keywords
aluminum
substrate
chamber
growth method
inorg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21921886A
Other languages
Japanese (ja)
Other versions
JP2546654B2 (en
Inventor
Takayuki Oba
隆之 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61219218A priority Critical patent/JP2546654B2/en
Publication of JPS6376874A publication Critical patent/JPS6376874A/en
Application granted granted Critical
Publication of JP2546654B2 publication Critical patent/JP2546654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To form a thin film contg. Si in Al with high controllability by CVD by using org. and inorg. Al compds. as source gases and feeding them to a chamber together with H2. CONSTITUTION:An org. Al compd. such as TIBA, TMA or TEA and an inorg. Al compd. such as TSA or TDSA used as source gases are fed to a chamber 11 together with gaseous H2 and blown on a substrate 12 to grow a thin Al-Si film on the substrate 12 at about 260-360 deg.C. The chamber 11 is evacuated beforehand to about 0.5-1.5Torr degree of vacuum and the flow rate of the org. and inorg. Al compds. is regulated to about 1-10cc/min. By this method, the amount of Si in the thin film can be changed with high controllability and the adhesion of the stepped part is improved.

Description

【発明の詳細な説明】 〔概要〕 有機および無機アルミニウムをソースガスとして用い、
1−Si合金薄膜を形成する。
[Detailed Description of the Invention] [Summary] Using organic and inorganic aluminum as a source gas,
1-A Si alloy thin film is formed.

〔産業上の利用分野〕[Industrial application field]

本発明は気相成長法に関し、さらに詳しく言えば、アル
ミニウム・シリコン(A6−5i)合金の薄膜を、アル
ミニウム中にシリコンを制御性良く含ませた薄膜を化学
気相成長(CVD )法で形成する方法に関するもので
ある。
The present invention relates to a vapor phase growth method, and more specifically, to forming a thin film of an aluminum silicon (A6-5i) alloy by chemical vapor deposition (CVD), in which silicon is contained in aluminum with good controllability. It's about how to do it.

〔従来の技術〕[Conventional technology]

半導体装置の配線は一般にA2をCVO法で成長して作
られたA1膜をバターニングして形成される。 ANの
CVD成長には例えばトリイソブチルアルミニウム(t
riisobutyl aluminum、 TIBA
+  Aff(1so−CやH2)3)をソースガスと
して用いる、その他にも有機アルミニウムには、Aβ(
R) 3− TMA〔(トリメチルアルミニウム) 、
  i  (C113)3)、トリエチルアルミニウム
(AJ CCIH5) 3 、 TEA 3などがある
Wiring of a semiconductor device is generally formed by patterning an A1 film made by growing A2 using the CVO method. For CVD growth of AN, for example, triisobutylaluminum (t
riisobutyl aluminum, TIBA
+ Aff (1so-C or H2)3) is used as a source gas.
R) 3-TMA [(trimethylaluminum),
i (C113) 3), triethylaluminum (AJ CCIH5) 3, TEA 3, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した有機アルミニウムを用いて形成した純粋アルミ
ニウムで配線を形成した場合に、エレクトロマイグレー
ション(electromigration、電子移動
)及びストレスまたはサーマルマイグレーション(st
ress or thermal IImigrati
on )によって断線するおそれがあることが確かめら
れた。エレクトマイグレーシランにおいては、Al配線
に電流を流すとき電子がAl原子に衝突し、この物理的
衝撃によってへl原子が動きAll配線に薄くなった部
分が形成されると、その薄い部分がジュール熱によって
切断される。ストレスまたはサーマルマイグレーション
はAl配線上に保護膜などを成長するときの熱で、熱膨
張係数の異なる保護膜材料とAl配線との間にストレス
が発生し、このストレスにより Af配線が切断される
When wiring is formed with pure aluminum formed using the organic aluminum described above, electromigration (electron migration) and stress or thermal migration (st
ress or thermal IImigrati
It was confirmed that there is a risk of wire breakage due to In electromigration silane, when a current is passed through the Al wiring, electrons collide with the Al atoms, and this physical impact causes the atoms to move and form a thin part in the Al wiring, which is heated by Joule heat. disconnected by. Stress or thermal migration is caused by the heat generated when a protective film or the like is grown on the Al wiring, and stress is generated between the protective film material having a different thermal expansion coefficient and the Al wiring, and this stress causes the Af wiring to be cut.

そこで、Al中に1%程度のシリコン(Si) 。Therefore, approximately 1% silicon (Si) is added to Al.

w4(Cu)などを含ませて、前記した問題点を解決す
ることが試みられているが、Al中にシリコンを制御性
良く含ませることは難しい。
Attempts have been made to solve the above-mentioned problems by incorporating w4 (Cu), etc., but it is difficult to incorporate silicon into Al with good controllability.

本発明はこのような点に鑑みて創作されたもので、Af
のCVD成長において、へN中に制御性良(シリコンを
含有させる方法を提供することを目的とする。
The present invention was created in view of these points, and
The purpose of the present invention is to provide a method for containing silicon in nitrogen with good controllability in CVD growth.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明実施例の断面図で、図中、11はチャン
バ、12は基板、13はサセプタ、14はヒータ、15
は排気管、16はガス供給部である。
FIG. 1 is a sectional view of an embodiment of the present invention, in which 11 is a chamber, 12 is a substrate, 13 is a susceptor, 14 is a heater, 15
1 is an exhaust pipe, and 16 is a gas supply section.

本発明においては、ソースガスとして有機アルミニウム
+無機アルミニウム、例えばトリシリアルミニウム(T
S^、 Al (5iH3) )を用い、それをH2と
共にチャンバ11内に供給し、このときの条件は 温度=260〜500℃ 圧カニ  0.5〜1.5 Torr TERAキャリアガス流量:40S(1:CMTSAキ
ャリアガス流量:  2SCCM112流量:  10
0 SCCM とし、1000人/sinの成長速度で1〜2%wts
iを含む^j!−Siを基板12上に成長する。
In the present invention, the source gas is organic aluminum + inorganic aluminum, such as trisilyaluminum (T
S^, Al (5iH3)) is used and supplied into the chamber 11 together with H2, and the conditions at this time are: temperature = 260-500°C pressure crab 0.5-1.5 Torr TERA carrier gas flow rate: 40S ( 1: CMTSA carrier gas flow rate: 2 SCCM112 flow rate: 10
0 SCCM, 1-2%wts at a growth rate of 1000 people/sin
Contains i^j! -Grow Si on the substrate 12;

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明者は、へ1OCvD法による成膜について実験を
なし、温度は260〜500℃、圧力は0.5〜1.5
 Torrの範囲内に設定することが最適であることを
確認した。温度と圧力が上記の範囲より小であるとAI
l膜の成長は著しく低下し、500℃以上の温度はAt
’の融点を考慮すると好ましくなく、0.5〜1.5 
Torrにおいては膜の成長にはほとんど影響のないこ
とを確かめた。
The present inventor conducted an experiment on film formation by the 1OCvD method, at a temperature of 260 to 500°C and a pressure of 0.5 to 1.5.
It was confirmed that setting within the range of Torr is optimal. If the temperature and pressure are less than the above range, AI
l film growth is significantly reduced, and temperatures above 500°C result in At
' is not preferable considering the melting point of 0.5 to 1.5
It was confirmed that Torr has almost no effect on film growth.

温度と圧力を前記の如くに設定した上で、第1図を参照
すると、ガス供給部16にはTIBA (Al (R)
3)+ TSA(八l (R’)3)とH2を図示の如
く供給し、ガス供給部16からガスをシャワー状に加熱
された基板12に向けて噴出した。このときのこれらの
ガスの流量は、 TIB八(キャリアガス40 SCC門)TSA  (
キャリアガス 2 SCCM)H2(100SCCM) に設定したところ、AIの成長速度は1000人/mi
nで、 Al中にシリコンは実質量で1〜29fiwt
含まれた薄膜が基板12上に成長した。なお、成長時間
と膜厚は第3図を参照して後述する。
After setting the temperature and pressure as described above, referring to FIG.
3)+TSA (8l (R')3) and H2 were supplied as shown in the figure, and the gas was ejected from the gas supply section 16 toward the heated substrate 12 in a shower-like manner. The flow rates of these gases at this time are TIB8 (carrier gas 40 SCC gate) TSA (
When the carrier gas was set to 2 SCCM) H2 (100 SCCM), the AI growth rate was 1000 people/mi.
n, the actual amount of silicon in Al is 1 to 29 fiwt.
A contained thin film was grown on the substrate 12. Incidentally, the growth time and film thickness will be described later with reference to FIG.

有機アルミニウムとしてはトリジシアルミニウム(TD
SA、  Al (Sizes )  3)も使用可能
であり、第2図は流量(横軸にcc/winでとる)と
シリコンの濃度(縦軸に重量比、 wt%でとる)の関
係を示す線図である。線AはTIBAのキャリアガス流
量40cc/ min s線Bはキャリアガス流ff1
30cc/ min 。
An example of organoaluminum is tridisialium (TD
SA, Al (Sizes) 3) can also be used, and Figure 2 shows a line showing the relationship between the flow rate (the horizontal axis is taken in cc/win) and the silicon concentration (the vertical axis is the weight ratio, taken in wt%). It is a diagram. Line A is the carrier gas flow rate of TIBA 40cc/min. Line B is the carrier gas flow rate ff1.
30cc/min.

線Cはキャリアガス流1t20cc/minの場合をそ
れぞれ示す。無機^lのキャリアガスの流量をそれぞれ
1 cc/ ll1inより小にするとシリコンの−L
%はlより小になり、1 cc/ min以下では従来
問題の解決にはならないことになり、キャリアガスの流
量をそれぞれ10cc/l1inより大にするとシリコ
ンの−t%が大になりすぎ、断線のおそれはなくなるも
のの抵抗値が大になる。
Line C shows the case where the carrier gas flow is 1t20cc/min. When the flow rate of the inorganic carrier gas is less than 1 cc/ll1in, -L of silicon
% is smaller than l, and if it is less than 1 cc/min, it will not solve the conventional problem, and if the flow rate of the carrier gas is made larger than 10 cc/l, the -t% of silicon will become too large, causing wire breakage. Although the risk of this is eliminated, the resistance value increases.

第3図はTIBA+ H2とTIB^+TSA + H
2の場合の成長時間(横軸に分でとる)と膜厚(縦軸に
μmでとる)との関係を示す線図で、本発明の方法では
Al−5t合金膜が約10分で1.0μmの膜厚に成長
することが示される。
Figure 3 shows TIBA+H2 and TIB^+TSA+H
This is a diagram showing the relationship between the growth time (in minutes on the horizontal axis) and the film thickness (in μm on the vertical axis) in case 2. In the method of the present invention, the Al-5t alloy film grows to 1 in about 10 minutes. It is shown that the film grows to a thickness of .0 μm.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明によれば、を機アルシミニ
ウム(TM八、 TEA、 TIBAなど)と無機アル
ミニウム(TSA、 TDSAなど)を混合して用いる
ことにより、A1・Si中のシリコンの量を制御性良く
変えることが可能になり、しかも、実験によって確かめ
たところによると、気相成長による段差部の密着性(c
overage)が良くなる利点もある。
As described above, according to the present invention, by using a mixture of organic aluminum (TM8, TEA, TIBA, etc.) and inorganic aluminum (TSA, TDSA, etc.), the amount of silicon in A1.Si can be reduced. It has become possible to change the change with good controllability, and according to experiments, it has been confirmed that the adhesion of the step part due to vapor phase growth (c
There is also the advantage of improved coverage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の断面図、 第2図はソースガスの流量とへl中のシリコンの量との
関係を示す線図、 第3図は八Eの成長時間と膜厚の関係を示す線図である
。・ 第1図において、 11はチャンバ、 12は基1反、 13はサセプタ、 14はヒータ、 15は排気管、 16はガス供給部である。 代理人  弁理士  久木元   彰 復代理人 弁理士  大 菅 義 之 拳勢明欠覚f’l @面間 第1図 シリコン’y’JJt (cut’/JtzsIvll
f&tji 譚a 第2図 AIのへ条吟r4ヒ頑4の関1恥を禾す線閃第3図
Figure 1 is a cross-sectional view of an embodiment of the present invention, Figure 2 is a diagram showing the relationship between the flow rate of source gas and the amount of silicon in the helium, and Figure 3 is the relationship between growth time and film thickness for 8E. FIG. - In Fig. 1, 11 is a chamber, 12 is a base plate, 13 is a susceptor, 14 is a heater, 15 is an exhaust pipe, and 16 is a gas supply section. Agent Patent Attorney Akifuku Agent Patent Attorney Yoshi Osuga
f&tji tana Figure 2 AI's Hejo Gin r4 Hi Gun 4's Seki 1 Shameful line flash Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)真空チャンバ(11)内の加熱された基板(12
)に有機アルミニウム(TIBA、TMA、TEAなど
)と無機アルミニウム(TSA、TDSAなど)とを加
えたソースガスと水素(H_2)ガスとを吹き付け、シ
リコンを含んだアルミニウムを基板(12)上に成長す
ることを特徴とする気相成長法。
(1) Heated substrate (12) in vacuum chamber (11)
) with a source gas containing organic aluminum (TIBA, TMA, TEA, etc.) and inorganic aluminum (TSA, TDSA, etc.) and hydrogen (H_2) gas to grow aluminum containing silicon on the substrate (12). A vapor phase growth method characterized by:
(2)前記真空度は0.5〜1.5Torr、温度は2
60〜360℃、有機アルミニウムと無機アルミニウム
の流量はそれぞれ1〜10cc/minの範囲に設定し
たことを特徴とする特許請求の範囲第1項記載の気相成
長法。
(2) The degree of vacuum is 0.5 to 1.5 Torr, and the temperature is 2
The vapor phase growth method according to claim 1, wherein the temperature is 60 to 360°C, and the flow rates of organic aluminum and inorganic aluminum are each set in the range of 1 to 10 cc/min.
JP61219218A 1986-09-19 1986-09-19 Vapor growth method Expired - Lifetime JP2546654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61219218A JP2546654B2 (en) 1986-09-19 1986-09-19 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61219218A JP2546654B2 (en) 1986-09-19 1986-09-19 Vapor growth method

Publications (2)

Publication Number Publication Date
JPS6376874A true JPS6376874A (en) 1988-04-07
JP2546654B2 JP2546654B2 (en) 1996-10-23

Family

ID=16732051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61219218A Expired - Lifetime JP2546654B2 (en) 1986-09-19 1986-09-19 Vapor growth method

Country Status (1)

Country Link
JP (1) JP2546654B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354433A (en) * 1989-04-09 1994-10-11 Asm International N.V. Method for producing a flow of triisobutylaluminum from liquid triisobutylaluminum containing isobutene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354433A (en) * 1989-04-09 1994-10-11 Asm International N.V. Method for producing a flow of triisobutylaluminum from liquid triisobutylaluminum containing isobutene

Also Published As

Publication number Publication date
JP2546654B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
US4781945A (en) Process for the formation of phosphosilicate glass coating
JPS6376874A (en) Vapor growth method
JPH01252776A (en) Formation of aluminum film by vapor growth
JPH02217473A (en) Forming method of aluminum nitride film
JP2748881B2 (en) Semiconductor manufacturing apparatus and manufacturing method
Kaneko et al. Epitaxial growth of A1N film by low-pressure MOCVD in gas-beam-flow reactor
JP2528912B2 (en) Semiconductor growth equipment
JPS6115150B2 (en)
JP2020535626A (en) High growth rate deposition of III / V materials
JPS6376875A (en) Vapor growth method
JPH01313927A (en) Compound-semiconductor crystal growth method
JPS60136220A (en) Semiconductor manufacturing equipment
JPH04215421A (en) Chemical vapor phase growth method
EP0349781A2 (en) Metal organic vapor phase epitaxial growth of group III-V compounds
JPS6021518A (en) Vapor growth method of iii-v group compound semiconductor
JP2605928B2 (en) A. Method for selective formation of thin film
JPH06184749A (en) Production of thin film using organometallic complex
JPH01501989A (en) Semi-insulating Group 3-5 composition
JP3251990B2 (en) Al or Al alloy film forming method
KR940010158B1 (en) Tungsten film depositing method using pecvd
JPH02168623A (en) Forming method of silicon nitride thin film by chemical vapor growth method
JPS59107998A (en) Crystal growth method
JPS6131393A (en) Vapor phase growth device
JPH02202018A (en) Manufacture of polycrystalline silicon thin film
Zelenin et al. Some aspects of SiC CVD epitaxy